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Introduction

This document describes the software-programmable aspects of the I8500 Multiprocessing System (MPS). 
The I8500 MPS is an RV64-based implementation of the RISC-V instruction set architecture (ISA) and sup-
ports the RVB23 standard profile for unprivileged and privileged architecture and mandatory extensions, 
plus several additional optional RISC-V extensions. 

The I8500 also includes a suite of MIPS-Defined Instructions (MDIs) beyond the base RISC-V ISA for 
enhanced operation on a variety of functions. CorExtendTM provides the ability for customers to add their 
own custom User-Defined Instructions (UDIs) via a well-defined interface.

1.1 I8500 System Level Block Diagram

The I8500 core supports hardware multi-threading and, as part of the I8500 MPS, forms a highly scalable 
and configurable IP platform extending to multi-core and multi-cluster implementations. It consists of the 
logic blocks shown in Figure 1.1.

Figure 1.1 System-level Block Diagram of Single-Cluster I8500 Multiprocessing System  

Cluster Power Controller (CPC)

CPU 0 CPU 1 CPU 5 Interrupt 
Controller

Global 
Control 

Registers 
(GCR)

Custom 
Control 

Registers

Coherence Manager with Integrated L2 Cache

L2 Cache Memory

AXI-4 or ACE 
Main Memory

AXI-4 Auxiliary 
Non-coherent Buses

Debug Unit JTAG

IOCU 0 AXI-4

IOCU 7 AXI-4

Trace Funnel Trace

Optional



13
mips.com

Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS I8500 Multiprocessing System Programmer’s Guide — Revision 1.00

1.2 Chapter Descriptions

The majority of blocks in the diagram above have a dedicated chapter, with each chapter providing pro-
gramming examples and the relevant background information required by the programmer in order to 
understand the examples. Common functions such as enablement and initialization are provided for each 
block, as well as more in-depth examples relative to that block. 

The material provided in subsequent chapters of this document is as follows:

• Product Features Overview: This chapter outlines the key features of the I8500 MPS at core, cluster, 
system component and interface levels of the product.

• Architecture Overview: This chapter outlines the RISC-V architecture support and supported operating 
modes.

• Memory Management (MMU): This chapter describes the programmable elements of the Translation 
Lookaside Buffer (TLB) of the I8500 Multiprocessing System. The first section gives an overview of the 
TLB architecture, a description of its functionality and a description of the elements that go into pro-
gramming the TLB. The sections that follow cover specific information on programming for the TLB.

• Caches: This chapter provides an overview of the cache architecture, a description of its functionality, 
and a description of the elements that go into programming the caches. A description of the CSR reg-
ister interface to each cache is provided, as well as initialization code for all three caches, setting up 
cache coherency, handling cache exceptions, and testing the cache RAM.

• Exceptions: This  chapter describes an overview of exception processing and a definition of the inter-
rupt modes. Information on how to program the reset, boot, and general exception vectors in memory 
is also covered. A list of exception priorities is provided, along with an assembly language example of 
an exception handler.

• Coherence Manager (CM): The I8500 MPS contains a third generation Coherence Manager. This 
chapter provides an overview of the CM register ring bus and associated table that lists each device ID 
on the bus. The programmer uses this information to access these devices. An overview of the CM 
register address space is also provided. In addition, the chapter describes how to program the CM to 
perform various functions, including setting the base addresses in memory, accessing another hart in 
the same core, accessing a hart in another core, accessing the Interrupt Controller (APLIC), Cluster 
Power Controller (CPC), and/or Debug Unit (DBU) registers via the CM, and setting the clock ratios 
between the various I8500 system components. For the exact revision number of the Coherence Man-
ager, refer to the Release Notes.

This chapter also introduces the multi-cluster configuration that allows multiple I8500 Multiprocessing 
Systems to be connected through a Network-On-Chip (NOC) interface and includes description of the 
registers used to perform a cluster-to-cluster access.

• Cluster Power Controller (CPC): This chapter provides an overview of how power is managed in the 
I8500 Multiprocessing System and identifies the various power and clock domains the programmer 
can use to manage power consumption in the device. In addition, a procedure on how to set the CPC 
base address in memory is provided. Other programming principles include setting the device to 
coherent or non-coherent mode, requestor (core or IOCU) access of CPC registers, system power-up 
policy, programming examples of a clock domain change and clock delay change, powering up the 
CPC in standalone mode (no cores enabled), reset detection, hart run/suspend mechanism, local 
RAM shutdown and wake-up procedure, accessing registers in another power domain, and fine tuning 
internal and external signal delays to help the programmer easily integrate the device into a system 
environment.

• Interrupt Controller: The Interrupt Controller conforms to the RISC-V Advanced Interrupt Architecture 
(AIA) standard and processes internal and external interrupts in the I8500 Multiprocessing System. It 
supports up to 511 external interrupts (configurable in multiples of 8), which are prioritized and routed 
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to the selected hart for servicing. The interrupt priority and routing are programmed via memory-
mapped registers. The Interrupt Controller also implements per-hart timer and software interrupts, 
non-maskable interrupt routing and watchdog timers.

• Debug: This chapter provides a brief overview of the features specific to the I8500 as part of the core 
and multi-core support compliant with RISC-V v1.0 debug specification.

• Trace: This chapter provides a brief overview of the features specific to the I8500 as part of the core 
and multi-core support compliant with the RISC-V v1.0 Trace Control and v1.0 N-Trace specifications.

• Floating Point Unit (FPU): This chapter provides information on how to enable the FPU, how to handle 
floating point exceptions, and how to set the rounding mode.

• Virtualization: The I8500 core implements the RISC-V H "hypervisor" extension to allow efficient imple-
mentation of virtualized operating systems. In addition, the I8500 has additional hypervisor functional-
ity (instructions, CSRs) to accelerate portions of hypervisor actions beyond what the RISC-V extension 
provides.

• Performance Counters: Provides a listing of Core and CM3 performance counters and associated con-
trol registers.

• DSPRAM: The optional Data Scratch Pad RAM (DSPRAM) block provides a connection to on-chip 
memory used for temporary storage of data or memory-mapped registers, which are accessed in par-
allel with the L1 data cache to minimize access latency. 

• ISPRAM: The optional Instruction Scratch Pad RAM (ISPRAM) block provides a connection to on-chip 
memory, which are accessed in parallel with the L1 instruction cache to minimize fetch latency.

• Multi-threading: This chapter provides an overview of the hardware multi-threading mechanism in the 
I8500 MPS.

1.3 Additional Key Resources

The following are some additional key resources and references:

• RISC-V Architecture specifications: https://riscv.org/specifications/ratified/.

• I8500 Data Sheet. Provides an overview of the I8500 core, the Coherence Manager, and a list of con-
figuration options.

• 64-bit MIPS I8500 Multiprocessing System Integrator's Guide. This companion document provides 
hardware details about the device, including functional verification, system integration, and system 
implementation.

1.4 Harts and Virtual Processors (VPs)

Throughout this document, the terms hart and Virtual Processor (VP) are both used to refer to a hardware 
thread. The RISC-V nomenclature uses the term ‘hart’ exclusively, and MIPS documentation uses the term 
hart where reasonable. 

Virtual Processor or VP is the original MIPS ISA nomenclature. Since there are legacy signals and register 
bits that still have VP embedded in their name, the term VP is used in these situations when referring to 
hardware threads.

https://riscv.org/specifications/ratified/
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Product Features Overview

The I8500 Multiprocessing System (MPS) is a high performance multi-core platform that provides best in 
class power efficiency for use in system-on-chip (SoC) applications. It is comprised of a multi-threaded 
core, a coherence manager block for coherently connecting multiple cores together in a cluster, and a 
coherent system interface for scaling to multi-cluster implementations. The following sections cover key 
aspects at each level of the I8500 MPS.

2.1 I8500 Core-Level Features

This section lists the main features of the I8500 core.

• RISC-V RV64 Architecture
– RVB23 standard profile
– H-extension for hardware virtualization
– SV48 and SV39 virtual address space

• 3-issue in-order 9-stage microarchitecture (fetch, decode, issue, graduate) with hardware multi-thread-
ing
– Issues up to 2 instructions from a single hart per cycle
– Issues up to 3 instructions from two harts per cycle
– Supports configurations up to 4 RISC-V harts per core

• L1 instruction and data caches
– 4 way associative

– Cache way predictor reduces fetch power for consecutive fetches
– D-cache way prediction on accesses to reduce power

– Optional SECDED ECC protection
– Configurable size (32KB, 64KB)
– Virtually Indexed, Physically Tagged (VIPT)
– Overlaps VA to PA translation with a tag lookup
– 64-byte line size
– Way-prediction to reduce power
– Up to 8 requests in flight to CM.
– Single cycle operations (fill, evict, store-commit) on entire (512-bit) cache lines.

• Memory Management Unit 
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– Large first-level ITLB/DTLB supporting 4K and 64K page sizes 
– Fast on-core second-level Variable-page-size TLB (VTLB) and Fixed-page-size TLB (FTLB)
– VTLB is shared between harts and supports page sizes ranging from 4 KB to 256 GiB pages in 

powers of four.
– VTLB size is build time configurable at 64, 128, 256 dual entries, and VTLB capacity is shared 

between harts - one hart can allocate all entries if the other harts are idle.
– FTLB shared by all harts in core and supports 4KB and 64KB pages, but only one size at a time. 
– Selectable hardware, or software managed, table walk
– MIPS DVM instructions provide global L1 Icache and TLB invalidation

• Load/store bonding support: Bonds certain pairs of adjacent loads or adjacent stores into a single, 
wider load or store access.

• Branch Prediction
– 8-bit path-based Global History Register (GHR) per hart
– Three 4-wide Branch History Tables (BHTs), shared by all harts
– Four 2-bit saturating counters / entry: one per instruction slot in a fetch bundle

• Jump Prediction
– Predicts up to 2 branches per 4 instruction fetch bundle each cycle
– Jump Register Cache predicts the target of indirect jumps
– 4-way set associative
– 8 entries/way (1 and 2 hart config) or 16 entries/way (4 hart config)

• Return Prediction Stack
– Predicts the target of return instructions
– 4-entry Last-In First-Out (LIFO) buffer per hart

• Optional Instruction Scratch Pad RAM (ISPRAM) with16KB to 1MB capacity configurable in powers of 
2

• Optional Data Scratch Pad RAM (DSPRAM) with16KB to 1MB capacity configurable in powers of 2

• Parity and ECC
– ECC or parity error detection/correction on SRAM arrays
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2.1.1 I8500 Core-Level Block Diagram

Figure 2.1 shows the core-level block diagram for the I8500 device.

Figure 2.1 I8500 Core-level Block Diagram

Some of the main computing elements in the above diagram are described in the following subsections.

2.1.2 Simultaneous Multi-Threading (SMT)
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BHT 
JRC
RPS

Address 
Generation

Instruction 
TLB

VTLB/
FTLB

Instruction
Fetch Unit (IFU)

Instruction
Cache

ISPRAM
Control/Status

Registers (CSR)

Hart 0 Pipe

Hart 1 Pipe

Hart 2 Pipe

Hart 3 Pipe

Instruction
Issue

Register 
File Read

Operand 
Bypass

ALU0/
CTU

ALU1

FPU PipeA

FPU PipeB

MDU

Result 
Collect

WRF 
Write

Instruction
Graduation

Unit

Address 
Generation

Data TLB

Data 
Cache

Load/Store Unit (LSU) Trace Unit

DSPRAM

Debug
Reset/Interrupts

Power Mgt.

Bus Interface Unit (BIU)

To/from Coherency Manager (CM) Debug/Configuration Interface

Optional

BHT = Branch History Table 
JRC = Jump Register Cache
RPS = Return Prediction Stack

CSR Exec

CTU

Tandem CTU



18
mips.com

Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS I8500 Multiprocessing System Programmer’s Guide — Revision 1.00

The I8500 retains one CTU issue slot but can issue to either CTU associated with that slot. This organiza-
tion allows the EXU to issue single-cycle Control Transfer instructions earlier than they otherwise might, 
and gives the instruction scheduling logic greater flexibility to eliminate pipeline bubbles, improving execu-
tion efficiency. It also reduces the impact of instruction issue bottlenecks, where multiple instructions 
become ready to issue in the same cycle. The Tandem CTU setup can be used by all CTU instructions 
regardless of the source instruction.

2.1.4 Integer Multiply / Divide Unit (MDU)

The MDU implements integer multiplies and divides, as well as certain complex integer operations. 

2.1.4.1 Integer Multiplies

Multiply instructions are fully pipelined and have a fixed latency of 3 cycles. This differs from the P8700 
architecture, which has different latencies depending on the argument size.

2.1.4.2 Integer Divides

Divide instructions are iterative rather than pipelined and have variable latency. MDU implements an 
Radix-4 SRT divider with early-exit that produces 2 quotient bits per cycle. MDU provides a completion 
notice 2 cycles ahead of completion.

2.1.5 Floating Point Pipelines (FP Short / FP Long) 

The FPU implements two separate pipelines. The FP Short pipeline executes simple floating-point instruc-
tions such as format conversion and comparisons. The FP Long pipeline executes the remaining floating 
point arithmetic instructions. 
This structure allows simpler FP instructions to bypass more expensive FP computations. It also allows the 
two instruction classes to have uniform latency within each pipeline for non-iterative instructions.
Architecturally, the FPU provides 32 64-bit registers for each hart, as described in the RISC-V F and D 
standard extensions. Each floating-point value occupies 64 bits. Single-precision floating point values are 
normally 32 bits. However, when placed in a register, the RISC-V architecture NaN-boxes the value, 
extending it to 64 bits. Double-precision floating-point values are naturally 64 bits, and each value fills an 
entire register without NaN-boxing. Note that the WRF holds both integer and FP temporary results. There 
are distinct integer and FP architectural register files.

2.1.6 Load Store Unit

The Load Store Unit (LSU) moves data between the core and system memory. It maintains the L1 data 
cache (L1D) to accelerate access to frequently accessed data stored in cacheable memory. 

• Accepts 1 operation (load, store, fence, cache maintenance etc.) per clock. A bonded pair of loads or 
stores is one operation.

• Nearly-full hardware support for misaligned loads and stores, including custom paired-load and paired 
store instructions. Note that misaligned accesses that fit fully within a TLB mapping (4K or 64K) do not 
cause an exception, but a misaligned access that requires two different page mappings (4K&4K, 
64K&64K, 4K&64K, 64K&4K) will cause an alignment exception.

• Load-to-use latency for L1D hit: 3 cycles

• Load/Store Peak Sustained Throughput: 128 bits/cycle for any mix of loads and stores. 128-bit load/
store requires bonded 64-bit load/store or custom LDP and SDP instructions.

• 128-bit read and 128-bit write interfaces to the Bus Interface Unit (BIU) and Coherency Manager (CM).
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2.1.7 Bus Interface Unit (BIU)

The BIU interfaces the instruction and data caches with the CM. This in an internal interface based on the 
MIPS Coherence Protocol (MCP) and has three channels that support 128-bit/cycle data transfers. The 
transaction size can vary from 1 byte to 16 bytes for a single uncached access or the full 64 bytes for a 
cache line. The BIU supports full memory coherency, including interventions (i.e. snoops).

2.1.8 CorExtend

The I8500 core includes a modest implementation of MIPS CorExtend feature, a defined mechanism and 
interface supporting the customer implementation of User Defined Instructions (UDIs), intended for state-
less arithmetic functions that operate on integer registers and immediate values encoded in the opcode.
Features of the CorExtend UDI include:

• Up to 16 customer-defined instruction opcodes, defined by a configuration input.

• Supports fixed latency, stateless instructions.

• Two 64-bit register sources, one 64-bit register destination.

• Full 32-bit opcode provided to CorExtend interface, so customer can provide alternate interpretations 
of opcode fields.

For more information, refer to Appendix C of this manual.

2.2 I8500 Cluster-Level Features

The I8500 MPS is designed for implementation of multi-core and multi-cluster systems. It includes a num-
ber of cluster level components beyond the I8500 cores that can be used in combination to form a multi-
core cluster, including platform level interrupt control, debug, trace functions, I/O coherence units, and a 
coherence manager to connect all the components together. 
The I8500 Coherence Manager (CM) includes an integrated Level 2 cache, and the CM maintains cache 
and system level coherency between all cores, the shared L2 cache, main memory, and I/O devices. Fig-
ure 1.1 from the previous chapter is reproduced here for easy reference, and illustrates that the I8500 MPS 
at the cluster level can be configured with a variable number of cores, I/O coherent interfaces, L2 cache 
size along with interrupt resources and debug and trace features.

2.2.1 I8500 System Level Block Diagram

Figure 2.2 shows a system level block diagram of the I8500 device, including the instantiation of cores and 
IOCU’s. 
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Figure 2.2 I8500 System-level Block Diagram  

In an I8500 MPS cluster, the total number of cores and IOCUs together must be less than or equal to eight. 
The I8500 MPS supports both single-cluster and multi-cluster configurations.

2.2.2 CM/Cluster and System Level Features

• Up to eight coherent agents, in any combination of:
– Up to six I8500 cores
– Up to eight IOCUs

• Integrated, L2 cache controller 
– 8-way and 16-way set-associativity
– Inclusive of the L1 data caches
– 256 KB to 2 MB cache sizes 
– SECDED ECC protection
– Direct cache-to-cache data transfers
– Out-of-order data return
– Hardware L2 cache prefetch controller significantly improves performance of workloads such as 

memcopy

• Cluster Power Controller (CPC) to shut down idle cores for power efficiency
– Software controlled core level and cluster level power management

• Independent clock ratios on core, memory, and IOCU ports, as well as Auxiliary AXI4 I/O interfaces

• SoC system interface supports either the AXI-4 or ACE bus protocol for single or multi-cluster imple-
mentations, respectively, for connection to an external Network-on-Chip (NoC)
– 48-bit address and configurable 128/256/512-bit data path (256-bit default)
– ACE facilitates two or more clusters to be coherent when connected together

• Supports up to four auxiliary (AUX) AXI-4 ports per cluster.
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• High bandwidth 128-bit internal data paths between each core and the Coherence Manager

• Parity error detection on all internal buses

• Parity error detection on all external AXI interfaces

• AXI/ACE interface parity compatibility with the SoC's NoC

• RISC-V Standard Debug and N-Trace with multi-core operation and aggregation features
For more information on the Cluster Power Controller (CPC) block, refer to the Cluster Power Controller 
chapter of this manual.
For more information on the Interrupt Controller block, refer to the Interrupt Controller chapter of this man-
ual.
For more information on the Coherence Manager (CM), Global Configuration Registers, I/O Coherence 
Units (IOCUs), L2 pre-fetch, etc. refer to the Coherence Manager chapter of this manual.
For more information on the L2 Cache Memory, refer to the Caches chapter of this manual.

2.2.3 Multi-Cluster Configuration

In addition to the single-cluster configuration shown above, the I8500 also allows for cluster-to-cluster 
accesses. This allows a core or hart in one cluster to access a core or hart in another cluster through the 
Network-On-Chip (NOC) interface. This interface is shown in Figure 2.3.

Figure 2.3 Cluster-to-Cluster Accesses Using the NOC 

For example, a hart within a core in Cluster 1 can access and update a register in a hart in Cluster 2 as 
shown. The access is processed by the CM3.7 and driven onto the NOC. The NOC then routes the 
request to the appropriate cluster where the access is scheduled by the CM3.7 in the destination cluster. 
The data is fetched and returned to the requesting hart through the NOC.
For more information, refer to Chapter 8, Coherency Manager.

hart hart

Core

hart hart

Core

Coherence Manager (CM)

hart hart

Core

hart hart

Core

Cluster 1 Cluster 2

Network on Chip (NoC)

Coherence Manager (CM)



22
mips.com

Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS I8500 Multiprocessing System Programmer’s Guide — Revision 1.00

2.3 MIPS Software Tools

MIPS offers a complete portfolio of tools that address all stages of product development, including RISC-V 
Linux, Compilers, and MIPS boot loader. Some of the tools provided are described in the following subsec-
tions.

2.3.1 RISC-V Linux

MIPS actively supports, develops and improves the Linux kernel for the RISC-V architecture. Linux kernel 
and distributions that currently support the RISC-V architecture include Fedora, Debian, GENTOO, and 
Ubuntu.

For more information on RISC-V Linux, refer to the RISC-V website at www.riscv.org/exchange/software.

2.3.2 Compilers

MIPS ports and maintains the GNU Compiler Collection (GCC) and provides prebuilt tool chains for the 
RISC-V SDK. A wide range of other industry leading compilers are also available for MIPS processors.

2.3.3 Boot Loader

MIPS offers a wide range of solutions for initializing MIPS cores and facilitating debugging. These include 
open-source and proprietary solutions to suit any requirement.
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Architecture

The I8500 implements the RVB23 profile of the RISC-V RV64 architecture, plus several optional exten-
sions, such as the RISC-V Hypervisor (H) extension. It also supports a set of MIPS-Defined Instructions 
(MDIs) for enhanced operation on a number of functions, along with support for CorExtend, enabling users 
to implement their own custom instructions, or UDIs.
The tables in the following sections list the RISC-V architecture modes and extensions supported by the 
I8500. The full RISC-V architecture specifications can be found at https://riscv.org/specifications/ratified/. 
Details on the MDIs and CorExtend support are available as Appendices at the end of this document.

3.1 RISC-V Unprivileged Architecture Extensions Implemented by the I8500

Table 3.1 lists the supported extensions for the RISC-V unprivileged architecture. 

Table 3.1  RISC-V Unprivileged Architecture 20240411 + RVB23U64 v1.0 Summary 

Name Version Description

A 2.1 Atomic Instructions

B 1.0.0 Bit manipulation instructions.

Zba: Address arithmetic

Zbb: General bit manipulation

Zbs: Single bit manipulation

C 2.0 Compressed Instructions

Zca: Base compressed instruction set

Zcd: Compressed double precision floating point load/store

CMO 1.0.0 Base cache management operations

Zicbom: Basic Cache Maintenance

Zicbop: Cache Prefetch

Zicboz: Cache Block Zero

D 2.2 Double Precision Floating Point

F 2.2 Single Precision Floating Point

M 2.0 Integer Multiplication and Division

RV64I 2.1 Base Integer Instruction Set

RVWMO 2.0 RVWMO Memory Consistency Model

Zicclsm RVB23 Misaligned load/store

https://riscv.org/specifications/ratified/
https://riscv.org/specifications/ratified/
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3.2 RISC-V Privileged Architecture Extensions Implemented by the I8500

The RISC-V privileged architecture covers all aspects of RISC-V systems beyond the unprivileged ISA, 
including privileged instructions as well as additional functionality required for running operating systems 
and attaching external devices.

The I8500 implements the RISC-V compliant Privileged Architecture, as well as more Custom CSRs and 
MDIs (MIPS Defined Instructions) for enhancement on features and performance. The I8500 Privileged 
Architecture includes:

• Privileged operating modes (Supervisor-mode, Machine-mode, Debug-mode, Hypervisor-mode)

– M-mode: All Machine-level CSRs and Privileged Instructions

– S-mode: All Supervisor-level CSRs and Supervisor Instructions

– H-mode: All Hypervisor-level CSRs and Hypervisor Instructions (H-Ext) 

– D-mode: All Debug/Trace CSRs

• A set of User-Defined Instructions and CSRs which have been proven in existing MIPS CPUs

To address security, privacy and reliability concerns in a wide range of devices, MIPS has added RISC-V 
compliant virtualization technology into the I8500 core. The hardware virtualization support ensures that 
applications that need to be secure are effectively and reliably isolated from each other, as well as pro-
tected from non-secure applications.

Zifencei 2.0 Instruction-Fetch Fence

Ziccif RVB23 Atomic instruction fetch up to 32 bits

Zicsr 2.0 Control and Status Register Instructions

Zicntr 2.0 Base Counters and Timers

Zihpm 2.0 Hardware Performance Counters  

Zihintntl 1.0 Non-Temporal Locality Hints

Zihintpause 2.0 Pause Hint

Zimop 1.0 May-Be-Operations

Zcmop 1.0 Compressed May-Be-Operations

Zicond 1.0.0 Integer Conditional Instructions

Zawrs 1.01 Wait on Reservation Set

Za64rs RVB23 Reservation sets are 64 bytes

Ziccrse RVB23 LR/SC progress guarantees (RsrvEventual)

Ziccamoa RVB23 Main memory regions support AMO Arithmetic

Zic64b RVB23 Cache blocks must be 64 bytes.

Zfa 1.0 Additional Floating Point Instructions

Zcb 1.0.0 Additional Compressed Instructions

Zbc 1.0.0 Carryless Multiply

Zkt 1.0.1 Data Independent Execution Latency 

Table 3.1  RISC-V Unprivileged Architecture 20240411 + RVB23U64 v1.0 Summary (continued)

Name Version Description
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Contact MIPS Customer Support through our Partner Portal about recommendations on which Hypervisors 
are available for use.

Table 3.2 lists the supported extensions for the RISC-V privileged architecture.

3.3 RISC-V Debug Architecture Extensions Implemented by the I8500

Table 3.3 lists the supported extensions for the RISC-V debug architecture.

Table 3.2  RISC-V Privileged Architecture 20240411 + RVB23S64 v1.0 Summary

Name Version Description

Ssstrict RVB23 No non-conforming extensions present.

M mode 1.13 Machine-Level ISA

Smstateen 1.0.0 Machine state enable

Ssstateen 1.0.0 Supervisor state enable 

Ss1p13 1.13 Supervisor-Level ISA

Sv39: Page-based 39-bit virtual memory system

Sv48: Page-based 48-bit virtual memory system

Sstvecd RVB23 Supervisor trap vector (stvec) supports DIRECT

Sstvala RVB23 Faulting address written to stval

Ssccptr RVB23 Main memory supports hardware page-table reads

Svbare RVB23 No translation or protection

Svade RVB23 Manage A/D bits with page faults

Ssu64xl RVB23 Supports 64-bit user mode (sstatus.UXL = 2)

Sscounterenw RVB23 Implemented hpmcounter bits have corresponding scounteren bits.

Svnapot 1.0 Naturally Aligned Power-of-Two (NAPOT) Translation

Svpbmt 1.0 Page-Based Memory Types

Svinval 1.0 Fine-Grained Address-Translation Cache Invalidation

Sstc 1.0.0 Supervisor-mode Timer Interrupts

Sscofpmf 1.0.0 Count Overflow and Mode-Based Filtering

H 1.0 Hypervisor Support

Shcounterenw RVB23 Implemented hpmcounter bits have corresponding hcounteren bits

Shvstvala RVB23 Virt: writes vstval in all cases stval would be written

Shtvala RVB23 Virt: writes hvtal with faulting guest physical address

Shvstvecd RVB23 Virt: vstvec.MODE supports DIRECT w/ 4-byte aligned BASE

Shvstapa RVB23 Virt: vsatp supports same translation modes as satp

Shgatpa RVB23 Virt: hgatp supports ×4 versions of all supported satp modes 

Table 3.3  RISC-V Debug Architecture v1.0.0-rc2 ISA Extension Summary

Name Version Description

Sdext 1.0.0-rc2 RISC-V compliant external debug.

Sdtrig 1.0.0-rc2 RISC-V Trigger Module™.
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3.4 RV64I Instruction Set Details

The following subsections provide additional details on the I8500 implementation of the RV64I instruction 
set.

3.4.1 Endianess 

The I8500 supports both little-endian and big-endian and boots into the mode selected by the pin input. 
The I8500 operates in a single, uniform endian mode at run time. 

3.4.2 misa[25:0] Extension Bits

The I8500 sets the misa extension bits listed below. misa is read only. Table 3.4 shows the associated bits 
of the misa[25:0] field and the type of extension supported. 

3.4.2.1 A Extension

The I8500 supports all of the AMO instructions in hardware. In addition, the I8500 CPU implements LR/SC 
natively for both cacheable and uncacheable memory. For cacheable LR/SC, it implements one monitor 
per hart in the LSU. For uncacheable LR/SC, the I8500 relies on a monitor outside the core.

For LR/SC sequences, the I8500 requires precise address and size matching; an LR of 8B and an SC of 
4B within that 8B address will fail. Also, a reservation by one hart will be cleared by any ownership request 
by any other hart or core for the same 64B coherence granule.

3.4.2.2 F and D Extension

The I8500 implements both F and D extensions together. The I8500 does NOT provide a configuration 
option to remove either or both F and D extensions.

Table 3.4  I8500 Supported Extensions and misa[25:0] Bit Assignments

Extension Group misa[25:0] Bit Description

A 0 Atomic extension.

B 1 Bitmanip extension. Shogun implements the required Zba, Zbb, and Zbs extensions.

C 2 Compressed instruction extension.

D 3 Double-precision floating point extension.

F 5 Single-precision floating point extension.

H 7 Hypervisor extension.

I 8 RV64I base ISA.

M 12 Integer multiply/divide.

S 18 Supervisor mode implemented.

U 20 User mode implemented.

X 23 Non-standard extensions present.
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3.4.3 Zicntr Extension

The I8500 should serialize reads to mcycle and minstret, as well as all the performance monitor counters, 
at issue. The I8500 natively handles access to the time register. The I8500 provides four programmable 
performance monitor counters per hart.

3.4.4 Zihintpause and Zawrs Extensions

Shogun implements (RISC-V) pause, (MIPS) MPAUSE, WRS.STO, and WRS.NTO with variations on the 
behavior of the previous MIPS custom PAUSE instruction. 

3.4.5 Zihintntl Extension

The I8500 implements trivial support for Zihintntl: all Zihintntl HINTs are no-ops. 

3.4.6 Zkt Extension

The I8500 MDU provides an OpCache intended to speed up operations with repeated arguments. This is 
(and must be) disabled for multiply instructions, to ensure compatibility with Zkt.

3.4.7 Zfa Extension

The I8500 implements the F and D extensions (single- and double-precision floating point). The I8500 
does not support the Q and Vfh extensions (quad- and half-precision floating point). Any I8500 instantiation 
which supports F and D extensions also supports the single- and double-precision subsets of the Zfa 
extension. No I8500 configuration supports the quad-precision nor half-precision subset of the Zfa exten-
sion.  

3.4.8 Zicbom Extension  

The I8500 maps the RISC-V cache block operations to existing MCACHE behaviors as follows:

In the table above, CBIE refers to the effective CBIE value determined by menvcfg.CBIE, henvcfg.CBIE, 
senvcfg.CBIE, and the current privilege level.

Table 3.5  Equivalent MCACHE Instructions

Zicbom Equivalent MCACHE Comments

cbo.clean mcache L2HitWb op[4:2] == 6 && op[1:0] == 2

cbo.flush mcache L2HitWbInv op[4:2] == 5 && op[1:0] == 2

cbo.inval mcache L2HitWbInv op[4:2] == 5 && op[1:0] == 2 if CBIE == 01b // Flush if not delegated 
to do invalidates via effective CBIE

mcache L2HitInv op[4:2] == 4 && op[1:0] == 2 if CBIE == 11b // Inval
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3.4.9 Zicbop Extension

The I8500 maps the RISC-V prefetch operations to existing MIPS custom instruction behaviors as follows:

The Zicbop extension does not provide a mechanism to specify which level of cache to prefetch into. 
HINTs defined in Zihintntl can provide this information; however, the i8500 implements Zihintntl as NOPs. 
For the I8500, the Zicbop prefetch operations prefetch to L1. Software can continue to use the MIPS cus-
tom PREF instructions to specify the target cache if desired.

3.4.10 Zicboz Extension 

The I8500 implements Zicboz as follows, based on the CCA encoding for the specified address. The CCA 
meanings are specified in the MIPS internal specification for the pma[n]cfg registers.

• CCA ≠ 1: Data cache

– Miss in L1D cache: Commits a 64 byte write of zeros directly to L2.

– Hit in L1D cache: Commits a 64 byte write of zeros to L1D cache.

Note: Hit vs. Miss is determined by the ordinary rules regarding CCA and page-based memory types 
(PBMT). 

• CCA = 1: Buffer cache

– Miss in L1B cache: Allocates line in L1B and fills the line with zeros.

– Hit in L1B cache: Commits a 64 byte write of zeros to L1B cache.

3.4.11 Svpbmt Extension

The I8500 CPU honors Svpbmt PTE overrides, even for CCA = 1 buffer cache space. The PBMT encod-
ings are as shown in the table below:

Table 3.6  Equivalent PREF Instructions

Zicbop 
Equivalent MIPS Custom 

Instruction Comments

prefetch.i pref IcacheLoad hint[4:0] == 0 ("Icache" "Load")

prefetch.r pref DcacheLoad hint[4:0] == 8 ("Dcache" "Load")

prefetch.w pref DcacheStore hint[4:0] == 9 ("Dcache" "Store")

Table 3.7  Svpbmt Extensions

Binary 
Encoding Mode name Details Maps to this PMACCA Encoding

00 PMA Honor existing PMA attributes. --

01 NC Non-cacheable, idempotent, weakly-ordered 
(RVWMO), main memory.

PMACCA = 3 (UCA) and S = 1

10 IO Non-cacheable, non-idempotent, strongly-
ordered (I/O ordering), I/O.

PMACCA = 2 (UC) and S = 0

11 -- Reserved.
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3.4.12 Rationale

The RISC-V architecture defines Page-Based Memory Types (PBMTs) as overriding the memory type 
specified in the PMAs, unless the PMA specifies the address range as vacant. 

3.4.13 Svinval Extension

The I8500 implements the Svinval implementation as described in the RISC-V Privileged Architecture 
Specification.

3.5 Operating Modes

The I8500 supports the following operating modes when hypervisor is disabled:

When hypervisor support is enabled and the V bit is set, The I8500 adds the following operating modes: 

The Hypervisor will always be enabled in that the misa[H] bit is 1, but can be unutilized by never setting the 
V bit to signify VS/VU.

Table 3.8  I8500 Operating Modes — Hypervisor Disabled

Mnemonic Name Software Usage

U User Application software

S Supervisor Operating system kernel

M Machine Low-level machine management

D Debug Used by debugger software

Table 3.9  I8500 Operating Modes — Hypervisor Enabled

Mnemonic Name Software Usage

VU Virtual User Application software running in a guest OS

VS Virtual Supervisor Guest operating system kernel 

HU Hypervisor-extended User Deprivileged portions of Type 1 or Type 2 hypervisor kernel

HS Hypervisor-extended Supervisor Type 1 or Type 2 hypervisor kernel
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Memory Management Unit

The MMU translates virtual addresses generated by the core, to physical addresses used to access 
caches, memory and other devices. Virtual-to-physical address translation is especially useful for operating 
systems that must manage physical memory to accommodate multiple tasks active in the same virtual 
address space. The MMU also enforces the protection of memory areas and defines the cache attributes. 
The I8500 MMU implements a Translation Lookaside Buffer (TLB).
This chapter covers the programmable elements of the TLB in the I8500 Multiprocessing System. The first 
section gives an overview of the TLB architecture, a description of its functionality and a description of the 
elements that go into programming the TLB. The sections that follow cover specific information on pro-
gramming for the TLB.
The I8500 TLB translates 39-bit or 48-bit virtual addresses to 48-bit physical addresses and provides 
access control for different page segments of memory. The core writes to internal CSR registers with the 
information used to initialize and modify entries in the TLB, then executes a TLB write instruction (MTL-
BWR) to move the data from the registers to the TLB.

4.1 Overview

Figure 4.1 shows an overview of the I8500 MMU architecture.
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Figure 4.1 Overview of MMU Architecture in the I8500 Core 

4.1.1 TLB Types

The Memory Management Unit (MMU) in the I8500 core consists of four address Translation Lookaside 
Buffers (TLB). These include ITLB, DTLB, VTLB, and FTLB as described below: 

4.1.1.1 ITLB and DTLB Overview

The Instruction TLB (ITLB) and Data TLB (DTLB) are both fully associative micro-TLBs. The Instruction 
Fetch Unit (IFU) and Load Store Unit (LSU) use the ITLB and DTLB to perform high-speed Virtual Address 
(VA) to Physical Address (PA) translation for instruction fetch and data accesses, respectively. The MMU 
transparently manages both micro-TLBs in hardware.
The ITLB and DTLB entries support an arbitrary mix of 4KB and 64KB page sizes. The MMU transparently 
segments larger pages into 64KB entries when refilling the ITLB and DTLB. Both micro-TLBs are shared 
among all harts.
Each TLB entry is two-sectored, holding both an even page and its successive odd page, so 8 DTLB 
entries can map 16 x 4K = 64K if they all hold 4K mappings.
Table 4.1 shows that the number of ITLB and DTLB entries is fixed, regardless of the number of harts.
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4.1.1.2 TLB Hierarchy

The ITLB and DTLB translate virtual addresses presented by the IFU and LSU to physical addresses. In 
the event of a miss, the ITLB or DTLB initiates an access to the VTLB and FTLB. If the translation is pres-
ent in either the VTLB or FTLB, the translation is fetched in the following cycle. In the event of a miss in 
both VTLB and FTLB, the MMU may initiate a page table walk via the Hardware Table Walker (HTW) if this 
functionality is enabled.
In the event of a successful translation in VTLB or FTLB, possibly after a hardware table walk, the MMU 
populates the translation record in the appropriate micro-TLB for future use.

4.1.1.3 Instruction TLB

Number of ITLB entries varies based on the number of harts. The ITLB maps only 4 KB or 64 KB pages. 
The ITLB is managed by hardware and is transparent to software. The number of entries per hart in the 
ITLB is shown in Table 4.1 above.

4.1.1.4 Data TLB

Number of DTLB entries varies based on the number of VPs. The DTLB maps only 4 KB or 64 KB pages. 
The DTLB is managed by hardware and is transparent to software. The number of entries per hart in the 
ITLB is shown in Table 4.1 above.

4.1.1.5 Variable TLB

The VTLB is a fully associative translation lookaside buffer that contains a pool of dual (i.e. entry +1 contig-
uous) entries per core, competitively shared between harts. In the I8500 there are 128 dual entries in the 
pool. These entries can map variable page sizes in powers of 4 ranging from 4KB to 256GB via Svnapot. 
Page sizes include:

• 4 KB

• 16 KB

• 64 KB

• 256 KB

• 1MB

• 2MB

• 4MB

• 16MB

• 64MB

• 256MB

• 1 GB

• 4 GB

Table 4.1  Number of ITLB and DTLB Entries per hart

Harts ITLB Entries DTLB Entries

1 18 20

2 18 20

4 18 20
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• 16 GB

• 64 GB

• 256 GB
Each dual entry stores translations for two virtual addresses that differ by the least significant bit in their vir-
tual page number (e.g. bit 12 of the virtual address for a 4 KB page size).

4.1.1.6 Fixed TLB

The FTLB contains 512 "dual" or "two-sectored" entries organized as 128 sets and 4-way set-associative. 
The FTLB page size can be configured for either 4KB or 64KB. Each dual entry stores translations for two 
virtual addresses that differ only in bit 12 for 4KB (or bit 16 for 64KB) of the virtual address.
FTLB translations are qualified by VMID (Virtual Machine ID, 5 bits wide) + ASID (Address Space ID, 16 
bits wide). FTLB capacity is competitively shared by all harts.

4.1.2 TLB Instructions

This section defines the various types of instructions used when accessing the TLB. For more information 
on the instructions listed below, refer to Appendix B. For information on the Guest TLB instructions used in 
the H-extension, refer to the RISC-V specification.

• MTLBWR — The TLB Write Random instruction causes a random TLB entry selected by hardware to 
be written with the virtual address in mtval CSR and the leaf PTE value stored in integer register $rs1. 

• MGINV.VMA — The Global Invalidate TLB instruction provides a way to globally invalidate all TLB 
entries in multiple ways or the entire TLB. Refer to the Global TLB Invalidate section of this chapter for 
more information.

• GINVT — The Global Invalidate TLB instruction provides a way to globally invalidate all TLB entries in 
multiple ways or the entire TLB. Refer to the Global TLB Invalidate section of this chapter for more 
information.

• MGINV.FENCE — The MGINV.FENCE instruction acts as a completion barrier with respect to any pre-
ceding MGINV.I, MGINV.VMA, MGINV.VVMA, or MGINV.GVMA instructions.

• MGINV.GVMA — Machine Global INValidate Guest Virtual Memory management Invalidates a guest 
virtual memory entry.

• MGINV.I — Machine Global INValidate of instruction caches. Performs a global invalidate of the 
instruction caches.

• MGINV.VMA — Machine Global INValidate virtual memory management.

• MGINV.VVMA — Machine Global INValidate, Virtual-supervisor Virtual-memory MAnagement. Per-
form the equivalent of an HFENCE.VVMA $rs1, $rs2 operation on all harts in the system.

• MTLBWR.HG — Machine TLB Write Random, Hypervisor Guest. Update a random entry in the imple-
mentation dependent TLB.

4.1.3 Shared FTLB Translations

The I8500 core supports shared FTLB translations across all harts in a core. In many applications, there 
can be multiple threads that are working cooperatively or running the same application on different data. In 
this situation, some translations are common across harts and sharing the translations increases the FTLB 
capacity and reduces contention. Even under Linux, multiple threads can be associated with the same pro-
cess and use the same translations on different harts.
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4.1.4 Global TLB Invalidate

The I8500 core provides kernel software with the ability to globally invalidate the VTLB/FTLB structure 
using the MGINV.VMA (Machine Global INValidate Virtual-memory MAnagement) instruction. When this 
instruction is executed, all entries in the VTLB/FTLB are invalidated in all cores and all clusters. In addition, 
all Instruction TLB (ITLB) and Data TLB (DTLB) entries that match in the VTLB are also invalidated.
The MGINV.VMA instruction provides the option to invalidate the TLB entries in the following ways:

• Invalidate the entire TLB. All TLB entries in all cores and all clusters are invalidated, without regard for 
any virtual address of ASID match.

• Invalidate by ASID value and virtual address. The TLB entries across all cores and clusters are invali-
dated only for those translations that match the ASID value as well as the virtual address.

• Invalidate by ASID value only. The TLB entries across all cores and clusters are invalidated only for 
those memory maps that match the ASID value.

• Invalidate by virtual address only. The TLB entries across all cores and clusters are invalidated only for 
those addresses that match the virtual address.
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 Caches

The I8500 Multiprocessing System contains the following caches: L1 instruction and L1 data 
per core, and shared L2. These caches provide on-chip temporary storage of information that 
can be retrieved much faster than accessing main memory. The dedicated L1 instruction and 
data caches have the fastest access times and are accessed first. If the data is not present in 
the appropriate L1 cache, the shared L2 cache is accessed. The L2 cache contains both data 
and instructions. If the requested data is not in the L2 cache, the main memory is accessed. 

This chapter provides an overview of the cache architecture and a description of the elements 
that go into programming the caches. A description of the CSR register interface to each 
cache is provided, as well as cache initialization code. Other programmable elements include 
setting up cache coherency and handling cache exceptions.

5.1 Cache Subsystem Overview and Configurations

The I8500 Multiprocessing System contains the following caches: L1 instruction and L1 data 
per core, and shared L2. These caches are non-optional and are always present. 

Figure 5.1 shows the relative location of the caches within the I8500 Multiprocessing System. 
The L1 instruction and L1 data caches are shared by all hart’s in the same core. The L2 cache 
is shared by all cores.

Figure 5.1 I8500 Multiprocessing System Caches 

Shared L2 Cache

Coherence Manager (CM3)

L1 Instruction Cache

Hart 0 Hart 1

L1 Data Cache

L1 Instruction Cache

Hart 0 Hart 1

L1 Data Cache

CPU 0 CPU n
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The size of each cache can be configured as shown in Table 5.1. 

The L1 instruction cache is attached to the Instruction Fetch Unit (IFU). The L1 data cache is 
attached to the Load/Store Unit (LSU). The L2 cache is embedded within the Coherence Man-
ager (CM) and communicates with external memory via an AXI interface. The AXI interface is 
256-bits wide by default, but is configurable at build time to be 128, 256, or 512-bits wide.

For more information on the L1 instruction cache, refer to Section 5.1.1 “L1 Instruction 
Cache”.

For more information on the L1 data cache, refer to Section 5.1.2 “L1 Data Cache”. 

5.1.1 L1 Instruction Cache
The L1 instruction cache contains two arrays: tag and data. The L1 instruction cache is virtu-
ally indexed and physically tagged. 

Table 5.2 shows the key characteristics of the L1 instruction cache. Figure 5.2 shows the for-
mat of an entry in the three arrays comprising the instruction cache tag and data. 

Table 5.1  I8500 Cache Configurations

Attribute L1 Instruction Cache L1 Data Cache L2 Cache

Size 32 KB or 64 KB 32 KB or 64 KB 256 KB, 512 KB, 1 MB, 2 MB

Line Size 64-byte 64-byte 64-byte

Number of Cache Sets 128 or 256 128 or 256 512, 1024, 2048

Associativity 4-way 4-way 8-way (256 KB only)
16-way (all others)

Table 5.2 L1 Instruction Cache Attributes 

Attribute With EDC

Size1

1. For Linux based applications, MIPS recommends a 64 KB L1 instruction cache size.

32 KB or 64 KB

Line Size 64-byte

Number of Cache Sets 128 or 256

Associativity 4-way

Replacement LRU

Data Array

Read Unit (256b + 32-bit EDC) x number of ways

Write Unit 512b + 64-bit EDC

Tag Array

Read Unit (36-bit tag + 7-bit EDC + Valid bit) x 4-ways 
(32K and 64K)

Write Unit 36-bit tag + 7-bit EDC + Valid bit 
(32K and 64K)

Way-Select Array

Read Unit 6-bits (4-way)

Write Unit 6-bits (4-way)
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Figure 5.2 L1 Instruction Cache Read Unit — 32 KB and 64 KB Cache

Figure 5.3 L1 Instruction Cache Write Unit — 32 KB and 64 KB Cache

5.1.1.1 Level 1 Instruction Cache Error Detection
The I8500 core includes detection of single and double-bit errors in the Level 1 Instruction 
Cache. The error detection logic protects against data corruption caused by errors that may 
occur while data is stored in RAM. When an error is found, the code is refetched from mem-
ory. The error is handled entirely by hardware and is software-transparent.

5.1.1.2 L1 Instruction Cache Organization
The I8500 core level 1 instruction cache comprises two logical RAM arrays (a tag array and a 
data array) and one register-based array (way select array). With error detection, a 7-bit 
EDC is added to the 36-bit tag stored in the tag array; a 16-bit EDC is also added to each 64-
bit data doubleword stored in the data array.

5.1.1.3 L1 Instruction Cache Error Types
On an L1 EDC error the Instruction Fetch Unit (IFU) re-fetches the data and bypasses the 
desired instruction while overwriting the instruction in error. The EDC error gets counted by 
the performance counters but the fetch continues. If the entire cache was to fail, the fetch 
would effectively proceed uncached by this method. The IFU raises cache errors from L2 as 
Cache Exceptions.

5.1.1.4 L1 Instruction Cache Replacement Policy
The L1 instruction cache replacement policy refers to how a way is chosen to hold an incom-
ing cache line on a miss which will result in a cache fill. The replacement policy is least-
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recently used (LRU). The LRU bit(s) in the way-select array encode the order in which ways 
on that line have been accessed.

On a cache miss, the LRU bits for the tag and way-select entries of the selected line may be 
used to determine the way which will be chosen. In the I8500 core, the way select informa-
tion is stored in registers and is not part of a memory array.

The LRU field in the way select array is updated as follows:

• On a cache hit, the associated way is updated to be the most recently used. The order of 
the other ways relative to each other is unchanged.

• On a cache refill, the filled way is updated to be the most recently used.

• On MCACHE instructions, the update of the LRU bits depends on the type of operation to 
be performed:

– Cache Hit: The associated way is updated to be the most-recently used way at the 
corresponding index. The relative age of the other ways are unmodified.

– Cache Invalidate: The associated way is updated to be the least-recently used way at 
the corresponding index. The relative age of the other ways are unmodified.

– Index Invalidate: Least-recently used.

– Index Load Tag: The way-select array is unmodified.

– Index Store Tag: This is treated like a cache invalidate when the valid bit of the tag is 
being cleared. 

– Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

– Fill: Most-recently used.

5.1.1.5 L1 Instruction Cache Coherency Management 
In the I8500 core, the hardware does not automatically keep the instruction cache coherent 
with the data cache, so code that modifies the instruction stream must invalidate stale 
instruction cache lines using hit-type MCACHE or MGINV.I instructions 

The globalized MGINV.I instruction eases the task of software I-Cache coherence and can be 
used to remove the stale instructions from all cores in the system. The CM checks instruction 
fetches against the directory and thus will be able to find newly written instruction data and 
provide it to the instruction cache.

5.1.1.6 MCACHE Instruction Usage
The MCACHE instruction is the building block for OS interventions, and is required for the 
correct handling of DMA data and for cache initialization. Historically, the MCACHE instruction 
also had a role when writing instructions. Unless the programmer takes the appropriate 
action, those instructions may only be in the D-cache and would need them to be fetched 
through the I-cache at the appropriate time. Wherever possible, use the FENCE.I instruction 
for this purpose, as described in Section 5.1.1.7 “FENCE.I Instruction Usage”. 

A cache operation instruction is written MCACHE op, ($rs1), which means perform cache 
operation of type op at address $rs1. Cache operations are privileged and can only run in 
kernel mode. 
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In the MCACHE instruction, the op field packs together a 5-bit field. The lower 2 bits of this 
field select which cache to work on: 

The upper 3-bits of the OP field encodes a command to be carried out on the line the instruc-
tion selects. 

The MCACHE instruction comes in three varieties which differ in how they pick the cache 
entry (the “cache line”) they will work on: 

• Hit-type cache operation: presents an address (just like a load/store), which is looked up 
in the cache. If this location is in the cache (it “hits”) the cache operation is carried out on 
the enclosing line. If this location is not in the cache, nothing happens. 

• Address-type cache operation: presents an address of some memory data, which is pro-
cessed just like a cached access - if the cache was previously invalid the data is fetched 
from memory. 

• Index-type cache operation: as many low bits of the address as are required are used to 
select the byte within the cache line, then the cache line address inside one of the four 
cache ways, and then the way. The size of the cache (contained within the MIPSConfig1 
register) determine exactly where the field boundaries are located. The instruction cache 
is doubleword-indexed. The index format depends on the cache size as shown in the fol-
lowing diagrams.

where:

• The Way field selects one of four ways in the cache.

• The Line field selects one of line in the cache.

• The DW field selects which doubleword within the line.

5.1.1.7 FENCE.I Instruction Usage
The FENCE.I instruction provides a mechanism available to user-level code for ensuring that 
previously written instructions are correctly presented for execution. Use of the FENCE.I 
instruction is preferred to the traditional alternative of a D-cache writeback followed by an I-
cache invalidate.

5.1.2 L1 Data Cache
The L1 data cache contains two arrays: tag and data. The L1 Data cache is virtually indexed 
and physically tagged, but contains logic to correct virtual aliasing.

00 L1 I-cache 
01 L1 D-cache 
10 L2 cache
11 Reserved/L3

32 KB Cache Index
63  15 14 13 12 6 5 3 2  0 

Unused Way Line DW Unused

64 KB Cache Index
63  16 15 14 13 6 5 3 2  0 

Unused Way Line DW Unused
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The tag and data arrays hold 4 ways of information per set, corresponding to the 4-way set 
associativity of the cache. A tag entry consists of the upper 34 or 35 bits of the physical 
address (depending on cache size), two coherent state bits, and some ECC bits. A data entry 
contains 64 bytes of data and associated ECC bits. All 64 bytes in the line are present in the 
data array together, hence the coherent state bits (2) stored with the tag.

After a valid line is resident in the cache, a store operation can update all or a portion of the 
words in that line depending on the type of store.

The data cache uses ECC so that single-bit errors can be corrected. ECC code is generated 
across a 32-bit word. Sub-word stores are handled by doing a read-modify-write sequence. 
The error checking and correction process is handled entirely by hardware and is transparent 
to kernel software.

Each set contains a way-select register that holds bits used to select the way to be replaced 
according to a Least Recently Used (LRU) algorithm. The LRU information applies to all the 
ways and there is one way-select register for all the ways in the set. Note that this informa-
tion is stored in an array of registers and is not part of a memory array.

Table 5.3 shows the key characteristics of the data cache. Figure 5.4 through Figure 5.7 
shows the format of an entry in the arrays comprising the data cache: tag, data, and way-
select for 32 KByte and 64 KByte read and write units.

Table 5.3 L1 Data Cache Organization 

Attribute Value

size 32 or 64KB

Line size 64-byte

Number of Cache Sets 128 or 256

Associativity 4-way

Replacement LRU

Data Array

Read Unit (128b + 28b ECC) x 4

Write Unit 512b + 112b ECC

Tag Array

Read Unit (35b PPN + 2b CohSt + 8b ECC) x 4 (32K)
(34b PPN + 2b CohSt + 8b ECC) x 4 (64K)

Write Unit 35b PPN + 2b CohSt + 8b ECC (32K)
34b PPN + 2b CohSt + 8b ECC (64K)

Way-Select

Read Unit 6-bit register field

Write Unit 6-bit register field

Dirty Bits

Read Unit 4-bit register field

Write Unit 1-bit register field
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Figure 5.4 L1 Data Cache Read Unit — 32 KB Cache

Figure 5.5 L1 Data Cache Write Unit — 32 KB Cache

Figure 5.6 L1 Data Cache Read Unit — 64 KB Cache

PA[47:13]

35

CohStECC

28Tag (per-way x 4 ways)
45-bits total per way

Read Unit

Data
32

ECC

 7Data (per-way x 4 ways)
156-bits total per way

Read Unit
Data
32

ECC

7

Data
32

ECC

 7
Data
32

ECC

7

PA[47:13]

35

CohStECC

28Tag
45-bits total

Write Unit

Data 
624-bits total

Write Unit

Data 12
32

ECC 12
 7

Data 13

32
ECC 13

7

Data 14
32

ECC 14
 7

Data 15

32

ECC 15

7

Data 8
32

ECC 8
 7

Data 9

32

ECC 9

7

Data 10
32

ECC 10

 7
Data 11

32

ECC 11

7

Data 4
32

ECC 4
 7

Data 5
32

ECC 5

7

Data 6
32

ECC 6
 7

Data 7
32

ECC 7
7

Data 0
32

ECC 0
 7

Data 1
32

ECC 2

7

Data 2
32

ECC 2
 7

Data 3
32

ECC 3
7

PA[47:14]

34

CohStECC

28 Tag (per-way x 4 ways)
44-bits total per way

 Read Unit

 Data (per-way x 4 ways)
 156-bits total per way

 Read Unit
Data

32

ECC

 7

Data

32

ECC

7

Data

32

ECC

 7

Data

32

ECC

7



42
mips.com

Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS I8500 Multiprocessing System Programmer’s Guide — Revision 1.00

Figure 5.7 L1 Data Cache Write Unit — 64 KB Cache

5.1.3 Level 1 Data Cache Error Checking and Correction (ECC)
The I8500 core includes error checking and correction (ECC) on the Level 1 Data Cache. 
Error correction codes are added to information stored in data-cache. The error detection and 
correction logic protects against data corruption caused by single-bit transient errors that 
may occur while data is stored in RAM. The error codes allow for single-bit error correction 
and double-bit error detection. ECC generation and checking and error handling is done in 
the Load/Store Unit (LSU). 

5.1.3.1 L1 Data Cache Organization
As shown in the above figures, the I8500 core level 1 data cache comprises two logical RAM 
arrays: a tag array and a data array. With error detection and correction;

• An 8-bit ECC is added to each 34/35-bit tag stored in the tags array.

• A 7-bit ECC is added to each 32-bit data value stored in the data array.

5.1.3.2 L1 Data Cache Load/Store Operations
Cacheable loads and stores generate a data cache read to see if the memory operand is in 
the cache. If an error is detected, incoming loads and stores are halted by hardware and the 
LSU determines whether an ECC error is uncorrectable or correctable. Uncorrectable errors 
generate an exception. If the error is correctable, correctable, the LSU performs a read-mod-
ify-write operation to correct the data in the L1 data cache, and the load/store is retried.

5.1.3.3 L1 Data Cache Error Types
L1 data cache ECC errors can be correctable or uncorrectable. Single-bit errors are correct-
able. Multiple-bit errors cannot be repaired. Multiple-bit errors in a data word of an invalid 
cache line are ignored. Note that a tag needs to be free of errors to affirm that a line is 
invalid. Hence, tag errors are processed before processing multiple-bit data errors. A multi-
ple-bit error is uncorrectable if it occurs in (a) a tag, or (b) a data word in a dirty cache line.

5.1.3.4 Store Operations Less than 32-bits
The addition of ECC to the cache data array has special implications for stores into the data 
cache when the operand is smaller than a single 32-bit word, or the store operation is not 
32-bit aligned. When partial-word stores hit in the cache, the LSU may need to perform a 
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cache read-modify-write on the affected word because the ECC is a function of the entire 32-
bit word.

The store buffer keeps track of valid bytes and allows multiple stores to merge together. If 
the entire word is valid, it can be written into the cache. If it is only partially valid, the data 
array is read to fill in the missing bytes, and then the complete word and its new ECC value 
are written into the cache.

5.1.3.5 Examples of L1 Data Cache ECC Errors
Consider some data cache ECC error scenarios:

Loads and Stores

During CPU loads and stores, single-bit errors in the primary tags array are corrected on 
detection. Multiple-bit errors in the tag array generate an exception. During CPU loads and 
stores, single-bit errors in the data array of valid lines are corrected on detection. Double-bit 
data errors generate an exception. 

Evictions

During eviction of a dirty cache line, single-bit data errors are corrected on the fly as data is 
written back to the Bus Interface Unit (BIU). Multiple-bit errors in an evicted line are 
reported as an uncorrectable error to the BIU and generate an exception.

Interventions

During interventions, single-bit errors in the tag array are corrected on detection. Multiple-bit 
errors in the tag array generate an exception and return an ERROR response for the inter-
vention.

During an intervention write-back of a modified line, single-bit data errors are corrected on 
the fly as data is forwarded to the BIU. Multiple-bit data errors during an intervention write-
back are reported to the BIU and an exception is generated.

5.1.4 L1 Data Cache Replacement Policy
The replacement policy refers to how a way is chosen to hold an incoming cache line on a 
miss which results in a cache fill. The replacement policy is least-recently used (LRU). The 
LRU bit(s) in the way-select array encode the order in which ways on that line have been 
accessed.

On a cache miss, the LRU bits for the tag and way-select entries of the selected line may be 
used to determine the way which will be chosen. In the I8500 core, the way select informa-
tion is stored in registers and is not part of a memory array.

The LRU field in the way select array is updated as follows:

• On a cache hit, the associated way is updated to be the most recently used. The order of 
the other ways relative to each another is unchanged.

• On a cache refill, the filled way is updated to be the most recently used.

• On MCACHE instructions, the update of the LRU bits depends on the type of operation to 
be performed:

– Cache Hit: The associated way is updated to be the most-recently used way at the 
corresponding index. The relative age of the other ways are unmodified.
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– Cache Invalidate: The associated way is updated to be the least-recently used way at 
the corresponding index. The relative age of the other ways are unmodified.

– Index Writeback Invalidate: Least-recently used.
– Index Load Tag: No update.
– Index Store Tag: This is treated like a cache invalidate when the valid bit of the tag is 

being cleared.
– Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.
– Hit Writeback Invalidate: Least-recently used if a hit is generated, otherwise 

unchanged.
– Hit Writeback: No update.

If the way selected for replacement has its dirty bit asserted in the dirty array, then that 64-
byte line will be written back to memory before the new fill can occur.

5.1.5 L1 Data Cache Memory Coherence Protocol
The I6500 core supports cache coherency in a multi-CPU system in conjunction with the 
directory-based coherence manger (CM). 

The L1 data cache utilizes a standard MESI protocol. Each cache line will be in one of the fol-
lowing four states:

Invalid: The line is not present in this cache.

Shared: This cache has a read-only copy of the line. The line may be present in other L1 
data caches, also in a Shared state. The line will have the same value as it does in the L2 
cache.

Exclusive: This cache has a copy of the line with the right to modify. The line is not present 
in other L1 data caches. The line is still clean - consistent with the value in L2 cache.

Modified: This cache has a dirty copy of the line. The line is not present in other L1 data 
caches. This is the only up-to-date copy of the data in the system (the value in the L2 cache 
is stale).

Some of the basic characteristics of the coherence protocol are summarized below. 

• Writeback cache - Uses a writeback cache to ensure high performance

• Cache-line based - Coherence and ownership is maintained per 64-byte cache line

• Invalidate - A line is invalidated from the cache (possibly with a writeback to memory) 
when a store from another processor is seen.

5.1.6 Load/Store Bonding
Bonding is a technique where adjacent loads or adjacent stores are merged into a single 
request in the IDU and sent to the LSU in one cycle.

Supported bonds:

• Only word and dword loads and stores.

• Only identical instruction (i.e., LW + LW and not LW + LD).

• Only when using same base address register and the offset of the second instruction is 
+4 (word size ops) or +8 (dword) from the first. 

• Bonding also happens for -8, -4, and +0 offsets (where +0 says the first access is not 
needed because the same location is being accessed).
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• First load does not use the same register for the base and destination operands. but 
bonding is supported to UC, UCA, and DSPRAM.

IDU bonding is based on instruction decode. It does not know the base address value or the 
eventual alignment of operations. It attempts to bond any adjacent load/stores. If the opera-
tions turn out to not fall within an aligned quadword, they will be split into two operations 
within the LSU. The IDU will also marks loads and stores that would have been bondable with 
the preceding instruction. This allows the LSU to re-bond - merge with the preceding opera-
tion. This mitigates alignment issues during long sequences of sequential operations.

Bonding is invisible to software other than improved performance.

5.1.7 L2 Cache
The L2 cache processes transactions that miss in the L1 caches. The L2 cache is larger than 
the L1 caches. In the I8500 Multiprocessing System, the L2 cache is integrated into the 
Coherence Manager. The L2 communicates with external memory via an AXI-4 interface. The 
L2 communicates with the cores through the proprietary MIPS Coherence Protocol (MCP) 
bus.

The associativity of the L2 cache can be either 8 or 16 ways. The 8-way option is used when 
the cache size is 256 KB. The 16-way option is used for all other cache sizes. The line size is 
fixed at 64 bytes. The number of sets and ways is selected during the build process and can-
not be changed by the kernel software. Software can check the set size by reading the 
GCR_L2_CONFIG register. Refer to the Coherence Manager chapter for more information.

Table 5.4 shows the list of possible L2 cache configurations. 

The L2 cache processes transactions that are not serviced by the L1 cache. In the I8500 Mul-
tiprocessing System, the L2 cache is integrated into the Coherence Manager (CM). The L2 
communicates with external memory via an AXI-4 interface. 

The L2 also communicates with the CPU(s) through the proprietary MIPS Coherence Protocol 
(MCP) bus. In addition, the L2 has the clock, reset, and bypass signals as well as some static 
input signals which can be used to configure it for different operating modes.

5.1.8 L2 Cache General Features
• 5-stage pipeline.

• 48-bit address paths and 512-bit internal data paths

• Associativity: 8-way or 16-way

• Cache size: 256 KB, 512 KB, 1 MB, 2 MB

• Line Size: 64 bytes (8 doublewords)

• Locking Support: Yes

• Replacement Algorithm: Pseudo LRU

• Write policy: Write Back

Table 5.4 L2 Cache Configurations

Line Size Sets per Way Number of Ways Total L2 Cache Size
64 bytes 512 8 256 KBytes
64 bytes 512 16 512 KBytes
64 bytes 1024 16 1 MByte
64 bytes 2048 16 2 MBytes
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• Write miss allocation policy: Write-Allocate

• Error Checking and Correction (ECC): Single error correction and double error detection 
covering the tag and data arrays.

• Maximum read misses outstanding: 12 - 32. Build-time configuration option.

• Maximum read misses outstanding: set based on cluster configuration — maximum will 
be 96 unless by special request.

• Build time configurable 128/256/512-bit data bus width on memory side AXI-4 interface.

• Multi-cycle Data Rams: Configurable for either 2-cycle or 4-cycle latency

• Multi-cycle Tag Rams: Configurable for either 1-cycle or 2-cycle latency

• Multi-cycle Way-Select Rams: 0, 1, 2, or 3 stalls can set the Way-Select RAM access times 
to 1, 2, 3, or 4 clocks.

In the table above, the associativity of the L2 cache is fixed at 16 ways and the line size if 
fixed at 64 bytes. As a result, changes to the number of sets per way determine the overall 
size of the L2 cache. The only exception is the 256 KB cache option, which contains the same 
number of sets per way as the 512 KB option shown in Table 5.1, but is selected using 8 
ways instead of 16. 

5.1.9 Overview of the AXI Interface
In the I8500 core, the L2 cache is integrated into the CM. The following are some features of 
the AXI interface to the CM.

• Build time configurable to 128b/256b/512b — default is 256b

• Requests are 4 beats of data on a 128-bit wide bus

• Writes cannot receive an early response

5.1.9.1 AXI Channels
The AXI bus contains a 5-channel interface. Each channel is unidirectional and independent 
of the other channels:

• Read address

• Write address

• Write data

• Read response

• Write response

The AXI interface between the CM is build time configurable to 128b/256b/512b, with a fixed 
64-byte line size. This is shown in Figure 5.8.
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Figure 5.8 AXI Interface Between CM and Memory

5.1.9.2 Read Operations
On the AXI bus, each transaction is assigned an ID value. Depending on the type of transac-
tion, transactions can have either the same ID, or a different ID. Read operations with differ-
ent ID values can be processed and returned out of order. However, Read operations with the 
same ID value are processed and returned in order.

5.1.9.3 Write Operations
For AXI write operations, the order of the write data must be the same as that on the write 
address channel. However, the timing of the transactions can be different (transactions do 
not have to be latched on the exact same clock).

Write responses can be returned out of order.

5.1.9.4 AXI Memory Bus Ordering
In the AXI architecture, there is no relationship between a requests on read address bus and 
one driven on the write address bus, even for requests where the ID values or addresses 
match. The CM ensures the proper ordering between the read and write address requests.

Cacheable accesses use different ID values to allow out-of-order responses. The CM recog-
nizes a Read/Write, Write/Read or Write/Write to the same cache line address. Hence, a 2nd 
request is not issued onto AXI until response to the first request has been received. Read/
Read has no ordering constraints.

5.1.10 L2 Cache Operations
Cache-ops are used for control operations such as initialization, invalidation, eviction, etc. A 
brief description of the cache-ops implemented by the L2 shown in Table 5.5.

Coherence Manager

L2 Cache

Main Memory

128/256/512 bits
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Table 5.5 indicates the operation and behavior of the L2 cache for each cache-op.  

5.1.11 Cache Instructions
Operations are performed on the L1I, L1D, and L2 caches using the following instructions:

• MCACHE — This instruction is used to perform various operations on the L1 instruction 
and data caches and the L2 cache. These operations are described in Table 5.6.

• PREF — This instruction causes data to be moved to or from the cache, to improve pro-
gram performance. PREF does not cause addressing-related exceptions, including TLB 
exceptions. 

• FENCE.I — This instruction synchronizes a data cache line with an instruction cache line. 
This instruction should be used when writing to the program image in memory to make 
the newly stored instruction opcodes visible to the instruction fetch logic via the I-Cache. 

• MGINV.I — This instruction is new to the I8500 and can be used to invalidate all L1 
instruction caches in the system. In a multi-cluster system, this means all L1 instruction 
caches in all clusters.

The FENCE.I and MCACHE I Hit Invalidate instructions are "globalized", which means that 
they will invalidate the targeted cache line from all L1 instruction caches in the system.  In 
multi-cluster systems, the CACHE L2 Hit Invalidate, L2 Hit Writeback, and L2 Hit Writeback 
Invalidate operations are globalized and will perform the specified operation on all L2 caches 
in the system (including any L1 D-Cache operations required to maintain inclusivity).  Note 
that the I8500 MPS does not globalize the CACHE D Hit Invalidate, D Hit Writeback, or D Hit 

Table 5.5 L2 Cache-ops 

Cache-op

Effective 
Address 

Operand Type Operation

Index WB inv/
Index Inv

INDEX • If the state of the cache line at the specified index is valid and dirty, the line is written 
back to the memory address specified by the cache tag. After that operation is completed, 
the state of the cache line is set to invalid.

• If the line is valid but not dirty, the state of the line is set to invalid
• The LRU bits are updated to Least-recently-used.
• The dirty bits are updated to clean for that way.

HIT Inv ADDRESS • If the address is not contained in L2, nothing happens.
• If the address hits in L2, it is invalidated and the dirty bit is cleared.
• If any arrays are written, the appropriate parity fields are updated by hardware.

HIT WB Inv ADDRESS • If the address is not contained in L2, nothing happens.
• If the address hits in L2, and it is dirty, the line is written back to main memory. It is then 

invalidated and the dirty bit is cleared.
• If the address hits in L2, and it is clean, it is invalidated.
• If any arrays are written, the appropriate parity fields are updated by hardware.

HIT WB ADDRESS • If the address is not contained in L2, nothing happens.
• If the address hits in L2, and it is dirty, the line is written back to main memory and the 

dirty bit is cleared.
• If the address hits in L2, and it is clean, nothing happens.
• If any arrays are written, the appropriate parity fields are updated by hardware.

Fetch and Lock ADDRESS • If the address is not contained in L2, the line is refilled. The refilled line is then locked in 
the cache. The LRU bits in the WS array are updated to make the fetched way most-
recently-used. The Dirty bit and the dirty parity bit are set to clean.

• On a hit the line is locked and the operation retires. The LRU bits or the dirty bits are not 
affected.
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Writeback Invalidate instructions; these instructions only affect the L1 D-Cache of the core 
that executed the instruction. 

Bits 21:20 of the MCACHE instruction indicate the type of cache being accessed as shown in 
the Cache column:

• I indicates L1 instruction cache — Bits [21:20] = 2’b00

• D indicates L1 data cache — Bits [21:20] = 2’b01

• S indicates L2 or secondary cache — Bits [21:20] = 2’b10 

• T indicates L3 of tertiary cache — Bits [21:20] = 2’b11

Table 5.6 shows the various types of operations that can be performed using the MCACHE 
instruction. In this table, bits 24:22 of the instruction encode the type of operation as shown 
in the Code column. 

Table 5.6 Encoding of Bits [24:22] of the MCACHE Instruction 

Code Cache Name Operation

3’b000 I Index Invalidate Set the state of the cache line at the specified index to invalid.
This encoding may be used by kernel software to invalidate the entire 
instruction cache by stepping through all valid indices.

D, S Index Writeback 
Invalidate

If the state of the cache line at the specified index is valid and dirty, 
write the line back to the memory address specified by the cache tag. 
After that operation is completed, set the state of the cache line to 
invalid. If the line is valid but not dirty, set the state of the line to invalid.

This encoding may be used by kernel software to invalidate the entire 
data cache by stepping through all valid indices, except during cache 
initialization. Note that Index Store Tag should be used to initialize the 
cache at power-up.

For the L2 cache, this operation will modify the L1 data caches as 
needed to maintain inclusivity.

3’b001 --- Reserved Reserved.

3’b010 --- Reserved Reserved.

3’b011 --- Reserved Reserved.
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3’b100 I, S Hit Invalidate If the cache line contains the specified address, set the state of the 
cache line to invalid.
This operation may be used by kernel software to invalidate a range of 
addresses from the caches by stepping through the address range by 
the line size of the cache. 
This instruction is globalized for the I caches, meaning that when exe-
cuted, the instruction will invalidate the targeted cache line from all L1 
instruction caches in the system. For the L2 cache, the instruction 
would invalidate all targeted cache lines within all L2 caches in all clus-
ters. 

For the L2 cache, this operation will modify the L1 data caches as 
needed to maintain inclusivity.

D Hit Invalidate If the cache line contains the specified address, set the state of the 
cache line to invalid.
This operation may be used by kernel software to invalidate a range of 
addresses from the caches by stepping through the address range by 
the line size of the cache. 

Note that the I8500 MPS does not globalize the MCACHE D Hit Invali-
date instruction. This instruction only affects the L1 D-Cache of the 
core that executed the instruction. 

3’b101 I Fill Fill the cache from the specified address.
The cache line is refetched even if it is already in the cache. In that 
case, the existing copy in the cache is invalidated

D, S Hit WriteBack 
Invalidate

If the cache line contains the specified address and it is valid and dirty, 
write the contents back to memory. After that operation is completed, 
set the state of the cache line to invalid. If the line is valid but not dirty, 
set the state of the line to invalid.

This operation may be used by kernel software to invalidate a range of 
addresses from the data cache by stepping through the address range 
by the line size of the cache.

Note that the I8500 MPS does not globalize the MCACHE D Hit Write-
back Invalidate instruction. This instruction only affects the L1 D-
Cache of the core that executed the instruction. 

For the L2 cache, this operation will modify the L1 data caches as 
needed to maintain inclusivity.

Table 5.6 Encoding of Bits [24:22] of the MCACHE Instruction (continued)

Code Cache Name Operation
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5.2 Cache Coherency Attributes

The I8500 core defines a set of Cache Coherency Attributes (CCA). The cache coherency is 
set using the PMA Configuration registers.  For more information, refer to the MIPS RISC-V 
Customizations document that is part of the document suite.

The I6500 core supports the following cacheability attributes:

• Cacheable, coherent, write-back, write-allocate, read misses request shared. (code #0): 
Use coherent data. Load misses request data in the shared state (will get exclusive if the 
data is not being shared by another CPU). Multiple caches can contain data in the shared 
state. Stores bring data into the cache in an exclusive state - no other caches can contain 
that same line. If a store hits on a shared line in the cache, the line is updated to the 
exclusive state and any shared copies of the line in other L1 data caches are invalidated.

• Uncached (code #2): Addresses in a memory area indicated as uncached are not read 
from the cache. Stores to such addresses are written directly to main memory, without 
changing cache contents.

• Uncached Accelerated (code #3): Uncached stores are gathered together for more effi-
cient bus utilization.

3’b110 D, S Hit WriteBack If the cache line contains the specified address and it is valid and dirty, 
write the contents back to memory. After the operation is completed, 
leave the state of the line valid, but clear the dirty state.

Note that the I8500 MPS does not globalize the MCACHE D Hit Write-
back instruction. This instruction only affects the L1 D-Cache of the 
core that executed the instruction. 

For the L2 cache, this operation will modify the L1 data caches as 
needed to maintain inclusivity.

3’b111 I, D Fetch and Lock The Fetch and Lock encoding is not supported in the I8500 L1 instruc-
tion and data caches. For the L1 instruction and data caches this oper-
ation executes as a no-op.

L2 Fetch and Lock If the L2 cache does not contain the specified address, fill it from mem-
ory and writeback the data from the line being replaced. Set the state 
to valid and locked. If the cache already contains the specified 
address, set the state to locked. The way selected on fill from memory 
is the least recently used.
The lock state is cleared by executing an Index Invalidate, Index Write-
back Invalidate, Hit Invalidate, or Hit Writeback Invalidate operation to 
the locked line, or via an Index Store Tag operation with the lock bit 
reset in the associated STATE field of the GCR L2 Tag RAM Cache Op 
Address register.
It is illegal to lock all ways at a given cache index. 

Table 5.6 Encoding of Bits [24:22] of the MCACHE Instruction (continued)

Code Cache Name Operation
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5.3 Directory Based L1 Cache Coherence

The Coherence Manager (CM) maintains coherence between L1 data caches and the L2 cache 
by maintaining a directory that tracks the state of each core's L1 data cache. The coherence 
directory extends the L2 cache's address tags with additional L1 cache tracking information.

The CM consults L2's cache tags and coherence directory for all cacheable requests from L1 
data caches, L1 instruction caches, and IOCUs. In multi-cluster configurations, CM consults 
L2's cache tags and coherence directory in response to coherence requests received via its 
ACE system port. It uses the attributes of the requests and the cache tag and directory infor-
mation to determine the appropriate actions to take. 

CM maintains full coherence between L1 data caches and L2 cache. CM provides one-way 
coherence for cacheable L1 instruction fetches and IOCU read requests: L1 fetches and IOCU 
reads obtain the most recent data at the time of a read request. IOCU write requests invali-
date cached copies of data in L1 data caches, merging the write with earlier updates cached 
in an L1 data cache if necessary.

CM updates its coherence directory in response to all requests that change the apparent 
state of the L1 data caches it tracks.

For non-cacheable requests from any requestor, CM does not consult the L2 cache tags or 
coherence directory. As per the RISC-V standard, CM forwards non-cacheable requests into 
the system without consulting the L2 cache.

5.3.1 L1 Data Cache Coherence
L2 maintains a strictly inclusive cache policy with all L1 data caches in directly connected 
cores. Any line held in an L1 data cache must also be present in L2. When L2 evicts a line, it 
sends intervention requests to obtain updates and invalidate lines from L1 data caches as 
needed to maintain strict inclusivity.

For cacheable L1 data cache requests that hit L2 cache, CM may send intervention requests 
to one or more cores' L1 data caches to manage coherence among the L1 data caches and 
L2. In multi-cluster configurations, CM may request ownership of the line from the system if 
needed by the request. For read requests, CM sends the read data from the L2 data RAMs if 
L2 holds the latest copy of the line. Otherwise, CM arranges for the L1 data cache that owns 
line to forward the latest data to the requestor as part of an intervention request.

For cacheable L1 data cache requests that miss L2, it allocates a new line by sending a read 
request into the system. In multi-cluster configurations, L2 will also request exclusive owner-
ship of the line if the request requires it.

5.3.2 L1 Instruction Cache Coherence
L2 does not track the contents of each core's L1 instruction caches.

If the L1 instruction cache contains a copy of a line, and this or another core modifies that 
line, the L1 instruction cache is NOT notified in any way, and will continue to hold its stale 
copy of the line. The software will need to perform a `fence.i` or cache maintenance opera-
tion to invalidate the stale line so that it can be refetched with the current values.

However, for cacheable fetches that miss in the L1 instruction cache, CM consults the L2 
cache tags and coherence directory. If CM detects an L1 data cache currently has exclusive 
ownership (E or M state) of the line, it sends an intervention to that cache. The intervention 
downgrades the line to the shared state while returning updated data to CM. CM forwards the 
updated data to the L1 instruction cache that requested the line.    
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This reduces the overhead of maintaining coherence between the L1 data and instruction 
caches in the most common cases.

5.4 L2 Cache Initialization Options

The I8500 Multiprocessing System automatically selects hardware cache initialization at 
reset. 

• L2 Tag array only (fast)

Automatically selected hardware cache initialization (fast mode) initializes only the L2 tag 
array. 

Each of these options are described in the following subsections.

5.4.1 Automatic Hardware Cache Initialization
The I8500 MPS allows for the L2 cache to be automatically initialized by hardware when the 
following conditions are met at reset:

• The external input pin (si_cpc_l2_hw_init_inhibit) is driven low, indicating that automatic 
hardware initialization can proceed.

• Automatic hardware cache initialization is enabled by setting the L2_HW_INIT_EN bit in 
the CPC Local Status and Configuration register (CPC_CL_STAT_CONF_REG) located at 
offset 0x0008 in CPC CM-local address space.

• The L2 initialization delay has expired. Once this delay has expired, automatic hardware 
cache initialization can begin. 

• MBIST is not enabled. If it is enabled, the cache initialization does not begin until the 
MBIST operation is complete. Even if the delay has expired, the cache initialization does 
not begin until the MBIST has completed.

Once all of these conditions are met, the L2 cache Tag RAM is automatically initialized by 
hardware. No initialization code is required. Once the initialization is complete, hardware sets 
the HCI_DONE bit in the L2 RAM Configuration register (GCR_L2_RAM_CONFIG) at offset 
address 0x0240 in GCR address space. Software can poll this bit to determine when the ini-
tialization is complete.

5.4.2 Manual Hardware Cache Initialization

The I8500 MPS allows for the L2 cache to be manually initialized by hardware. The user can 
choose to initialize only the Tag RAM, or both the Tag RAM and Data RAM, when the following 
conditions are met at reset:

• The external input pin (si_cpc_l2_hw_init_inhibit) is driven high, indicating that automatic hardware ini-
tialization described in the previous subsection is not selected and cannot proceed. 

For manual cache initialization, kernel software indicates the type of cache initialization to be 
performed using the following procedure.

1. Read the L2SM_COP_REG_PRESENT bit in the L2 Cache Op State Machine Config/Control register 
(GCR_L2SM_COP) at offset address 0x0620 in GCR address space to determine if this register is present. A ‘1’ 
in this bit indicates that the flush cache operation is supported. 

2. Read the L2SM_COP_MODE bit in the L2 Cache Op State Machine Config/Control register 
(GCR_L2SM_COP) at offset address 0x0620 in GCR address space to determine the state of the L2 state 
machine. This bit must be 0, indicating the state machine is idle, in order for cache initialization to proceed.
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3. Set the type of operation to be performed by programming the L2SM_COP_TYPE field in bits 4:2 of the L2 
Cache Op State Machine Config/Control register (GCR_L2SM_COP). A value of 0x1 in this field indicates that 
only the Tag RAM is initialized. A value of 0x2 in this field indicates that both the Tag RAM and Data RAM is 
initialized. Note that this operation is slower than initializing the Tag RAM only.

4. Start the L2 state machine by setting the L2SM_COP_CMD field in bits 1:0 of the L2 Cache Op State Machine 
Config/Control register (GCR_L2SM_COP) to a value of 0x1. This starts the L2 cache initialization process. 

5. To determine the result of the initialization, poll the L2SM_COP_RESULT field in bits 8:6 of the L2 Cache Op 
State Machine Config/Control register (GCR_L2SM_COP). A value of 0x0 indicates the process is still running. 
A value of 0x1 indicates that the process completed with no errors. 

5.5 L2 Cache Flush, Burst, and Abort

This section describes the L2 cache flush, burst, and abort operations.

If software detects an L2SM_COP_RESULT = 0x2 (DONE-ERR) or 0x4 (ABORT-ERR) after the 
completion of an L2COP SM operation, it should program another short L2COP SM operation 
into GCRs GCR_L2SM_TAG_ADDR_COP / GCR_L2SM_COP and verify it completes without 
error. This will guarantee that the previous error status is cleared in the CM mainpipe and any 
subsequent aborted L2COP SM operations will return the correct error status.

5.5.1 L2 Cache Flush
An L2 flush operation can only be initiated by software. To flush the entire L2 cache in one 
operation, perform the following steps:

1. Read the L2SM_COP_REG_PRESENT bit in the L2 Cache Op State Machine Config/Control 
register (GCR_L2SM_COP) at offset address 0x0620 in GCR address space to determine if 
this register is present. A ‘1’ in this bit indicates that the flush cache operation is sup-
ported. 

2. Read the L2SM_COP_MODE bit in the L2 Cache Op State Machine Config/Control register 
to determine the state of the L2 state machine. This bit must be 0, indicating the state 
machine is idle, in order for flush operation to proceed.

3. Program the L2SM_COP_TYPE field in bits 4:2 of the L2 Cache Op State Machine Config/
Control register to a value of 0x0. This selects the full cache flush operation.

4. Program the L2SM_COP_CMD field in bits 1:0 of the L2 Cache Op State Machine Config/
Control register to a value of 0x1. This starts the cache flush operation.

5. To determine the result of the flush operation, poll the L2SM_COP_RESULT field in bit 8:6 
of the L2 Cache Op State Machine Config/Control register. A value of 0x0 indicates the 
process is still running. A value of 0x1 indicates that the process completed with no 
errors. 

5.5.2 L2 Cache Burst Operations
The L2 Cache supports the following burst operations (CacheOps): 

• Hit_Inv

• Hit_WB_Inv

• Hit_WB



55
mips.com

Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS I8500 Multiprocessing System Programmer’s Guide — Revision 1.00

These operations can be requested only by software and can be performed on a range of 
addresses in the cache. Burst operations can be executed using the following procedure. 
Note that the number of cache lines requested must be less than or equal to the available 
cache lines in the cache and also less than 65,536.

1. Program the starting address where the flush operation begins into the 
L2SM_COP_START_TAG_ADDR field in bits 47:6 of the GCR L2 Cache Op State Machine 
Tag Address register (GCR_L2SM_TAG_ADDR_COP) at offset address 0x0628 in GCR 
address space. 

2. Program the L2SM_COP_NUM_LINES field in bits 63:48 of the GCR L2 Cache Op State 
Machine Tag Address register to indicate the number of lines to be flushed from the start-
ing address defined in step 1.

3. Program the type of operation to be performed on each line using the L2SM_COP_TYPE 
field in bits 4:2 of the L2 Cache Op State Machine Config/Control register. A value of 0x4 
in this field indicates Hit Invalidate. A value of 0x5 indicates Hit Writeback Invalidate, and 
a value of 0x6 indicates Hit Writeback.

4. Read the L2SM_COP_MODE bit in the L2 Cache Op State Machine Config/Control register 
to determine the state of the L2 state machine. This bit must be 0, indicating the state 
machine is idle, in order for the CacheOp to proceed.

5. If the state machine is idle as determined in step 4, program the L2SM_COP_CMD field in 
bits 1:0 of the L2 Cache Op State Machine Config/Control register to a value of 0x1. This 
initiates the CacheOp starting from the address defined in step 1 and continuing for the 
number of lines defined in step 2. The operation to be performed in each of the selected 
cache lines is defined in step 3.

6. To determine the result of the flush operation, poll the L2SM_COP_RESULT field in bit 8:6 
of the L2 Cache Op State Machine Config/Control register. A value of 0x0 indicates the 
process is still running. A value of 0x1 indicates that the process completed with no 
errors.
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Control and Status Registers (CSR)

This chapter defines the following types of Control and Status Registers, or CSR’s. The regis-
ters are divided into the following sections. Click on the links below to navigate to a specific 
section.

• Section 6.1, "User Floating-Point Registers"

• Section 6.2, "Supervisor Trap Setup Registers"

• Section 6.3, "Supervisor Counter/Timer Registers"

• Section 6.4, "Supervisor Trap Handler Registers"

• Section 6.5, "Supervisor Protection and Translation Registers"

• Section 6.6, "Virtual Supervisor Registers"

• Section 6.7, "Machine Trap Setup Registers"

• Section 6.8, "Machine Counter Setup Registers"

• Section 6.9, "Machine Trap Handling Registers"

• Section 6.10, "Machine Memory Protection Registers"

• Section 6.11, "Hypervisor Trap Setup Registers"

• Section 6.12, "Hypervisor Trap Handler Registers"

• Section 6.13, "Hypervisor Counter/Timer Virtualization Registers"

• Section 6.14, "Hypervisor Protection and Translation Registers"

• Section 6.15, "Machine Counter/Timer Registers"

• Section 6.16, "Machine Information and Identification Registers"

• Section 6.17, "User Counter/Timer Registers"

• Section 6.18, "MIPS Custom Control and Status Registers"

• Section 6.19, "Debug Control and Status Register — offset = 0x7B0"

Table 6.1 below shows the main register map for the Control and Status Registers (CSR).

Note: Software should only access the CSR registers listed in this chapter. Access to any reg-
isters not listed here can result in undefined behavior.
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Table 6.1 CSR Register Map 

Offset Name Type Description

User Floating-Point CSRs
0x001 FFLAGS URW Floating-point accrued exception (EXU_ARF_CSR).
0x002 FRM URM Floating-point dynamic rounding mode (EXU_ARF_CSR).
0x003 FCSR URW Floating-point control and status (frm + fflags, 

EXU_ARF_CSR).
Supervisor Trap Setup CSRs

0x100 SSTATUS SRW Supervisor status (EXU_CSR).
0x104 SIE SRW Supervisor interrupt-enable register (EXU_CSR).
0x105 STVEC SRW Supervisor trap handler base address register (EXU_CSR).

Supervisor Counter/Timer CSRs
0x106 SCOUNTEREN SRW Supervisor counter enable register (EXU_CSR).
0x10A SENVCFG SRW Supervisor environment configuration register (EXU_CSR).
0x10C SSTATEEN0 SRO Supervisor state enable 0 register - Helps in controlling 

access to certain user-accessible registers which can't be 
controlled otherwise.

0x10D SSTATEEN1 SRO Supervisor state enable 1 register.
0x10E SSTATEEN2 SRO Supervisor state enable 2 register.
0x10F SSTATEEN3 SRO Supervisor state enable 3 register.
0xDA0 SCOUNTOVF SRO Supervisor counter overflow register.

Supervisor Trap Handler
0x140 SSCRATCH SRW Scratch register for supervisor trap handlers register 

(EXU_CSR).
0x141 SEPC SRW Supervisor exception program counter register 

(EXU_ARF_CSR).
0x142 SCAUSE SRW Supervisor trap cause register (EXU_ARF_CSR) .
0x143 STVAL SRW Supervisor bad address or instruction register 

(EXU_ARF_CSR).
0x144 SIP SRW Supervisor interrupt pending register (EXU_CSR).
0x14D STIMECMP SRW Supervisor timer compate register (EXU_CSR).

Supervisor Protection and Translation
0x180 SATP SRW Supervisor address translation and protection register 

(EXU_CSR).
Virtual Supervisor Registers

0x200 VSSTATUS HRW Virtual supervisor status register (EXU_CSR).
0x204 VSIE HRW Virtual supervisor interrupt-enable register (EXU_CSR).
0x205 VSTVEC HRW Virtual supervisor trap handler base address register 

(EXU_CSR).
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0x240 VSSCRATCH HRW Virtual supervisor scratch register (EXU_CSR).
0x241 VSEPC HRW Virtual supervisor exception program counter register 

(EXU_CSR).
0x242 VSCAUSE HRW Virtual supervisor trap cause register (EXU_CSR).
0x243 VSTVAL HRW Virtual supervisor bad address or instruction register 

(EXU_ARF_CSR).
0x244 VSIP HRW Virtual supervisor interrupt pending register (EXU_CSR).
0x24D VSTIMECMP HRW Virtual supervisor timer compare register (EXU_CSR).
0x280 VSATP HRW Virtual supervisor address translation and protection 

(EXU_CSR).
Machine Trap Setup

0x300 MSTATUS MRW Machine status register (EXU_CSR).
0x301 MISA MRW ISA and extension register (EXU_CSR).
0x302 MEDELEG MRW Machine exception delegation register (EXU_CSR).
0x303 MIDELEG MRW Machine interrupt delegation register (EXU_CSR).
0x304 MIE MRW Machine interrupt-enable register (EXU_CSR).
0x305 MTVEC MRW Machine trap-handler base address register (EXU_CSR).
0x306 MCOUNTEREN MRW Machine counter enable register (EXU_CSR).
0x30A MENVCFG MRW Machine environment configuration register (EXU_CSR).
0x30C MSTATEEN0 MRW Machine state enable 0 register - Helps in controlling access 

to certain user accessible registers which can't be controlled 
otherwise.

0x30D MSTATEEN1 MRW Machine state enable 1 register.
0x30E MSTATEEN2 MRW Machine state enable 2 register.
0x30F MSTATEEN3 MRW Machine state enable 3 register.

Machine Counter Setup
0x320 MCOUNTINHIBIT MRW Machine counter-inhibit register.
0x323 MHPMEVENT3 MRW Machine performance monitor 3 (perfmon) event selector 

register (EXU_CSR).
0x324 MHPMEVENT4 MRW Machine performance monitor 4 (perfmon) event selector 

register (EXU_CSR).
0x325 MHPMEVENT5 MRW Machine performance monitor 5 (perfmon) event selector 

register (EXU_CSR).
0x326 MHPMEVENT6 MRW Machine performance monitor 6 (perfmon) event selector 

register (EXU_CSR).
Machine Trap Handling

0x340 MSCRATCH MRW Scratch for machine trap handlers register (EXU_CSR).
0x341 MEPC MRW Machine exception program counter register 

(EXU_ARF_CSR).

Table 6.1 CSR Register Map (continued)

Offset Name Type Description
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0x342 MCAUSE MRW Machine trap cause register (EXU_ARF_CSR).
0x343 MTVAL MRW Machine bad address or instruction register 

(EXU_ARF_CSR).
0x344 MIP MRW Machine interrupt pending (EXU_CSR).
0x34A MTINST MRW Machine trap instruction transformed register. (H-extension 

CSRs).
0x34B MTVAL2 MRW Machine bad guest physical address register (H-extension 

CSRs).
Machine Memory Protection

0x3A0 PMPCFG0 MRW Physical memory protection configuration register 0 
(EXU_CSR).

0x3A2 PMPCFG2 MRW Physical memory protection configuration register 2 
(EXU_CSR).

0x3B0 PMPADDR0 MRW Physical memory protection address 0 register (EXU_CSR).
…. …. MRW ….

0x3BF PMPADDR15 MRW Physical memory protection address 15 register 
(EXU_CSR).

Hypervisor Trap Setup
0x600 HSTATUS HRW Hypervisor status register (EXU_CSR).
0x602 HEDELEG HRW Hypervisor exception delegation register (EXU_CSR).
0x603 HIDELEG HRW Hypervisor interrupt delegation register (EXU_CSR).
0x604 HIE HRW Hypervisor interrupt-enable register (EXU_CSR)
0x606 HCOUNTEREN HRW Hypervisor counter enable (EXU_CSR)
0x607 HGEIE HRW Hypervisor guest external interrupt-enable register 

(EXU_CSR).
0x60A HENVCFG HRW Hypervisor environment configuration register (EXU_CSR).
0x60C HSTATEEN0 HRW Hypervisor state enable 0 register - Helps in controlling 

access to certain user-accessible registers which can't be 
controlled otherwise.

0x60D HSTATEEN1 HRW Hypervisor state enable 1 register.
0x60E HSTATEEN2 HRW Hypervisor state enable 2 register.
0x60F HSTATEEN3 HRW Hypervisor state enable 3 register.

Hypervisor Trap Handler
0x643 HTVAL HRW Hypervisor bad guest physical address register 

(EXU_ARF_CSR).
0x644 HIP HRW Hypervisor interrupt pending register (EXU_CSR).
0x645 HVIP HRW Hypervisor virtual interrupt pending register (EXU_CSR).
0x64A HTINST HRW Hypervisor trap instruction register (transformed) 

(EXU_CSR).

Table 6.1 CSR Register Map (continued)

Offset Name Type Description
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0xE12 HGEIP HRO Hypervisor guest external interrupt pending register 
(EXU_CSR).

Hypervisor Counter/Timer Virtualization Registers
0x605 HTIMEDELTA HRW Delta for VS/VU-mode timer register (EXU_CSR).

Hypervisor Protection and Translation
0x680 HGATP HRW Hypervisor guest address translation and protection register 

(EXU_CSR).
Machine Counter/Timers

0xB00 MCYCLE MRW Machine cycle counter (EXU_CSR).
0xB02 MINSTRET MRW Machine instructions-retired counter register (EXU_CSR).
0xB03 MHPMCOUNTER3 MRW Machine Perf-mon counter 3 register (EXU_CSR) HOW 

MANY?
…. …. MRW ….

0xB1F MHPMCOUNTER31 MRW Machine Perf-mon counter 31 register (EXU_CSR) HOW 
MANY?

Machine Information Registers
0xF11 MVENDORID MRO Vendor ID register (EXU_CSR).
0xF12 MARCHID MRO Architecture ID register (EXU_CSR).
0xF13 MIMPID MRO Implementation ID register (EXU_CSR).
0xF14 MHARTID MRO Hardware thread ID register (EXU_CSR).
0xF15 MCONFIGPTR MRO Configuration pointer register (EXU_CSR).

User Counter/Timers
0xC00 CYCLE URO Cycle counter for RDCYCLE instruction register.
0xC01 TIME URO Timer for RDTIME instruction register.
0xC02 INSTRET URO Instructions-retired counter for RDINSTRET instruction reg-

ister.
0xC03 HPMCOUNTER3 URO Performance monitor (Perfmon) counter 3 register.
0xC04 HPMCOUNTER4 URO Performance monitor (Perfmon) counter 4 register.
0xC05 HPMCOUNTER5 URO Performance monitor (Perfmon) counter 5 register.
0xC06 HPMCOUNTER6 URO Performance monitor (Perfmon) counter 6 register.

MIPS Custom CSRs
0x7C0 MIPSTVEC  MIPS trap vector register. 
0x7C5 MIPSCACHEERR MRW MIPS cache error register per CPU. For privileged level R/W 

permission, refer to register description.
0x7C6 MIPSERRCTL MRW MIPS error control register per CPU.
0x7C8 MIPSDIAGDATA  MIPS diagnostic data register.
0x7C9 MIPSBCCONFIG MRW Buffer cache configuration register per CPU. For privileged 

level R/W permission, refer to the description.

Table 6.1 CSR Register Map (continued)

Offset Name Type Description
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6.1 User Floating-Point Registers

The following registers are used for floating point operations in User mode.

6.1.1 Floating-Point Accrued Exception Register — offset 0x001
The Floating-Point Accrued Exception Register (FFLAGS) register allows the user to set 
parameters such as overflow, underflow, and divide-by-zero.  

0x7CA MIPSBCACTVSEG MRW MIPS buffer cache active segment per hart. For priviliged 
level R/W permission, refer to the description.

0x7CB MIPSINTCTL MRW MIPS interrupt control register.
0x7CC MIPSDSPRAMBASE MRW MIPS DSPRAM base address register.
0x7CD MIPSISPRAM MRW MIPS ISPRAM base address register.
0x7D1 MIPSCONFIG1 MRO MIPS configuration register 1.
0x7D4 MIPSCONFIG4 MRW MIPS configuration register 4.
0x7D5 MIPSCONFIG5 MRW MIPS configuration register 5.
0x7D6 MIPSCONFIG6 MRW MIPS configuration register 6.
0x7D7 MIPSCONFIG7 MRW MIPS configuration register 7.
0x7E0 PMACFG0 MRW MIPS PMA configuration register 0.
0x7E2 PMACFG2 MRW MIPS PMA configuration register 2.
0x800 MIPSWFE MRO MIPS wait for event register. 

Figure 6.1 Floating-Point Accrued Exception Register Bit Assignments
63 5 4 3 2 1 0

0 NV DZ OF UF NX

Table 6.2 Floating-Point Accrued Exception Register Bit Descriptions 

Name Bits Description R/W Reset State

0 63:5 Reserved R 0

NV 4 Setting this bit indicates an invalid operation. R/W Undefined

DZ 3 Setting this bit indicates a divide-by-zero operation. R/W Undefined

OF 1 Setting this bit indicates an overflow condition. R/W Undefined

UV 1 Setting this bit indicates an underflow condition. R/W Undefined

NX 0 Setting this bit indicates an inexact condition. R/W Undefined

Table 6.1 CSR Register Map (continued)

Offset Name Type Description
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6.1.2 Floating-Point Dynamic Rounding Mode Register — offset 0x002
This register is a part of FCSR and holds the rounding mode for floating-point operations. Any 
write to this CSR also sets the FS field to dirty in the MSTATUS register.  

6.1.3 Floating-Point Control and Status Register — offset 0x003
This register is a combined version of the FRM and FFLAGS registers described above. Any 
write to these CSRs also sets the FS field to dirty in the MSTATUS register .  

Figure 6.2 Floating-Point Dynamic Rounding Mode Register Bit Assignments
63 3 2 0

0 FRM

Table 6.3 Floating-Point Dynamic Rounding Mode Register Bit Descriptions 

Name Bits Description R/W Reset State

0 63:3 Reserved R 0

FRM 2:0 Sets the rounding mode. This field is encoded as follows:
000: RNE - Round to nearest, ties to even
001: RTZ - Round towards zero
010: RDN - Round down
011: RUP - Round up
100: RMM - Round to nearest, ties to maximum mag
101 - 110: Reserved
111: RFRM - Use CSR.FCSR.FM as rounding mode

R/W Undefined

Figure 6.3 Floating-Point Accrued Exception Register Bit Assignments
63 8 7 5 4 3 2 1 0

0 FRM NV DZ OF UF NX

Table 6.4 Floating-Point Accrued Exception Register Bit Descriptions 

Name Bits Description R/W Reset State

0 63:8 Reserved R 0

FRM 7:5 Sets the rounding mode. This field is encoded as follows:
000: RNE - Round to nearest, ties to even
001: RTZ - Round towards zero
010: RDN - Round down
011: RUP - Round up
100: RMM - Round to nearest, ties to maximum mag
101 - 110: Reserved
111: RFRM - Use CSR.FCSR.FM as rounding mode
This field is a mirror of bits 2:0 of the FRM register.

R/W Undefined

NV 4 Setting this bit indicates an invalid operation. This bit is a 
mirror of bit 4 of the FFLAGS register.

R/W Undefined

DZ 3 Setting this bit indicates a divide-by-zero operation. This 
bit is a mirror of bit 3 of the FFLAGS register.

R/W 0

OF 2 Setting this bit indicates an overflow condition. This bit is 
a mirror of bit 2 of the FFLAGS register.

R/W 0

UV 1 Setting this bit indicates an underflow condition. This bit is 
a mirror of bit 1 of the FFLAGS register.

R/W 0
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6.2 Supervisor Trap Setup Registers

6.2.1 Supervisor Status (SSTATUS) — offset 0x100
This register (SSTATUS) is a mirrored version of the MSTATUS register. Similar to the above 
CSRs, this is also a separate user-accessible version of MSTATUS.   

NX 0 Setting this bit indicates an inexact condition. This bit is a 
mirror of bit 0 of the FFLAGS register.

R/W 0

Figure 6.4 Supervisor Status Register Bit Assignments
63 62 34 33 32

SD RSVD UXL

31 20 19 18 17 16 15 14 13 12 9 8 7 6 5 4 2 1 0

RSVD MXR SUM RSVD XS FS RSVD SPP RSVD UBE SPIE RSVD SIE RSVD

Table 6.5 Supervisor Status Register Bit Descriptions 

Name Bits Description R/W Reset State

SD 63 Summarized dirty bit. Set by hardware. RO 0

RSVD 62:34 Reserved. RO 0

UXL 33:32 Value of XLEN for User mode. This field has the same 
value and encoding as MISA.MXL.

RO CFG

RSVD 31:20 Reserved. RO 0

MXR 19 Make eXecutable Readable. R/W 0

SUM 18 Allow Supervisor User Memory access. R/W 0

RSVD 17 Reserved. RO 0

XS 16:15 eXtension Status.

00: Off (No floating point instruction has executed)
01: Initial (Similar to reset value)
10: Clean (same as context save , no change)
11: Dirty (different from previous context save)

RO 0

FS 14:13 This field contains the floating point status and is encoded 
as follows:

00: Off (No floating point instruction has executed)
01: Initial (Similar to reset value)
10: Clean (same as context save , no change)
11: Dirty (different from previous context save)

R/W 0

RSVD 12:9 Reserved. RO 0

SPP 8 Supervisor Prior Privilege. R/W 0

RSVD 7 Reserved. RO 0

UBE 6 This bit is set by hardware when the user is in Big Endian 
mode.

RO 0

Table 6.4 Floating-Point Accrued Exception Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.2.2 Supervisor Interrupt Enable (SIE) — offset 0x104
This register (SIE) is a mirrored version of the Machine Interrupt Enable (MIE) register. Sim-
ilar to the above CSRs, this is also a separate supervisor-accessible version of MIE.   

SPIE 5 Supervisor Previous Interrupt Enable. R/W 0

RSVD 4:2 Reserved. RO 0

SIE 1 Supervisor interrupt enable. Set this bit to enable inter-
rupts in Supervisor mode.

R/W 0

RSVD 0 Reserved. RO 0

Figure 6.5 Supervisor Interrupt Enable Register Bit Assignments
63 32

RSVD

31 26 25 24 21 20 19 18 17 16 15 14 13 12 10 9 8 6 5 4 2 1 0

RSVD WDTE RSVD C20IE C19IE C18IE C17IE C16IE RSVD LCOFIE RSVD SEIE RSVD STIE RSVD SSIE RSVD

Table 6.6 Supervisor Interrupt Enable Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:26 Reserved. RO 0

WDTE 25 WatchDog Timer interrupt Enable. Setting this bit enables 
Watchdog timer interrupts.

R/W 0

RSVD 24:21 Reserved. RO 0

C20IE 20 Custom 20 interrupt enable (corresponding to MEI). This bit 
is aliased from MIE if the Interrupt Controller is not present.

R/W Undefined

C19IE 19 Custom 19 interrupt enable (corresponding to MEI). This bit 
is aliased from MIE if the Interrupt Controller is not present.

R/W Undefined

C18IE 18 Custom 18 interrupt enable (corresponding to MEI). This bit 
is aliased from MIE if the Interrupt Controller is not present.

R/W Undefined

C17IE 17 Custom 17 interrupt enable (corresponding to MEI). This bit 
is aliased from MIE if the Interrupt Controller is not present.

R/W Undefined

C16IE 16 Custom 16 interrupt enable (corresponding to MEI). This bit 
is aliased from MIE if the Interrupt Controller is not present.

R/W Undefined

RSVD 15:14 Reserved. RO 0

LCOFIE 13 Local Count Overflow Interrupt Enable (aliased from MIE). R/W Undefined

RSVD 12:10 Reserved. RO 0

SEIE 9 Supervisor external interrupt enable (aliased from MIE). R/W Undefined

RSVD 8:6 Reserved. RO 0

STIE 5 Supervisor Timer Interrupt Enable (aliased from MIE). R/W Undefined

RSVD 4:2 Reserved. RO 0

SSIE 1 Supervisor Software Interrupt Enable (aliased from MIE). R/W Undefined

RSVD 0 Reserved. RO 0

Table 6.5 Supervisor Status Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.2.3 Supervisor Trap Handler Base Address (STVEC) — offset 0x105
This register (STVEC) contains the base address for supervisor mode exceptions. Similar to 
the above CSRs, this is also a separate supervisor-accessible version of MIE.  

6.3 Supervisor Counter/Timer Registers

6.3.1 Supervisor Counter Enable (SCOUNTEREN) — offset 0x106
This register (SCOUNTEREN) is used to enable the access to user accessible timer, cycle, 
INSTRET, and HPM for User/Virtual User modes. When the corresponding bit is set , there will 
be no exception.  

Figure 6.6 Supervisor Trap Handler Base Address Register Bit Assignments
63 2 1 0

RSVD MODE

Table 6.7 Supervisor Trap Handler Base Address Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:2 Reserved. RO 0

MODE 1:0 This field contains the vector mode and has the same 
encoding as MTVEC.MODE. This encoding is below.
00: Direct. All exceptions set PC to BASE.
01: Vectored. Asynchronous interrupts set PC to BASE + 
4xCAUSE.
10 - 11: Reserved.

R/W Undefined

Figure 6.7 Supervisor Counter Enable Register Bit Assignments
63 7 6 3 2 1 0

RSVD HPM IR TM CY

Table 6.8 Supervisor Counter Enable Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:7 Reserved. RO 0

HPM 6:3 Performance-Monitor counter enable. The I8500 supports 4 
hpm counters. As such, each of the bits in this field is the 
enable for one of the counters as described below.

Bit 3: Enable for hpm3.
Bit 4: Enable for hpm4.
Bit 5: Enable for hpm5.
Bit 6: Enable for hpm6.

R/W Undefined

IR 2 Instruction-Retired counter enable. 
0: Instruction retired counter is disabled.
1: Instruction retired counter is enabled.

R/W Undefined

TM 1 Timer counter enable. 
0: Timer counter is disabled.
1: Timer counter is enabled.

R/W Undefined
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6.3.2 Supervisor Environment Configuration (SENVCFG) — offset 0x10A
 

6.3.3 Supervisor State Enable[0-3] (SSTATEN) — offset 0x10C/10D/10E/10F
These CSRs come as a part of SMSTATEEN/SSSTATEEN. To prevent application programs 
from communicating via user-accessible CSRs/register the bits are introduced. Setting one 
field enables the associated access for lower privilege levels, user mode in this case.  

CY 0 Cycle counter enable. 
0: Cycle counter is disabled.
1: Cycle counter is enabled.

R/W Undefined

Figure 6.8 SENV Configuration Register Bit Assignments
63 8 7 6 5 4 3 0

RSVD CBZE HPM CBCFC CBIE RSVD

Table 6.9 SENV Configuration Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:7 Reserved. RO 0

CBZE 7 When this bit is set, the Cache Block Zero instruction is 
Enabled (Zicboz).

R/W 0

CBCFC 6 When this bit is set, the Cache Block Clean and Flush 
instruction is Enabled (Zicbom).

R/W 0

CBIE 5:4 Cache Block Invalidate instruction Enable (Zicbom). This 
field is encoded as follows:

00: The instruction raises an illegal instruction or virtual 
instruction exception.
01: The instruction is executed and performs a flush opera-
tion.
10: Reserved.
11: The instruction is executed and performs an invalidate 
operation.

R/W 0

RSVD 3:0 Reserved. RO 0

Figure 6.9 State Enable[0-3] Register Bit Assignments
63 62 0

SE[0-3] RSVD

Table 6.10 State Enable[0-3] Register Bit Descriptions 

Name Bits Description R/W Reset State

SE[0-3] 63 State enable 0 - 3. There are four registers, one per state, at 
the four offsets shown above. This bit is R/W due to spec 
requirements , even if no custom extension is present.

R/W 0

RSVD 62:0 Reserved. RO 0

Table 6.8 Supervisor Counter Enable Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.3.4 Supervisor TIme Compare (STIMECMP) — offset 0x14D
A supervisor timer interrupt becomes pending as reflected in the STIP bit in the mip and sip 
registers, whenever the actual time contains a value greater than or equal to stimecmp, 
treating the values as unsigned integers. This provides an alternate mechanism for supervi-
sor programs to directly generate STIP without relying on M mode for it.  

6.3.5 Supervisor Counter Overflow (SCOUNTOVF) — offset 0xDA0
This CSR comes as part of SSCOFPMF extension. This ensembles the OF bits from various 
mhpmevent.  

6.4 Supervisor Trap Handler Registers

6.4.1 Supervisor Trap Handler Scratch (SSCRATCH) — offset 0x140
It is used to hold supervisor context while executing user programs.  

Figure 6.10 Supervisor Time Compare Register Bit Assignments
63 0

STIMECMP

Table 6.11 Supervisor Time Compare Register Bit Descriptions 

Name Bits Description R/W Reset State

STIMECMP 63:0 Value which is compared against time counter for generating 
a STIP.

R/W Undefined

Figure 6.11 Supervisor Counter Overflow Register Bit Assignments
63 7 6 3 2 0

RSVD OF RSVD

Table 6.12 Supervisor Counter Overflow Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:7 Reserved RO 0

OF 6:3 4-bit read-only register that contains shadow copies of the 
OF bits in the 4 mhpmevent CSRs - where scountovf bit X 
corresponds to mhpmeventX. 

RO 0

RSVD 2:0 Reserved. RO 0

Figure 6.12 Supervisor Counter Overflow Register Bit Assignments
63 0

SSCRATCH

Table 6.13 Supervisor Counter Overflow Register Bit Descriptions 

Name Bits Description R/W Reset State

SSCRATCH 63:0 Supervisor scratch register that stores the supervisor context 
during program execution.

R/W Undefined
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6.4.2 Supervisor Exception Program Counter (SEPC) — offset 0x141
It is used to hold the supervisor exception program counter. The low-order bit 0 of the sepc 
register is always zero. If MISA.C is not set sepc[1] is masked on reads.  

6.4.3 Supervisor Trap Cause (SCAUSE) — offset 0x142
Whenever an exception or interrupt is taken, this CSR is written with the distinguishing 
value.  

Figure 6.13 Supervisor Exception Program Counter Register Bit Assignments
63 1 0

SEPC RSVD

Table 6.14 Supervisor Exception Program Counter Register Bit Descriptions 

Name Bits Description R/W Reset State

SEPC 63:1 This field is used to store the supervisor exception program 
counter. Note that bit 0 of this register is reserved and is 
always zero.

R/W Undefined

RSVD 0 Reserved. RO 0

Figure 6.14 Supervisor Trap Cause Register Bit Assignments
63 62 6 5 0

INT RSVD EXC

Table 6.15 Supervisor Trap Cause Register Bit Descriptions 

Name Bits Description R/W Reset State

INT 63 Interrupt. R/W 0

RSVD 62:6 Reserved. RO 0
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6.4.4 Supervisor Bad Address or Instruction (STVAL) — offset 0x143
This register is written along with the exception which assists the Interrupt Service Routine 
(ISR) in further identifying the nature of the exception, such as faulting virtual address for 
access fault , page fault or misaligned access.  

EXC 5:0 Exception Code. This field is divided into Interrrupt and Non-
Interrupt encodings as follows:

Non-Interrupt Meaning (decimal)

0 Instruction address misaligned
1 Instruction access fault
2 Illegal instruction
3 Breakpoint
4 Load address misaligned
5 Load access fault
6 Store/AMO address misaligned
7 Store/AMO access fault
8 Environment call from U-mode
9 Environment call from S-mode
11 Environment call from M-mode
12 Instruction page fault
13 Load page fault
15 Store/AMO page fault
20 Instruction Guest page fault
21 Load Guest page fault
22 Virtual Instruction Exception
23 Store Guest page fault
24 Instruction TLB Miss
25 Load TLB Miss
27 Store TLB Miss
28 Instruction Guest TLB Miss
29 Load Guest TLB Miss
31 Store Guest TLB Miss

Interrupt meaning (decimal):

1 Supervisor software interrupt
3 Machine software interrupt
5 Supervisor timer interrupt
7 Machine timer interrupt
9 Supervisor external interrupt
11 Machine external interrupt
13 Machine Performance interrupt
25 WatchDog Timer Interrupt

R/W 0

Figure 6.15 Supervisor Bad Address or Instruction Register Bit Assignments
63 0

STVAL

Table 6.15 Supervisor Trap Cause Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.4.5 Supervisor Interrupt Pending (SIP) — offset 0x144
This register provide a limited view of Master Interrupt Pending (MIP) register. It contains all 
the pending bits from internal interrupt sources such as STIP and external such as APLIC and 
ACLINT.  

Table 6.16 Supervisor Bad Address or Instruction Register Bit Descriptions 

Name Bits Description R/W Reset State

STVAL 63:0 Faulting virtual address or faulting instruction (zero if not 
supported). 

R/W Undefined

Figure 6.16 Supervisor Interrupt Pending Register Bit Assignments
63 26 25 24 21 20 19 18 17 16 15 14 13 12 10 9 8 6 5 4 2 1 0

RSVD WDTP RSVD C20IP C19IP C18IP C17IP C16IP RSVD LCOFIP RSVD SEIP RSVD STIP RSVD SSIP RSVD

Table 6.17 Supervisor Interrupt Pending Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:26 RSVD RO 0

WDTP 25 Watchdog timer interrupt. When set, indicates a watchdog 
timer interrupt is pending.

R/W Undefined

RSVD 24:21 Reserved RO 0

C20IP 20 Custom 20 interrupt pending (corresponding to MEI). This bit 
is aliased from MIP if AIA not present.

RO Undefined

C19IP 19 Custom 19 interrupt pending (corresponding to MSI). This bit 
is aliased from MIP if AIA not present.

RO Undefined

C18IP 18 Custom 18 interrupt pending (corresponding to SEI). This bit 
is aliased from MIP if AIA not present.

RO Undefined

C17IP 17 Custom 17 interrupt pending (corresponding to STI). This bit 
is aliased from MIP if AIA not present.

RO Undefined

C16IP 16 Custom 16 interrupt pending (corresponding to VSEI). This 
bit is aliased from MIP if AIA not present.

RO Undefined

RSVD 15:14 Reserved RO 0

LCOFIP 13 Local Count Overflow Interrupt pending (aliased from MIP). R/W Undefined

RSVD 12:10 Reserved RO 0

SEIP 9 Supervisor external interrupt pending. This interrupt is 
cleared by configuring the APLIC.

R/W 0

RSVD 8:6 Reserved RO 0

STIP 5 Supervisor timer interrupt pending (aliased from MIP). This 
interrupt is cleared by writing to the STIMECMP register 
described in the following section.

RO 0

RSVD 4:2 Reserved RO 0

SSIP 1 Supervisor software interrupt pending (aliased from MIP). R/W 0

RSVD 0 Reserved RO 0
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6.5 Supervisor Protection and Translation Registers

6.5.1 Supervisor Address Translation and Protection (SATP) — offset 0x180
This register controls address translation and protection for non-machine mode.  

6.6 Virtual Supervisor Registers

6.6.1 Virtual Supervisor Status (VSSTATUS) — offset 0x200
This register (VSSTATUS) is a mirrored version of the Supervisor sstatus register. When V = 
1, vsstatus substitutes for the usual sstatus, so instructions that normally read or modify 
sstatus actually access vsstatus instead.   

Figure 6.17 Supervisor Address Translation and Protection Register Bit Assignments
63 60 59 44 43 36 35 0

MODE ASID PPN(RO) PPN (R/W)

Table 6.18 Supervisor Address Translation and Protection Register Bit Descriptions 

Name Bits Description R/W Reset State

MODE 63:60 Address translation mode: The following encodings are valid 
for this field. All those not shown are reserved.

0x0 - No translation or protection
0x8 - Page-based 39-bit virtual address
0x9 - Page-based 48-bit virtual addressing

R/W 0

ASID 59:44 Address space identifier. This 16-bit field defines the chunk 
of address space selected for the operation.

R/W 0

PPN 43:36 Physical page number. This 8-bit field stores the upper 8 bits 
of the PPN for the selected address space. This field is read-
only.

RO 0

35:0 Physical page number. This 36-bit field stores the lower 36 
bits of the PPN for the selected address space. This field is 
read-write.

R/W 0

Figure 6.18 Virtual Supervisor Status Register Bit Assignments
63 62 34 33 32

SD RSVD UXL

31 20 19 18 17 16 15 14 13 12 9 8 7 6 5 4 2 1 0

RSVD MXR SUM RSVD XS FS RSVD SPP RSVD UBE SPIE RSVD SIE RSVD

Table 6.19 Virtual Supervisor Status Register Bit Descriptions 

Name Bits Description R/W Reset State

SD 63 Summarized dirty bit. Set by hardware. RO 0

RSVD 62:34 Reserved. RO 0
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6.6.2 Virtual Supervisor Interrupt Enable (VSIE) — offset 0x204
This register (VSIE) is a mirrored version of the Supervisor Interrupt Enable (SIE) register. 
Similar to the above CSRs, this is also a separate supervisor-accessible version of MIE.   

UXL 33:32 Value of XLEN for Virtual User (VU) mode. This field has 
the same value and encoding as MISA.MXL.

RO CFG

RSVD 31:20 Reserved. RO 0

MXR 19 Make eXecutable Readable. R/W 0

SUM 18 Allow Supervisor User Memory access. R/W 0

RSVD 17 Reserved. RO 0

XS 16:15 eXtension Status.

00: Off (No floating point instruction has executed)
01: Initial (Similar to reset value)
10: Clean (same as context save , no change)
11: Dirty (different from previous context save)

RO 0

FS 14:13 This field contains the floating point status and is encoded 
as follows:

00: Off (No floating point instruction has executed)
01: Initial (Similar to reset value)
10: Clean (same as context save , no change)
11: Dirty (different from previous context save)

R/W 0

RSVD 12:9 Reserved. RO 0

SPP 8 Supervisor Prior Privilege. R/W 0

RSVD 7 Reserved. RO 0

UBE 6 This bit is set by hardware when the user is in Big Endian 
mode.

RO 0
(CM)

SPIE 5 Supervisor Previous Interrupt Enable. R/W 0

RSVD 4:2 Reserved. RO 0

SIE 1 Supervisor interrupt enable. Set this bit to enable inter-
rupts in Supervisor mode.

R/W 0

RSVD 0 Reserved. RO 0

Figure 6.19 Virtual Supervisor Interrupt Enable Register Bit Assignments
63 32

RSVD

31 26 25 24 21 20 19 18 17 16 15 14 13 12 10 9 8 6 5 4 2 1 0

RSVD WDTE RSVD C20IE C19IE C18IE C17IE C16IE RSVD LCOFIE RSVD SEIE RSVD STIE RSVD SSIE RSVD

Table 6.20 Virtual Supervisor Interrupt Enable Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:26 Reserved. RO 0

Table 6.19 Virtual Supervisor Status Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.6.3 Virtual Supervisor Trap Handler Base Address (VSTVEC) — offset 0x205
This register (VSTVEC) contains the base address for virtual supervisor mode exceptions. 
Similar to the above CSRs, this is also a separate supervisor-accessible version of MIE.  

WDTE 25 WatchDog Timer interrupt Enable. Setting this bit enables 
Watchdog timer interrupts.

R/W Undefined

RSVD 24:21 Reserved. RO 0

C20IE 20 Custom 20 interrupt enable (corresponding to SEI). This bit 
is aliased from MIE if the Interrupt Controller is not present.

R/W Undefined

C19IE 19 Custom 19 interrupt enable (corresponding to SEI). This bit 
is aliased from MIE if the Interrupt Controller is not present.

R/W Undefined

C18IE 18 Custom 18 interrupt enable (corresponding to SEI). This bit 
is aliased from MIE if the Interrupt Controller is not present.

R/W Undefined

C17IE 17 Custom 17 interrupt enable (corresponding to SEI). This bit 
is aliased from MIE if the Interrupt Controller is not present.

R/W Undefined

C16IE 16 Custom 16 interrupt enable (corresponding to SEI). This bit 
is aliased from MIE if the Interrupt Controller is not present.

R/W Undefined

RSVD 15:14 Reserved. R/W 0

LCOFIE 13 Local Count Overflow Interrupt Enable (aliased from MIE). R/W Undefined

RSVD 12:10 Reserved. R/W 0

SEIE 9 Supervisor external interrupt enable (aliased from MIE). R/W 0

RSVD 8:6 Reserved. RO 0

STIE 5 Supervisor Timer Interrupt Enable (aliased from MIE). R/W 0

RSVD 4:2 Reserved. RO 0

SSIE 1 Supervisor Software Interrupt Enable (aliased from MIE). R/W 0

RSVD 0 Reserved. RO 0

Figure 6.20 Supervisor Trap Handler Base Address Register Bit Assignments
63 2 1 0

BASE MODE

Table 6.21 Supervisor Trap Handler Base Address Register Bit Descriptions 

Name Bits Description R/W Reset State

BASE 63:2 This field contains the base address for a VS-mode excep-
tion.

R/W Undefined

MODE 1:0 This field contains the vector mode and has the same 
encoding as MTVEC.MODE. This encoding is below.
00: Direct. All exceptions set PC to BASE.
01: Vectored. Asynchronous interrupts set PC to BASE + 
4xCAUSE.
10 - 11: Reserved.

R/W Undefined

Table 6.20 Virtual Supervisor Interrupt Enable Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.6.4 Virtual Supervisor Trap Handler Scratch (VSSCRATCH) — offset 0x240
It is used to hold supervisor context while executing user programs.  

6.6.5 Virtual Supervisor Exception Program Counter (VSEPC) — offset 0x241
This register is used to hold the virtual supervisor exception program counter. The low-order 
bit 0 of the vsepc register is always zero. If MISA.C is not set, vsepc[1] is masked on reads.  

6.6.6 Virtual Supervisor Trap Cause (VSCAUSE) — offset 0x242
Whenever an exception or interrupt is taken, this CSR is written with the distinguishing 
value.  

Figure 6.21 Virtual Supervisor Scratch Register Bit Assignments
63 0

VSSCRATCH

Table 6.22 Virtual Supervisor Scratch Register Bit Descriptions 

Name Bits Description R/W Reset State

VSSCRATCH 63:0 VS-mode's version of the Supervisor register sscratch. 
When V = 1, vsscratch substitutes for the usual sscratch, so 
instructions that normally read or modify sscratch actually 
access vsscratch instead.

R/W 0

Figure 6.22 Supervisor Exception Program Counter Register Bit Assignments
63 1 0

VSEPC RSVD

Table 6.23 Supervisor Exception Program Counter Register Bit Descriptions 

Name Bits Description R/W Reset State

VSEPC 63:1 VS-mode's version of the Supervisor register sepc. When V 
= 1, vsepc substitutes for the usual sepc, so instructions that 
normally read or modify sepc actually access vsepc instead.

R/W Undefined

RSVD 0 Reserved. This bit is always zero. RO 0

Figure 6.23 Virtual Supervisor Trap Cause Register Bit Assignments
63 62 6 5 0

INT RSVD EXC

Table 6.24 Virtual Supervisor Trap Cause Register Bit Descriptions 

Name Bits Description R/W Reset State

INT 63 Interrupt. R/W 0

RSVD 62:6 Reserved. RO 0
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6.6.7 Virtual Supervisor Bad Address of Instruction (VSTVAL) — offset 0x243
This register is written along with the exception which assists the Interrupt Service Routine 
(ISR) in further identifying the nature of the Virtual Supervisor exception, such as faulting 
virtual address for access fault, page fault, or misaligned access.  

EXC 5:0 Exception Code. This field is divided into Interrrupt and Non-
Interrupt encodings as follows:

Non-Interrupt Meaning (decimal)

0 Instruction address misaligned
1 Instruction access fault
2 Illegal instruction
3 Breakpoint
4 Load address misaligned
5 Load access fault
6 Store/AMO address misaligned
7 Store/AMO access fault
8 Environment call from U-mode
9 Environment call from S-mode
11 Environment call from M-mode
12 Instruction page fault
13 Load page fault
15 Store/AMO page fault
20 Instruction Guest page fault
21 Load Guest page fault
22 Virtual Instruction Exception
23 Store Guest page fault
24 Instruction TLB Miss
25 Load TLB Miss
27 Store TLB Miss
28 Instruction Guest TLB Miss
29 Load Guest TLB Miss
31 Store Guest TLB Miss

Interrupt meaning (decimal):

1 Supervisor software interrupt
3 Machine software interrupt
5 Supervisor timer interrupt
7 Machine timer interrupt
9 Supervisor external interrupt
11 Machine external interrupt
13 Machine Performance interrupt
25 WatchDog Timer Interrupt

R/W 0

Figure 6.24 Virtual Supervisor Bad Address or Instruction Register Bit Assignments
63 0

VSTVAL

Table 6.24 Virtual Supervisor Trap Cause Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.6.8 Virtual Supervisor Interrupt Pending (VSIP) — offset 0x244
This register provides a limited view of Supervisor Interrupt Pending (SIP) register. It con-
tains all the pending bits from internal interrupt sources such as STIP and external sources 
such as APLIC and ACLINT.  

Table 6.25 Supervisor Bad Address or Instruction Register Bit Descriptions 

Name Bits Description R/W Reset State

VSTVAL 63:0 VS-mode's version of supervisor register stval. When V = 1, 
vstval substitutes for the usual stval, so instructions that nor-
mally read or modify stval actually access vstval instead. 

R/W Undefined

Figure 6.25 Virtual Supervisor Interrupt Pending Register Bit Assignments
63 26 25 24 21 20 19 18 17 16 15 14 13 12 10 9 8 6 5 4 2 1 0

RSVD WDTP RSVD C20IP C19IP C18IP C17IP C16IP RSVD LCOFIP RSVD SEIP RSVD STIP RSVD SSIP RSVD

Table 6.26 Virtual Supervisor Interrupt Pending Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:26 Reserved. RO 0

WDTP 25 Watchdog timer interrupt. When set, indicates a watchdog 
timer interrupt is pending.

R/W 0

RSVD 24:21 Reserved RO 0

C20IP 20 Custom 20 interrupt pending (corresponding to MEI). This bit 
is aliased from MIP if AIA not present.

R/W Undefined

C19IP 19 Custom 19 interrupt pending (corresponding to MSI). This bit 
is aliased from MIP if AIA not present.

R/W Undefined

C18IP 18 Custom 18 interrupt pending (corresponding to SEI). This bit 
is aliased from MIP if AIA not present.

R/W Undefined

C17IP 17 Custom 17 interrupt pending (corresponding to STI). This bit 
is aliased from MIP if AIA not present.

R/W Undefined

C16IP 16 Custom 16 interrupt pending (corresponding to VSEI). This 
bit is aliased from MIP if AIA not present.

R/W Undefined

RSVD 15:14 Reserved RO 0

LCOFIP 13 Local Count Overflow Interrupt pending (aliased from MIP). RO 0

RSVD 12:10 Reserved RO 0

SEIP 9 Virtual Supervisor external interrupt pending. This interrupt is 
cleared by configuring the APLIC.

RO 0

RSVD 8:6 Reserved RO 0

STIP 5 Virtual Supervisor timer interrupt pending (aliased from MIP). 
This interrupt is cleared by writing to the STIMECMP register 
described in the following section.

RO 0

RSVD 4:2 Reserved RO 0

SSIP 1 Virtual Supervisor software interrupt pending (aliased from 
MIP).

R/W 0

RSVD 0 Reserved RO 0
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6.6.9 Virtual Supervisor TIme Compare (VSTIMECMP) — offset 0x24D
A virtual supervisor timer interrupt becomes pending as reflected in the VSTIP bit in the mip 
and hip registers, whenever (time + htimedelta) contains a value greater than or equal to 
vstimecmp, treating the values as unsigned integers. This provides an alternate mechanism 
for supervisor programs to directly generate VSTIP without relying on M mode for it.  

6.6.10 Virtual Supervisor Address Translation and Protection (VSATP) — offset 0x280
This register controls address translation and protection for Virtual Supervisor (VS) mode.  

Figure 6.26 Virtual Supervisor Time Compare Register Bit Assignments
63 0

VSTIMECMP

Table 6.27 Virtual Supervisor Time Compare Register Bit Descriptions 

Name Bits Description R/W Reset State

VSTIMECMP 63:0 Value which is compared against time counter for generating 
a VSTIP.

R/W 0

Figure 6.27 Virtual Supervisor Address Translation and Protection Register Bit Assignments
63 60 59 44 43 36 35 0

MODE ASID PPN RSVD

Table 6.28 Virtual Supervisor Address Translation and Protection Register Bit Descriptions 

Name Bits Description R/W Reset State

MODE 63:60 Address translation mode: The following encodings are valid 
for this field. All those not shown are reserved.

0x0 - No translation or protection
0x8 - Page-based 39-bit virtual address
0x9 - Page-based 48-bit virtual addressing

R/W 0

ASID 59:44 Address space identifier. This 16-bit field defines the chunk 
of address space selected for the operation.

R/W 0

PPN 43:36 Physical page number. This 8-bit field stores the upper 8 bits 
of the PPN for the selected address space. This field is read-
only.

RO 0

35:0 Physical page number. This 36-bit field stores the lower 36 
bits of the PPN for the selected address space. This field is 
read-write.

R/W 0
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6.7 Machine Trap Setup Registers

This section describes the I8500 Machine mode trap setup registers.

6.7.1 Machine Status (MSTATUS) — offset 0x300
This register (MSTATUS) provide the current device status in Machine mode.   

Figure 6.28 Machine Status Register Bit Assignments
63 62 40 39 38 37 36 35 34 33 32

SD RSVD MPV GVA MBE SBE SXL UXL

31 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TSR TW TVM MXR SUM MPRV XS FS MPP RSVD SPP MPIE UBE SPIE RSVD MIE RSVD SIE RSVD

Table 6.29 Machine Status Register Bit Descriptions 

Name Bits Description R/W Reset State

SD 63 When set, the line has been Summarized Dirty. RO 0

RSVD 62:40 Reserved. RO 0

MPV 39 Machine Previous Virtualization Mode. R/W 0

GVA 38 Guest Virtual Address. When set, the most recent trap to 
Machine mode set a guest virtual address.

R/W 0

MBE 37 When set, indicates Machine mode is Big Endian. RO 0

SBE 36 When set, indicates Supervisor mode is Big Endian. RO 0

SXL 35:34 Supervisor register length, same value and encoding as 
MISA.MXL.

RO 0

UXL 33:32 User register length, same value and encoding as 
MISA.MXL.

RO 0

RSVD 31:23 Reserved. RO 0

TSR 22 Trap SRET. R/W 0

TW 21 Trap on Wait for interrupt. R/W 0

TVM 20 Trap on Virtual Memory. R/W 0

MXR 19 Make eXecutable Readable. R/W 0

SUM 18 When set, permit Supervisor User Memory access R/W 0

MPRV 17 Machine mode load/store accesses use MPP privilege 
level. 

R/W 0

XS 16:15 eXtention Status.

00: Off (No floating point instruction has executed)
01: Initial (Similar to reset value)
10: Clean (same as context save , no change)
11: Dirty (different from previous context save)

RO 0
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6.7.2 Machine ISA and Extensions (MISA) — offset 0x301
This register (MIA) provides Machine mode ISA and extensions information.   

FS 14:13 Floating-point Status.

00: Off (No floating point instruction has executed)
01: Initial (Similar to reset value)
10: Clean (same as context save , no change)
11: Dirty (different from previous context save)

R/W 0

MPP 12:11 Machine Previous Privilege.

00: User
01: Supervisor
10: Reserved
11: Machine

R/W 0

RSVD 10:9 Reserved. RO 0

SPP 8 Supervisor Previous Privilege. R/W 0

MPIE 7 Machine Previous Interrupt Enabled. R/W 0

UBE 6 User mode is Big Endian. RO 0

SPIE 5 Supervisor Previous Interrupt Enable. R/W 0

RSVD 4 Reserved. RO 0

MIE 3 Machine mode Interrupt Enable. R/W 0

RSVD 2 Reserved. RO 0

SIE 1 Supervisor mode Interrupt Enable. R/W 0

RSVD 0 Reserved. RO 0

Figure 6.29 Machine ISA and Extensions Register Bit Assignments
63 62 61 32

MXL RSVD

31 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

Table 6.30 Machine ISA and Extensions Register Bit Descriptions 

Name Bits Description R/W Reset State

MXL 63:62 Machine register Length, same value and encoding as 
misa.mxl.

RO 0

RSVD 61:26 Reserved. RO 0

Z 25 Reserved for future extension. RO 0

Y 24 Reserved for future extension. RO 0

X 23 Non-standard extensions present. RO 0

W 22 Reserved for future extension. RO 0

V 21 Reserved for vector extension. RO 0

Table 6.29 Machine Status Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.7.3 Machine Exception Delegation (MEDELEG) — offset 0x302
This register provides status on various Machine exceptions, including page faults and mis-
aligned accesses.   

U 20 User mode is supported. RO 1

T 19 Reserved for transactional memory extension. RO 0

S 18 Supervisor mode supported RO 1

R 17 Reserved for future extension. RO 0

Q 16 Quad-precision floating-point supported. RO 0

P 15 Reserved for Packed-SIMD extension. RO 0

O 14 Reserved for future extension. RO 0

N 13 User-level interrupts supported. RO 0

M 12 Integer multiply-divide extension supported. RO 1

L 11 Reserved for Decimal floating-point extension. RO 0

K 10 Reserved for future extension. RO 0

J 9 Reserved for Dynamically Translated Languages exten-
sion

RO 0

I 8 RV64I base ISA supported. RO 1

H 7 Hypervisor extension supported. RO 1

G 6 Reserved for future extension. RO 0

F 5 Single-precision floating-point extension supported. RO 1

E 4 RV32E base ISA. RO 0

D 3 Double-precision floating-point extension supported. RO 1

C 2 Compressed extension supported (Based on RV-204). RO 1

B 1 Bitmanip extension supported. RO 1

A 0 Atomic extension supported. RO 1

Figure 6.30 Machine Exception Delegation Register Bit Assignments
63 24 23 22 21 20 19 16 15 14 13 12 11

RSVD ST_GST_
PFAULT VINST LD_GST_

PFAULT
INST_GST_

PFAULT RSVD STPFAULT RSVD LDPFAULT INST_
PFAULT RSVD

10 9 8 7 6 5 4 3 2 1 0

ENVCALL_VS ENVCALL_
SMODE

ENVCALL_
UMODE STFAULT STADRS_

MALIGN LDFAULT LDADRS_
MALIGN BKPOINT RSVD INSTADRS_

MALIGN

Table 6.31 Machine Exception Delegation Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 62:24 Reserved. RO 0

ST_GST_PFAULT 23 Delegate Guest Store Page fault exceptions to S-mode. R/W 0

VINST 22 Delegate virtual instruction exceptions to S-mode. R/W 0

Table 6.30 Machine ISA and Extensions Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.7.4 Master Interrupt Delegation (MIDELEG) — offset 0x303
  

LD_GST_PFAULT 21 Delegate Guest Load Page fault exceptions to S-mode. R/W Undefined

INST_GST_PFAULT 20 Delegate Guest Instruction Page fault exceptions to S-
mode.

R/W Undefined

RSVD 19:16 Reserved. RO Undefined

STPFAULT 15 When set, indicates store/AMO page fault R/W Undefined

RSVD 14 Reserved RO Undefined

LDPFAULT 13 When set, indicates a load page fault. R/W Undefined

INST_PFAULT 12 When set, indicates and instruction page fault. R/W Undefined

RSVD 11 Reserved. RO Undefined

ENVCALL_VS 10 When set, indicates an environment call from Virtual 
Supervisor (VS) mode.

R/W Undefined

ENVCALL_SMODE 9 When set, indicates an environment call from Supervisor 
(S) mode.

R/W Undefined

ENVCALL_UMODE 8 When set, indicates an environment call from User (U) 
mode or Virtual User (VU) mode.

R/W Undefined

STFAULT 7 Setting this bit indicates a Store/AMO access fault. R/W Undefined

STADRS_MALIGN 6 Setting this bit indicates a Store/AMO access is mis-
aligned.

R/W Undefined

LDFAULT 5 Setting this bit indicates a load address fault. R/W Undefined

LDADRS_MALIGN 4 Setting this bit indicates a load address is misaligned. R/W Undefined

BKPOINT 3 When set, indicates a breakpoint has occurred. R/W Undefined

RSVD 2:1 Reserved. RO Undefined

INSTADRS_MALIGN 0 When set, indicates that the instruction address is mis-
aligned.

R/W Undefined

Figure 6.31 Machine Interrupt Delegation Register Bit Assignments
63 26 25 24 21 20 19 18 17 16

RSVD WDTD RSVD C20MD C19MD C18MD C17MD C16MD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD LCOFID SGEI MEID VSEID SEID RSVD MTID VSTID STID RSVD MSID VSSID SSID RSVD

Table 6.32 Machine Interrupt Delegation Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:26 Reserved. RO 0

WDTP 25 Watchdog timer interrupt - AIA. R/W Undefined

RSVD 24:21 Reserved RO 0

C20MD 20 Custom 20 interrupt delegate. This bit is aliased from MIE if 
AIA is not present.

R/W Undefined

Table 6.31 Machine Exception Delegation Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.7.5 Machine Interrupt Enable (MIE) — offset 0x304
This register (MIE) is used to enable or disable various machine mode interrupts.   

C19MD 19 Custom 19 interrupt delegate. This bit is aliased from MIP if 
AIA is not present.

R/W Undefined

C18MD 18 Custom 18 interrupt delegate. This bit is aliased from MIP if 
AIA is not present.

R/W Undefined

C17MD 17 Custom 17 interrupt delegate. This bit is aliased from MIP if 
AIA is not present.

R/W Undefined

C16MD 16 Custom 16 interrupt delegate. This bit is aliased from MIP if 
AIA is not present.

R/W Undefined

RSVD 15:14 Reserved RO 0

LCOFID 13 Local Count Overflow Interrupt delegate. R/W 0

SGEI 12 HS-level Guest External Interrupt. RO 0

MEID 11 Machine External Interrupt Delegate. RO 0

VSEID 10 Virtual Supervisor external interrupt delegate. RO 1

SEID 9 Supervisor external interrupt delegate. R/W Undefined

RSVD 8 Reserved RO 0

MTID 7 Machine timer interrupt delegate. RO 0

VSTID 6 Virtual Supervisor timer interrupt delegate. RO 1

STID 5 Supervisor timer interrupt delegate. R/W Undefined

RSVD 4 Reserved RO 0

MSID 3 Machine software interrupt delegate. RO 0

VSSID 2 Virtual Supervisor software interrupt delegate. RO 1

SSID 1 Supervisor software interrupt delegate. R/W Undefined

RSVD 0 Reserved RO 0

Figure 6.32 Machine Interrupt Pending Register Bit Assignments
63 26 25 24 23 22 21 20 19 18 17 16

RSVD WDTE RSVD IBERE RSVD C20IE C19IE C18IE C17IE C16IE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD LCOFIE RSVD MEIE VSEIE SEIE RSVD MTIE VSTIE STIE RSVD MSIE VSSIE SSIE RSVD

Table 6.33 Machine Interrupt Enable Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:26 Reserved. RO 0

WDTE 25 WatchDog Timer interrupt Enable. Setting this bit enables 
Watchdog timer interrupts.

R/W Undefined

RSVD 24 Reserved. RO 0

IBERE 23 Imprecise Bus Interrupt enable. R/W Undefined

Table 6.32 Machine Interrupt Delegation Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.7.6 Machine Trap Vector Base Address (MTVEC) — offset 0x305
This register (MTVEC) contains the base address for machine mode exceptions.

When MODE = 00, then mtvec.BASE = value[63:2].

When MODE = 01, then mtvec.BASE = value[63:10], 8’b00000000.  

RSVD 22:21 Reserved. RO 0

C20IE 20 Custom 20 virtual interrupt enable. This bit is aliased from 
MIE if the Interrupt Controller is not present.

R/W Undefined

C19IE 19 Custom 19 virtual interrupt enable. This bit is aliased from 
MIE if the Interrupt Controller is not present.

R/W Undefined

C18IE 18 Custom 18 virtual interrupt enable. This bit is aliased from 
MIE if the Interrupt Controller is not present.

R/W Undefined

C17IE 17 Custom 17 virtual interrupt enable. This bit is aliased from 
MIE if the Interrupt Controller is not present.

R/W Undefined

C16IE 16 Custom 16 virtual interrupt enable. This bit is aliased from 
MIE if the Interrupt Controller is not present.

R/W Undefined

RSVD 15:14 Reserved. R/W 0

LCOFIE 13 Local Count Overflow Interrupt Enable. R/W Undefined

RSVD 12 Reserved. R/W 0

MEIE 11 Machine external interrupt enable. R/W Undefined

VSEIE 10 Virtual Supervisor external interrupt enable. R/W Undefined

SEIE 9 Supervisor external interrupt enable. R/W Undefined

RSVD 8 Reserved. RO 0

MTIE 7 Machine Timer Interrupt Enable. R/W Undefined

VSTIE 6 Virtual Supervisor Timer Interrupt Enable. R/W Undefined

STIE 5 Supervisor Timer Interrupt Enable. R/W Undefined

RSVD 4 Reserved. RO 0

MSIE 3 Machine Software Interrupt Enable. R/W Undefined

VSSIE 2 Virtual Supervisor Software Interrupt Enable. R/W Undefined

SSIE 1 Supervisor Software Interrupt Enable. R/W Undefined

RSVD 0 Reserved. RO 0

Figure 6.33 Machine Trap Vector Base Address Register Bit Assignments
63 2 1 0

BASE MODE

Table 6.34 Machine Trap Vector Base Address Register Bit Descriptions 

Name Bits Description R/W Reset State

BASE 63:2 Base address for machine mode exceptions. R/W Undefined

Table 6.33 Machine Interrupt Enable Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.7.7 Machine Counter Enable (MCOUNTEREN) — offset 0x306
This register (MCOUNTEREN) enables the access to user accessible cycle, time, and hpm-
counter from Machine mode for lower privilege levels i.e. VS/VU or U mode.

The counter-enable register mcounteren is a 64-bit register that controls the availability of 
the hardware performance monitoring counters in S-mode.

When the CY, TM, IR, or HPMn bit in the mcounteren register is clear, attempts to read the 
cycle, time, instret, or hpmcountern register while executing in HS-mode will cause an illegal 
instruction exception. In addition with the SSTC extension, the TM bit provides access to 
stimecmp and vstimecmp. When one of these bits is set, access to the corresponding register 
is permitted. In User (U) mode , this is used as the first level check before checking the cor-
responding scounteren register in VS/VU mode. The Hypervisor register hcounteren is also 
used in addition.

For the I8500, four performance counters are implemented. Therefore, all performance 
counter control CSRs are implemented to support only 4 counters.  

MODE 1:0 This field contains the vector mode and has the same 
encoding as MTVEC.MODE. This encoding is below.
00: Direct. All exceptions set PC to BASE.
01: Vectored. Asynchronous interrupts set PC to BASE + 
4xCAUSE.
10 - 11: Reserved.

R/W Undefined

Figure 6.34 Machine Counter Enable Register Bit Assignments
63 7 6 3 2 1 0

RSVD HPM IR TM CY

Table 6.35 Machine Counter Enable Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:7 Reserved. RO 0

HPM 6:3 Performance-Monitor counter enable. The I8500 supports 4 
hpm counters. As such, each of the bits in this field is the 
enable for one of the counters as described below.

Bit 3: Enable for hpm3.
Bit 4: Enable for hpm4.
Bit 5: Enable for hpm5.
Bit 6: Enable for hpm6.

R/W Undefined

IR 2 Instruction-Retired counter enable. 
0: Instruction retired counter is disabled.
1: Instruction retired counter is enabled.

R/W Undefined

TM 1 Timer counter enable. 
0: Timer counter is disabled.
1: Timer counter is enabled.

R/W Undefined

CY 0 Cycle counter enable. 
0: Cycle counter is disabled.
1: Cycle counter is enabled.

R/W Undefined

Table 6.34 Machine Trap Vector Base Address Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.7.8 Machine Environment Configuration (MENVCFG) — offset 0x30A
 

6.7.9 Machine State Enable[0] (MSTATEN) — offset 0x30C
These CSRs come as a part of SMSTATEEN/SSSTATEEN. To prevent application programs 
from communicating via user accessible CSRs/register the bits are introduced. Setting one 
field enables the associated access for lower privilege levels VS, VU, and U in this case.   

Figure 6.35 Machine Environment Configuration Register Bit Assignments
63 62 62 8 7 6 5 4 3 0

STCE PBMTE RSVD CBZE CBCFC CBIE RSVD

Table 6.36 Machine Environment Configuration Register Bit Descriptions 

Name Bits Description R/W Reset State

STCE 63 Stimecmp/Vstimecmp Extension Enable. This bit controls 
access to VSTIMECMP and affects the definition of vstip.

R/W 0

PBMTE 62 This bit controls whether the Svpbmt extension is available 
for use in VS-stage address translation.

R/W 0

RSVD 61:8 Reserved. RO 0

CBZE 7 When this bit is set, the Cache Block Zero instruction is 
Enabled (Zicboz).

R/W 0

CBCFC 6 When this bit is set, the Cache Block Clean and Flush 
instruction is Enabled (Zicbom).

R/W 0

CBIE 5:4 Cache Block Invalidate instruction Enable (Zicbom). This 
field is encoded as follows:

00: The instruction raises an illegal instruction or virtual 
instruction exception.
01: The instruction is executed and performs a flush opera-
tion.
10: Reserved.
11: The instruction is executed and performs an invalidate 
operation.

R/W 0

RSVD 3:0 Reserved. RO o

Figure 6.36 Machine State Enable[0] Register Bit Assignments
63 62 61 60 59 58 57 56 0

SE0 ENVCFG RSVD AIA RSVD CONTEXT RSVD

Table 6.37 Machine State Enable[0] Register Bit Descriptions 

Name Bits Description R/W Reset State

SE0 63 This bit controls access to the HSTATEN register. R/W 0

ENVCFG 62 This bit controls access to the HENVCFG register. R/W 0

RSVD 61:60 Reserved. RO 0

AIA 59 This bit controls access to the AIA CSR registers. R/W 0

RSVD 58 Reserved. RO 0
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6.7.10 Machine State Enable[1-3] (MSTATEEN) — offset 0x30D/30E/30F
The three MSTATEEN[1-3] registers are used to control states 1 - 3. Each state register 
resides at the offset addresses shown above. These registers control only the access to the 
respective states, and do not include some of the functionality described in the MSTATEN0 
register described above.  

6.8 Machine Counter Setup Registers

6.8.1 Machine Counter Inhibit (MCOUNTINHIBIT) — offset 0x320
 

CONTEXT 57 This bit controls access to the HCONTEXT register. R/W 0

RSVD 56:0 Reserved. RO 0

Figure 6.37 Machine State Enable[1-3] Register Bit Assignments
63 62 0

SE[1-3] NI

Table 6.38 Machine State Enable[1-3] Register Bit Descriptions 

Name Bits Description R/W Reset State

SE[1-3] 63 State enable 1 - 3. There are three registers, one per state, 
at the three offsets shown above. This bit is R/W due to spec 
requirements , even if no custom extension is present.

R/W 0

NI 62:0 Not Implemented. For Custom Extensions which adds user 
accessible registers it can be updated.

RO 0

Figure 6.38 Machine Counter Inhibit Register Bit Assignments
63 7 6 3 2 1 0

RSVD HPM[3-6] IR RSVD CY

Table 6.39 Machine Counter Inhibit Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:7 Reserved. RO Undefined

HPM[3-6] 6:3 Performance-Monitor counter enable. The I8500 supports 
4 hpm counters. As such, each of the bits in this field is 
the enable for one of the counters as described below.

Bit 3: Enable for hpm3.
Bit 4: Enable for hpm4.
Bit 5: Enable for hpm5.
Bit 6: Enable for hpm6.

R/W 0x4

IR 2 Setting this bit enables the instruction retired counter. R/W 1

RSVD 1 Reserved. RO 0

Table 6.37 Machine State Enable[0] Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.8.2 Machine Performance Monitor Event Select (MHPMEVENT[3-6]) — offset 0x323/
0x324/0x325/0x326

In the I8500, the MHPMEVENT[7-31] CSRs are not implemented. Reads to these locations 
will return zero and writes are ignored.  

6.9 Machine Trap Handling Registers

6.9.1 Machine Scratch (MSCRATCH) — offset 0x340
It is used to hold machine context information while executing user programs.  

CY 0 Setting this bit enables the cycle counter. R/W 1

Figure 6.39 Machine Performance Monitor Event Select[3-6] Register Bit Assignments
63 62 61 60 59 58 57 8 7 0

OF MINH SINH UINH VSINH VUINH RSVD EVENTID

Table 6.40 Machine Performance Monitor Event Select[3-6] Register Bit Descriptions 

Name Bits Description R/W Reset State

OF 63 Overflow status and interrupt disable bit that is set when 
the counter overflows.

RO Undefined

MINH 62 When set, the counting of events in M-mode is inhibited. R/W Undefined

SINH 61 When set, the counting of events in S/HS-mode is inhib-
ited.

R/W Undefined

UINH 60 When set, the counting of events in U-mode is inhibited. R/W Undefined

VSINH 59 When set, the counting of events in VS-mode is inhibited. R/W Undefined

VUINH 58 When set, the counting of events in VU-mode is inhibited. R/W Undefined

RSVD 57:8 Reserved RO Undefined

EVENTID 7:0 Event ID from the event mapping table. For a list of event 
types encoded into this field, refer to Section 10.1.4, Core 
Performance Counter Events. 

R/W Undefined

Figure 6.40 Machine Counter Overflow Register Bit Assignments
63 0

MSCRATCH

Table 6.41 Machine Counter Overflow Register Bit Descriptions 

Name Bits Description R/W Reset State

MSCRATCH 63:0 Machine scratch register that stores the supervisor context 
during program execution.

R/W Undefined

Table 6.39 Machine Counter Inhibit Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.9.2 Machine Exception Program Counter (MEPC) — offset 0x341
It is used to hold the machine exception program counter. The low-order bit 0 of the mepc 
register is always zero. If MISA.C is not set, mepc[1] is masked on reads.  

6.9.3 Machine Trap Cause (MCAUSE) — offset 0x342
Whenever an exception or interrupt is taken, this CSR is written with the distinguishing 
value.  

Figure 6.41 Machine Exception Program Counter Register Bit Assignments
63 1 0

MEPC RSVD

Table 6.42 Machine Exception Program Counter Register Bit Descriptions 

Name Bits Description R/W Reset State

MEPC 63:1 This field is used to store the machine exception program 
counter. Note that bit 0 of this register is reserved and is 
always zero.

R/W Undefined

RSVD 0 Reserved. RO 0

Figure 6.42 Machine Trap Cause Register Bit Assignments
63 62 6 5 0

INT RSVD EXC

Table 6.43 Machine Trap Cause Register Bit Descriptions 

Name Bits Description R/W Reset State

INT 63 Machine interrupt. R/W 0

RSVD 62:6 Reserved. RO 0
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6.9.4 Machine Bad Address or Instruction (MTVAL) — offset 0x343
This register is written along with the exception which assists the Interrupt Service Routine 
(ISR) in further identifying the nature of the exception, such as faulting virtual address for 
access fault, page fault, or misaligned access.

This register adheres to the following protocols:

• Mtval will be updated for any RISCV standard exceptions.

• For any standard interrupt, the mtval will be set to zero.

• For any custom mips exceptions the mtval will be set to zero, except for debug of 
trigger related exception where the mtval will not be updated but will hold the 
previous value.

EXC 5:0 Exception Code. This field is divided into Interrrupt and Non-
Interrupt encodings as follows:

Non-Interrupt Meaning (decimal)

0 Instruction address misaligned
1 Instruction access fault
2 Illegal instruction
3 Breakpoint
4 Load address misaligned
5 Load access fault
6 Store/AMO address misaligned
7 Store/AMO access fault
8 Environment call from U-mode
9 Environment call from S-mode
11 Environment call from M-mode
12 Instruction page fault
13 Load page fault
15 Store/AMO page fault
20 Instruction Guest page fault
21 Load Guest page fault
22 Virtual Instruction Exception
23 Store Guest page fault
24 Instruction TLB Miss
25 Load TLB Miss
27 Store TLB Miss
28 Instruction Guest TLB Miss
29 Load Guest TLB Miss
31 Store Guest TLB Miss

Interrupt meaning (decimal):

1 Supervisor software interrupt
3 Machine software interrupt
5 Supervisor timer interrupt
7 Machine timer interrupt
9 Supervisor external interrupt
11 Machine external interrupt
13 Machine Performance interrupt
25 WatchDog Timer Interrupt

R/W 0

Table 6.43 Machine Trap Cause Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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• For CBO.ZERO instruction TLB miss exceptions, the MTVAL CSR will be written with 
the cache line aligned address, even when the actual base address for the instruction 
is not cache line aligned.  

6.9.5 Machine Interrupt Pending (MIP) — offset 0x344
This register provide the Machine Interrupt Pending (MIP) information. When a bit is set, the 
corresponding interrupt is pending.   

Figure 6.43 Machine Bad Address or Instruction Register Bit Assignments
63 0

MTVAL

Table 6.44 Machine Bad Address or Instruction Register Bit Descriptions 

Name Bits Description R/W Reset State

MTVAL 63:0 Faulting virtual address or faulting instruction (zero if not 
supported). 

Note: On a guest TLB miss exception, GPA>>2 is written to 
mtval, and mtval2 remains 0.
On an MTLBWR.HG instruction, GPA is read from mtval, not 
mtval2.

R/W Undefined

Figure 6.44 Machine Interrupt Pending Register Bit Assignments
63 26 25 24 23 22 21 20 19 18 17 16

RSVD WDTP RSVD IBERP RSVD C20IP C19IP C18IP C17IP C16IP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD LCOFIP RSVD MEIP VSEIP SEIP RSVD MTIP VSTIP STIP RSVD MSIP VSSIP SSIP RSVD

Table 6.45 Machine Interrupt Pending Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:26 Reserved. RO 0

WDTP 25 WatchDog Timer interrupt pending. When set, indicates a 
Watchdog timer interrupts is pending.

R/W Undefined

RSVD 24 Reserved. RO 0

IBERP 23 When set, indicates an imprecise bus interrupt is pending. R/W
Writable to 0

0

RSVD 22:21 Reserved. RO 0

C20IP 20 Custom 20 virtual interrupt pending. This bit corresponds to 
the MIE register if the Interrupt Controller is not present.

RO Undefined

C19IP 19 Custom 19 virtual interrupt pending. This bit corresponds to 
the MIE register if the Interrupt Controller is not present.

RO Undefined

C18IP 18 Custom 18 virtual interrupt pending. This bit corresponds to 
the MIE register if the Interrupt Controller is not present.

RO Undefined

C17IP 17 Custom 17 virtual interrupt pending. This bit corresponds to 
the MIE register if the Interrupt Controller is not present.

RO Undefined
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The following interrupts need to be externally cleared before being internally cleared: MEI, 
SEI, MTI, STI. These interrupts could be implemented as RO, no write to clear needed.

Custom Interrupts and the associated logic are present in non-AIA I8500 configurations. In 
AIA enabled I8500 configurations, these custom Interrupts are not supported. 

6.9.6 Machine Trap Instruction (MTINST) — offset 0x34A
Machine trap instruction register. This register is written when a trap occurs in M-mode.  

C16IP 16 Custom 16 virtual interrupt pending. This bit corresponds to 
the MIE register if the Interrupt Controller is not present.

RO Undefined

RSVD 15:14 Reserved. RO 0

LCOFIP 13 When set, indicates a local count overflow interrupt is pending. R/W 0

RSVD 12 Reserved. RO 0

MEIP 11 When set, indicates a machine external interrupt is pending. RO Undefined

VSEIP 10 When set, indicates a virtual supervisor external interrupt is 
pending.

RO Undefined

SEIP 9 When set, indicates a supervisor external interrupt is pending. R/W Undefined

RSVD 8 Reserved. RO 0

MTIP 7 When set, indicates a machine timer interrupt is pending. RO Undefined

VSTIP 6 When set, indicates a virtual supervisor timer interrupt is pend-
ing.

RO Undefined

STIP 5 When set, indicates a supervisor timer interrupt is pending. RO when 
STCE, 
R/W 

otherwise

0

RSVD 4 Reserved. RO 0

MSIP 3 When set, indicates a machine software interrupt is pending. RO Undefined

VSSIP 2 When set, indicates a virtual supervisor software interrupt is 
pending. 

R/W Undefined

SSIP 1 When set, indicates a supervisor software interrupt is pending. R/W 0

RSVD 0 Reserved. RO 0

Figure 6.45 Machine Trap Instruction Register Bit Assignments
63 16 15 0

RSVD MTINST

Table 6.46 Machine Trap Instruction Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:16 Reserved RO 0

MTINST 15:0 This field is written when a trap is taken in M-mode. It is writ-
ten with 0x3000 when memory access is a read for VS-stage 
translation and a guest page fault occurs.

R/W Undefined

Table 6.45 Machine Interrupt Pending Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.9.7 Machine Bad Guest Physical Address (MTVAL2) — offset 0x34B
Machine bad guest physical address register. This register is written when a guest TLB miss 
occurs in M-mode. As noted below, this register works in conjunction with the MTVAL register 
described in Section 6.9.4, "Machine Bad Address or Instruction (MTVAL) — offset 0x343".  

6.10 Machine Memory Protection Registers

6.10.1 Physical Memory Protection Configuration 0 Register (PMPCFG0) — offset = 
0x3A0

PMA Configuration register 0. This register controls the Read/Write/Execute accessibility to 
any physical memory, either via an instruction fetch or load/store instructions.   

Figure 6.46 Machine Bad Guest Physical Address Register Bit Assignments
63 46 45 0

RSVD MTVAL2

Table 6.47 Machine Bad Guest Physical Address Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:46 Reserved RO 0

MTVAL2 45:0 On a guest TLB miss exception, GPA>>2 is written to mtval, 
and mtval2 remains 0.

On an MTLBWR.HG instruction, GPA is read from mtval, not 
mtval2.

mtval2 is updated for Inst guest page fault , load store guest 
page fault.

R/W Undefined

Figure 6.47 PMP Configuration 0 Register Bit Assignments 
63 56 55 48 47 49 39 32

PMP7CFG PMP6CFG PMP5CFG PMP4CFG

31 24 23 16 15 8 7 32

PMP3CFG PMP2CFG PMP1CFG PMP0CFG

Table 6.48 PMP Configuration 0 Register Bit Descriptions 

Name Bits Description R/W Reset State

PMP7CFG 63:56 PMP7 configuration field. R/W 0

PMP6CFG 55:48 PMP6 configuration field. R/W 0

PMP5CFG 47:40 PMP5 configuration field. R/W 0

PMP4CFG 39:32 PMP4 configuration field. R/W 0

PMP3CFG 31:24 PMP3 configuration field. R/W 0

PMP2CFG 23:16 PMP2 configuration field. R/W 0

PMP1CFG 15:8 PMP1 configuration field. R/W 0

PMP0CFG 7:0 PMP0 configuration field. R/W 0
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Each of the 8-bit fields above is encoded the same way as shown in Table 6.49.

If pmpcfgi.L is set (locked), then the respective pmpcfg[i] and pmpaddr[i] CSRs will not be 
written, and writes will be dropped. If the configuration is locked, reset is the only option to 
write the pmpcfg[i] and pmpaddr[i] registers.

NOTE: In the above paragraph, [i] can have a value of 0 or 2.

6.10.2 Physical Memory Protection Configuration 2 Register (PMPCFG2) — offset = 
0x3A2

PMP Configuration register 2. This register controls the Read/Write/Execute accessibility to 
any physical memory, either via an instruction fetch or load/store instructions.   

Table 6.49 PMP Configurations 0 and 2 Register Bit Descriptions 

Name Bits Description R/W Reset State

L 7 Indicates the corresponding PMP configuration is locked. R/W 0

RSVD 6:5 Reserved. RO 0

A 4:3 Indicates the corresponding PMP configuration region used. This 
field is encoded as follows:

00: Null region (disabled) OFF
01: Top-of-range address TOR
10: Naturally aligned 4-byte NA4. This option is reserved in the 
I8500 (since G = 14, NA4 is reserved).
11: Naturally aligned power-of-two - NAPOT(>= 8 byte)

R/W 0

X 2 Indicates the corresponding PMP configuration is executable. R/W 0

W 1 Indicates the corresponding PMP configuration is writable. If R = 1, 
then update with new value, else it will be 0.

R/W 0

R 0 Indicates the corresponding PMP configuration is readable. R/W 0

Figure 6.48 PMP Configuration 2 Register Bit Assignments 
63 56 55 48 47 49 39 32

PMP15CFG PMP14CFG PMP13CFG PMP12CFG

31 24 23 16 15 8 7 32

PMP11CFG PMP10CFG PMP9CFG PMP8CFG

Table 6.50 PMP Configuration 2 Register Bit Descriptions 

Name Bits Description R/W Reset State

PMP15CFG 63:56 PMP15 configuration field. R/W 0

PMP14CFG 55:48 PMP14 configuration field. R/W 0

PMP13CFG 47:40 PMP13 configuration field. R/W 0

PMP12CFG 39:32 PMP12 configuration field. R/W 0

PMP11CFG 31:24 PMP11 configuration field. R/W 0

PMP10CFG 23:16 PMP10 configuration field. R/W 0

PMP9CFG 15:8 PMP9 configuration field. R/W 0



94
mips.com

Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS I8500 Multiprocessing System Programmer’s Guide — Revision 1.00

Each of the fields above is encoded as described in Table 6.49 above.

6.10.3 Physical Memory Protection Address Registers (PMPADDR0 - PMPADDR15) — 
offset = 0x3B0 - 0x3BF

These 16 CSRs are configured to set the range for the associated pmpcfg physical address.

These registers are located at the following offset addresses.    

PMP8CFG 7:0 PMP8 configuration field. R/W Undefined

Table 6.51 PMPADDR Offset Address Map

Offset Register

0x3B0 PMPADDR0
0x3B1 PMPADDR1
0x3B2 PMPADDR2
0x3B3 PMPADDR3
0x3B4 PMPADDR4
0x3B5 PMPADDR5
0x3B6 PMPADDR6
0x3B7 PMPADDR7
0x3B8 PMPADDR8
0x3B9 PMPADDR9
0x3BA PMPADDR10
0x3BB PMPADDR11
0x3BC PMPADDR12
0x3BD PMPADDR13
0x3BE PMPADDR14
0x3BF PMPADDR15

Figure 6.49 PMP Address[0-15] Register Bit Assignments 
63 46 45 13 12 0

RSVD PMPADDR[0-15] RSVD

Table 6.52 PMP Address[0-15] Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:46 Reserved. RO 0

PMPADDR 45:13 Physical Memory Protection Address. Bits 48:2 of the 
address value are stored in the lower 46 bits of this register.

R/W 0

12:0 In pmpcfg address mode, bits 12:0 can be all 1s or all 0s. RO 0

Table 6.50 PMP Configuration 2 Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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For the i8500 with a granularity of G = 14:

• Read to any of the pmpaddri[G-2:0] will be read as all one's if pmpcfgi.A == NAPOT

• Read to any of the pmpaddri[G-1:0] will be read as all zero's if pmpcfgi.A == OFF/TOR

6.11 Hypervisor Trap Setup Registers

6.11.1 Hypervisor Status (HSTATUS) — offset 0x600
This register (HSTATUS) is a mirrored version of the MSTATUS register. Similar to the above 
CSRs, this is also a separate user-accessible version of MSTATUS.   

Figure 6.50 Hypervisor Status Register Bit Assignments
63 62 34 33 32

RSVD VSXL

31 23 22 21 20 19 18 17 12 11 10 9 8 7 6 5 4 0

RSVD VTSR VTW VTVM RSVD VGEIN RSVD HU SPVP SPV GVA VSBE RSVD

Table 6.53 Hypervisor Status Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 62:34 Reserved. RO 0

VSXL 33:32 Controls the effective XLEN for VS-mode, same value 
and encoding as MISA.MXL. Refer to the MISA register in 
Section 6.7.2, "Machine ISA and Extensions (MISA) — 
offset 0x301". 

RO CFG

RSVD 31:23 Reserved. RO 0

VTSR 22 This bit has the same value as the MSTATUS.TSR bit for 
VS-mode.

R/W Undefined

VTW 21 This bit has the same value as the MSTATUS.TW bit for 
VS-mode.

R/W Undefined

VTVM 20 This bit has the same value as the MSTATUS.TVM bit for 
VS-mode.

RO Undefined

RSVD 19:18 Reserved. RO 0

VGEIN 17:12 Virtual Guest External Interrupt Number. This field selects 
a guest external interrupt source for VS-level external 
interrupts.

In the I8500, the VGEIN is hard-wired to zero and 
GEILEN is zero, so no implemented bits in hgeip or hgeie.

RO 0

RSVD 11:10 Reserved. RO 0

HU 9 Setting this bit indicates Hypervisor user mode. R/W Undefined

SPVP 8 Setting this bit indicates Supervisor Previous Virtual Privi-
lege. 

R/W Undefined

SPV 7 Setting this bit indicates the Supervisor Previous Virtual-
ization mode.

R/W Undefined

GVA 6 Guest Virtual Address. This bit is updated by hardware 
whenever a trap is taken in HS-mode. 

R/W Undefined
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6.11.2 Hypervisor Exception Delegation (HEDELEG) — offset 0x602
This register provides status on various Hypervisor exception, including page faults and mis-
aligned accesses.   

VSBE 5 This bit controls the endianness of explicit memory 
accesses made in VS-mode. If VSBE = 0, explicit load 
and store memory accesses made from VS-mode are lit-
tle-endian. If VSBE = 1, they are big-endian.

R/W CM

RSVD 4:0 Reserved. RO 0

Figure 6.51 Hypervisor Exception Delegation Register Bit Assignments
63 24 23 22 21 20 19 16 15 14 13 12 11

RSVD ST_GST_
PFAULT VINST LD_GST_

PFAULT
INST_GST_

PFAULT RSVD STPFAULT RSVD LDPFAULT INST_
PFAULT

ENVCALL
_MMODE

10 9 8 7 6 5 4 3 2 1 0

RSVD ENVCALL_
HSMODE

ENVCALL_
UMODE STFAULT STADRS_

MALIGN LDFAULT LDADRS_
MALIGN BKPOINT ILINST INST

FAULT
INSTADRS_M

ALIGN

Table 6.54 Hypervisor Exception Delegation Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 62:24 Reserved. RO 0

ST_GST_PFAULT 23 When set, indicates store/AMO guest-page fault RO 0

VINST 22 When set, indicates a virtual instruction. RO 0

LD_GST_PFAULT 21 When set, indicates a load guest page fault. RO 0

INST_GST_PFAULT 20 When set, indicates an instruction guest page fault. RO 0

RSVD 19:16 Reserved. RO 0

STPFAULT 15 When set, indicates store/AMO page fault R/W 0

RSVD 14 Reserved RO 0

LDPFAULT 13 When set, indicates a load page fault. R/W 0

INST_PFAULT 12 When set, indicates and instruction page fault. R/W 0

ENVCALL_MMODE 11 When set, indicates an environment call from Machine 
(M) mode.

RO 0

RSVD 10 Reserved. RO 0

ENVCALL_HSMODE 9 When set, indicates an environment call from HS mode. RO 0

ENVCALL_UMODE 8 When set, indicates an environment call from User (U) 
mode or Virtual User (VU) mode.

R/W 0

STFAULT 7 When set, indicates a store page fault. R/W 0

STADRS_MALIGN 6 When set, indicates that a store/AMO address is mis-
aligned.

R/W 0

LDFAULT 5 When set, indicates a load access fault. R/W 0

LDADRS_MALIGN 4 When set, indicates that a load address is misaligned. R/W 0

Table 6.53 Hypervisor Status Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.11.3 Hypervisor Interrupt Delegation (HIDELEG) — offset 0x603
  

BKPOINT 3 When set, indicates a breakpoint has occurred. R/W 0

ILINST 2 When set, indicates an illegal instruction. R/W 0

INSTFAULT 1 When set, indicates an instruction access fault. R/W 0

INSTADRS_MALIGN 0 When set, indicates that the instruction address is mis-
aligned.

R/W 0

Figure 6.52 Hypervisor Interrupt Delegation Register Bit Assignments
63 26 25 24 21 20 19 18 17 16

RSVD WDTP RSVD C20HD C19HD C18HD C17HD C16HD

15 14 13 12 11 10 9 7 6 5 3 2 12 0

RSVD LCOFIP RSVD VSEID RSVD VSTID RSVD VSSID RSVD

Table 6.55 Hypervisor Interrupt Delegation Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:26 Reserved. RO 0

WDTP 25 Watchdog timer interrupt delegate. R/W Undefined

RSVD 24:21 Reserved RO Undefined

C20HD 20 Custom 20 Hypervisor interrupt delegate. This bit is aliased 
from MIP if AIA not present.

R/W Undefined

C19HD 19 Custom 19 Hypervisor interrupt delegate. This bit is aliased 
from MIP if AIA not present.

R/W Undefined

C18HD 18 Custom 18 Hypervisor interrupt delegate. This bit is aliased 
from MIP if AIA not present.

R/W Undefined

C17HD 17 Custom 17 Hypervisor interrupt delegate. This bit is aliased 
from MIP if AIA not present.

R/W Undefined

C16HD 16 Custom 16 Hypervisor interrupt delegate. This bit is aliased 
from MIP if AIA not present.

R/W Undefined

RSVD 15:14 Reserved RO 0

LCOFIP 13 Local Count Overflow Interrupt delegate. R/W Undefined

RSVD 12:11 Reserved RO 0

VSEID 10 Virtual Supervisor external interrupt delegate. R/W Undefined

RSVD 9:7 Reserved RO 0

VSTID 6 Virtual Supervisor timer interrupt delegate. R/W Undefined

RSVD 5:3 Reserved RO 0

VSSID 2 Virtual Supervisor software interrupt delegate. R/W Undefined

RSVD 1:0 Reserved RO 0

Table 6.54 Hypervisor Exception Delegation Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.11.4 Hypervisor Interrupt Enable (HIE) — offset 0x104
This register (HIE) is a mirrored version of the Machine Interrupt Enable (MIE) register. Sim-
ilar to the above CSRs, this is also a separate Hypervisor-accessible version of MIE.   

6.11.5 Hypervisor Counter Enable (HCOUNTEREN) — offset 0x606
This register (HCOUNTEREN) enables the access to user accessible cycle, time, and hpm-
counter from Hypervisor mode for lower privilege levels i.e. VS/VU or U mode.  

Figure 6.53 Hypervisor Interrupt Enable Register Bit Assignments
63 32

RSVD

31 26 25 24 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 3 2 1 0

RSVD WDTE RSVD C20IE C19IE C18IE C17IE C16IE RSVD LCOFIE RSVD VSSEIE RSVD VSTIE RSVD VSSIE RSVD

Table 6.56 Hypervisor Interrupt Enable Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:26 Reserved. RO 0

WDTE 25 WatchDog Timer interrupt Enable. Setting this bit enables 
Watchdog timer interrupts.

R/W Undefined

RSVD 24:21 Reserved. RO 0

C20IE 20 Custom 20 Hypervisor virtual interrupt enable This bit is 
aliased from MIE if the Interrupt Controller is not present.

R/W Undefined

C19IE 19 Custom 19 Hypervisor virtual interrupt enable This bit is 
aliased from MIE if the Interrupt Controller is not present.

R/W Undefined

C18IE 18 Custom 18 Hypervisor virtual interrupt enable This bit is 
aliased from MIE if the Interrupt Controller is not present.

R/W Undefined

C17IE 17 Custom 17 Hypervisor virtual interrupt enable This bit is 
aliased from MIE if the Interrupt Controller is not present.

R/W Undefined

C16IE 16 Custom 16 Hypervisor virtual interrupt enable This bit is 
aliased from MIE if the Interrupt Controller is not present.

R/W Undefined

RSVD 15:14 Reserved. R/W 0

LCOFIE 13 Local Count Overflow Interrupt Enable (aliased from MIE). R/W Undefined

RSVD 12:11 Reserved. R/W 0

VSSEIE 10 VS-level external interrupt enable (aliased from MIE). R/W Undefined

RSVD 9:7 Reserved. RO 0

VSTIE 6 VS-level Timer Interrupt Enable (aliased from MIE). R/W Undefined

RSVD 5:3 Reserved. RO 0

SSIE 2 VS-level Software Interrupt Enable (aliased from MIE). R/W Undefined

RSVD 1:0 Reserved. RO 0

Figure 6.54 Hypervisor Counter Enable Register Bit Assignments
63 7 6 3 2 1 0

RSVD HPM IR TM CY
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6.11.6 Hypervisor Guest External Interrupt (HGEIE) — offset 0x607
VGEIN is hard-wired to zero and GEILEN is zero, so no implemented bits in hgeip or hgeie.

As such, the HGEIE register is not supported in the I8500. It is there so that program does 
not generate an exception. The software may write and read to determine that it is a RO 0 
register.  

6.11.7 Hypervisor Environment Configuration (HENVCFG) — offset 0x60A
 

Table 6.57 Hypervisor Counter Enable Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:7 Reserved. RO 0

HPM 6:3 Performance-Monitor counter enable. The I8500 supports 4 
hpm counters. As such, each of the bits in this field is the 
enable for one of the counters as described below.

Bit 3: Enable for hpm3.
Bit 4: Enable for hpm4.
Bit 5: Enable for hpm5.
Bit 6: Enable for hpm6.

R/W Undefined

IR 2 Instruction-Retired counter enable. 
0: Instruction retired counter is disabled.
1: Instruction retired counter is enabled.

R/W Undefined

TM 1 Timer counter enable. 
0: Timer counter is disabled.
1: Timer counter is enabled.

R/W Undefined

CY 0 Cycle counter enable. 
0: Cycle counter is disabled.
1: Cycle counter is enabled.

R/W Undefined

Figure 6.55 Hypervisor Guest External Interrupt Register Bit Assignments
63 1 0

HGEIE RSVD

Table 6.58 Hypervisor Guest External Interrupt Register Bit Descriptions 

Name Bits Description R/W Reset State

HGEIE 63:1 This field is always 0 as the HGEIE function is not supported 
in the I8500. 

R/W 0

RSVD 0 Reserved. RO 0

Figure 6.56 Hypervisor Environment Configuration Register Bit Assignments
63 62 62 8 7 6 5 4 3 0

STCE PBMTE RSVD CBZE CBCFC CBIE RSVD
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6.11.8 Hypervisor State Enable[0] (HSTATEN) — offset 0x60C
These CSRs come as a part of SMSTATEEN/SSSTATEEN. To prevent application programs 
from communicating via user accessible CSRs/register the bits are introduced. Setting one 
field enables the associated access for lower privilege levels VS, VU, and U in this case.   

6.11.9 Hypervisor State Enable[1-3] (SSTATEN) — offset 0x60D/60E/60F
The three HSTATEN[1-3] register are used to control states 1 - 3. Each state register resides 
at the offset addresses shown above. These registers control only the access to the respec-

Table 6.59 Hypervisor Environment Configuration Register Bit Descriptions 

Name Bits Description R/W Reset State

STCE 63 Stimecmp/Vstimecmp Extension Enable. This bit controls 
access to VSTIMECMP and affects the definition of vstip.

R/W 0

PBMTE 62 This bit controls whether the Svpbmt extension is available 
for use in VS-stage address translation.

R/W 0

RSVD 61:8 Reserved. RO 0

CBZE 7 When this bit is set, the Cache Block Zero instruction is 
Enabled (Zicboz).

R/W 0

CBCFC 6 When this bit is set, the Cache Block Clean and Flush 
instruction is Enabled (Zicbom).

R/W 0

CBIE 5:4 Cache Block Invalidate instruction Enable (Zicbom). This 
field is encoded as follows:

00: The instruction raises an illegal instruction or virtual 
instruction exception.
01: The instruction is executed and performs a flush opera-
tion.
10: Reserved.
11: The instruction is executed and performs an invalidate 
operation.

R/W 0

RSVD 3:0 Reserved. RO 0

Figure 6.57 Hypervisor State Enable[0] Register Bit Assignments
63 62 61 60 59 58 57 56 0

SE0 ENVCFG RSVD AIA RSVD CONTEXT RSVD

Table 6.60 Hypervisor State Enable[0] Register Bit Descriptions 

Name Bits Description R/W Reset State

SE0 63 This bit controls access to the HSTATEN register. R/W 0

ENVCFG 62 This bit controls access to the HENVCFG register. R/W 0

RSVD 61:60 Reserved. RO 0

AIA 59 This bit controls access to the AIA CSR registers. R/W 0

RSVD 58 Reserved. RO 0

CONTEXT 57 This bit controls access to the HCONTEXT register. R/W 0

RSVD 56:0 Reserved. RO 0
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tive states, and do not include some of the functionality described in the HSTATEN0 register 
described above.  

6.12 Hypervisor Trap Handler Registers

6.12.1 Hypervisor Bad Address of Instruction (HTVAL) — offset 0x643
This register is written along with the exception which assists the Interrupt Service Routine 
(ISR) in further identifying the nature of the exception, such as faulting virtual address for 
access fault , page fault or misaligned access.

In the I8500, PA_SIZE = 48. Therefore, using the formulas shown below, PA_SIZE-2 = 48 - 
2 = 46. Similarly, PA_SIZE-2-1 = 48 - 2 - 1 = 45. 

NOTE: The STVAL register described in Section 6.4.4, "Supervisor Bad Address or Instruction 
(STVAL) — offset 0x143", can be written with the virtual address ,thus the full 64-bit value 
can be used. Since the HTVAL register can only be written with the GPA , only bits 45:0 are 
R/W.  

6.12.2 Hypervisor Interrupt Pending (HIP) — offset 0x644
This register provide a limited view of Hypervisor Interrupt Pending (HVIP) register described 
in the following section. When a bit is set here, enabled, and not delegated, an interrupt is 
taken. 

NOTE: When it is enabled via the hie register, and not delegated in the hideleg register, then 
an interrupt is taken to HS mode , else it appears in the vsip register and interrupt is taken in 
VS mode.

Figure 6.58 Hypervisor State Enable[1-3] Register Bit Assignments
63 62 0

SE[1-3] NI

Table 6.61 Hypervisor State Enable[1-3] Register Bit Descriptions 

Name Bits Description R/W Reset State

SE[1-3] 63 State enable 1 - 3. There are three registers, one per state, 
at the three offsets shown above. This bit is R/W due to spec 
requirements , even if no custom extension is present.

R/W 0

NI 62:0 Not Implemented. For Custom Extensions which adds user 
accessible registers it can be updated.

RO 0

Figure 6.59 Hypervisor Bad Address or Instruction Register Bit Assignments
63 46 45 0

RSVD HTVAL

Table 6.62 Hypervisor Bad Address or Instruction Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:46
63:(PA_SIZE-2)

Reserved RO 0

HTVAL 45:0
(PA_SIZE-2-1):0

On a trap to HS-mode, may be written with exception spe-
cific information in addition to what is written to STVAL.

R/W Undefined
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6.12.3 Hypervisor Virtual Interrupt Pending (HVIP) — offset 0x645
These bits can be visible in the vsip register if properly delegated and can be used by the 
Hypervisor to send interrupts to the guest OS.   

Figure 6.60 Hypervisor Interrupt Pending Register Bit Assignments
63 26 25 24 14 13 12 11 10 9 7 6 5 3 2 1 0

RSVD WDTP RSVD LCOFIP SGEIP RSVD VSEIP RSVD VSTIP RSVD VSSIP RSVD

Table 6.63 Hypervisor Interrupt Pending Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:26 RSVD RO 0

WDTP 25 Watchdog timer interrupt. When set, indicates a watchdog 
timer interrupt is pending. Alias from HVIP register.

RO 0

RSVD 24:14 Reserved RO 0

LCOFIP 13 Local Count Overflow Interrupt pending (aliased from HVIP). RO 0

SGEIP 12 When set, indicates an HS-level guest external interrupt is 
pending.

RO 0

RSVD 11 Reserved RO 0

VSEIP 10 When set, indicates a VS-level guest external interrupt is 
pending. Aliased from the MIP register. 

RO 0

RSVD 9:7 Reserved RO 0

VSTIP 6 When set, indicates a VS-level interrupt is pending. Aliased 
from the MIP register. VS-level timer interrupt pending 
(aliased from MIP). Set by writing to the VSTIMECMP regis-
ter if enabled from the ENVCFG register, 0 otherwise.

RO 0

RSVD 5:3 Reserved RO 0

VSSIP 2 When set, indicates a VS-level software interrupt is pending. R/W 0

RSVD 1:0 Reserved RO 0

Figure 6.61 Hypervisor Virtual Interrupt Pending Register Bit Assignments
63 32

RSVD

31 26 25 24 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 3 2 1 0

RSVD WDTP RSVD C20IP C19IP C18IP C17IP C16IP RSVD LCOFIP RSVD VSEIP RSVD VSTIP RSVD VSSIP RSVD

Table 6.64 Hypervisor Virtual Interrupt Pending Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:26 Reserved. RO 0

WDTP 25 WatchDog Timer interrupt pending. When this bit is set, indi-
cates a Watchdog timer interrupt is pending.

R/W Undefined

RSVD 24:21 Reserved. RO 0
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6.12.4 Hypervisor Trap Instruction (HTINST) — offset 0x64A
Hypervisor trap instruction register. This register is written when a trap occurs in HS-mode.  

6.12.5 Hypervisor Guest External Interrupt Pending (HGEIP) — offset 0xE12
VGEIN is hard-wired to zero and GEILEN is zero, so no implemented bits in hgeip or hgeie.

As such, the HGEIP register is not supported in the I8500.  

C20IP 20 Custom 20 Hypervisor virtual interrupt pending (if AIA is not 
present.

R/W Undefined

C19IP 19 Custom 19 Hypervisor virtual interrupt pending (if AIA is not 
present.

R/W Undefined

C18IP 18 Custom 18 Hypervisor virtual interrupt pending (if AIA is not 
present.

R/W Undefined

C17IP 17 Custom 17 Hypervisor virtual interrupt pending (if AIA is not 
present.

R/W Undefined

C16IP 16 Custom 16 Hypervisor virtual interrupt pending (if AIA is not 
present.

R/W Undefined

RSVD 15:14 Reserved. R/W 0

LCOFIP 13 Local Count Overflow interrupt pending. R/W Undefined

RSVD 12:11 Reserved. RO 0

VSEIP 10 VS-level external interrupt pending. R/W 0

RSVD 9:7 Reserved. RO 0

VSTIP 6 VS-level Timer Interrupt Enable. R/W 0

RSVD 5:3 Reserved. RO 0

VSSIP 2 VS-level Software Interrupt Enable. R/W 0

RSVD 1:0 Reserved. RO 0

Figure 6.62 Hypervisor Trap Instruction Register Bit Assignments
63 16 15 0

RSVD HTINST

Table 6.65 Hypervisor Trap Instruction Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:16 Reserved RO 0

HTINST 15:0 This field is written when a trap is taken in HS mode. It is 
written with 0x3000 when memory access is a read for VS-
stage translation and a guest page fault occurs.

R/W Undefined

Figure 6.63 Hypervisor Guest External Interrupt Pending Register Bit Assignments
63 1 0

HGEIP RSVD

Table 6.64 Hypervisor Virtual Interrupt Pending Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.13 Hypervisor Counter/Timer Virtualization Registers

6.13.1 Hypervisor Delta for VS/VU Mode Timer (HTIMEDELTA) — offset 0x605  

6.14 Hypervisor Protection and Translation Registers

6.14.1 Hypervisor Address Translation and Protection (HGATP) — offset 0x680
This register controls address translation and protection for Hypervisor mode.  

Table 6.66 Hypervisor Guest External Interrupt Pending Register Bit Descriptions 

Name Bits Description R/W Reset State

HGEIP 63:1 Hypervisor guest external interrupt pending. This field is 
always 0 as the HGEIP function is not supported in the 
I8500. 

RO 0

RSVD 0 Reserved. RO 0

Figure 6.64 Hypervisor Delta for VS/VU Mode Timer Register Bit Assignments
63 0

HTIMEDELTA

Table 6.67 Hypervisor Delta for VS/VU Mode Timer Register Bit Descriptions 

Name Bits Description R/W Reset State

HTIMEDELTA 63:0 Reading the time CSR in VS or VU mode returns the sum of 
the contents of htimedelta and the actual value of time.

R/W Undefined

Figure 6.65 Hypervisor Address Translation and Protection Register Bit Assignments
63 60 59 49 48 44 43 36 35 0

MODE RSVD VMID PPN RSVD

Table 6.68 Supervisor Address Translation and Protection Register Bit Descriptions 

Name Bits Description R/W Reset State

MODE 63:60 Address translation mode: The following encodings are valid 
for this field. All those not shown are reserved.

0x0 - No translation or protection
0x8 - Page-based 39-bit virtual address
0x9 - Page-based 48-bit virtual addressing

R/W 0

RSVD 59:49 Reserved RO 0

VMID 48:44 Virtual machine identifier, facilitates address-translation 
fences on a per-virtual-machine basis.

R/W 0

PPN 43:36 Bits 43:36 are 0 because of max PA_LEN (= 48) - 12, which 
is 36 bit is required to contain PPN

RO 0

35:2 Physical page number. This 34-bit field stores the PPN 
within the guest physical root page table. 

R/W 0

1:0 The two LSB bits of the PPN are always 0. RO 0
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6.15 Machine Counter/Timer Registers

6.15.1 Machine Cycle Counter Register (MCYCLE) — offset 0xB00
This is the Machine cycle (MCYCLE) counter for the RDCYCLE instruction (EXU_CSR). The 
MCYCLE register is accessible through machine mode only.  

6.15.2 Machine Instruction-Retired Counter (MINSTRET) — offset 0xB02
This register (MINSTRET) contains the number of instructions retired in Machine mode.  

6.15.3 Machine Performance Monitor Counter[3-6] (MHPMCOUNTER[3-6] — offset 
0xB03/B04/B05/B06

In the I8500, each hart has four HPMCOUNTERs. The hpm counters are per-hart , so each 
hart has its own CSR address space.  

Note that HPMCOUNTER[7-31] at offset addresses 0xC07 - 0xC1F are reserved in the I8500 
Multiprocessing System.

Figure 6.66 Cycle Register Bit Assignments
63 0

MCYCLE

Table 6.69 Cycle Register Bit Descriptions 

Name Bits Description R/W Reset State

MCYCLE 63:0 Machine mode cycle counter. R/W 0

Figure 6.67 Machine Instruction-Retired Counter Register Bit Assignments
63 0

MINSTRET

Table 6.70 Machine Instruction-Retired Counter Register Bit Descriptions 

Name Bits Description R/W Reset State

MINSTRET 63:0 Contains machine instruction-retired counter information. R/W 0

Figure 6.68 User Performance-Monitor Counter[3-6] Register Bit Assignments
63 0

MHPMCOUNTER

Table 6.71 User Performance-Monitor Counter[3-6] Register Bit Descriptions 

Name Bits Description R/W Reset State

MHPMCOUNTER 63:0 Contains machine HPM counter information. R/W 0
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6.16 Machine Information and Identification Registers

6.16.1 Machine Vendor ID Register (MVENDORID) — offset = 0xF11  

6.16.2 Machine Architecture ID Register (MarchID) — offset = 0xF12
The Machine Architecture ID register (MarchID) is an implementation dependent read-only 
register specifying the microarchitecture version of the core. For MIPS Technologies imple-
mentations, the microarchitecture version is broken down into “class” and “uarch” versions 
as described below.   

6.16.3 Machine Implementation ID Register (mimpid) — offset = 0xF13
Machine IMPlementation ID register. mimpid is an implementation dependent read-only reg-
ister specifying the implementation version of the core. For MIPS Technologies implementa-

Figure 6.69 Machine Vendor ID Register Bit Assignments
31 0

MVENDORID

Table 6.72 Machine Vendor ID Register Bit Descriptions 

Name Bits Description R/W Reset State

MVENDORID 63:0 Machine vendor ID number. RO From 
configuration

Figure 6.70 Machine Architecture ID Register Bit Assignments
63 62 32

MSB RSVD

31 16 15 8 7 0

RSVD CLASS UARCH

Table 6.73 Machine Architecture ID Register Bit Descriptions 

Name Bits Description R/W Reset State

MSB 63 The most significant bit of the marchid register is set to 
one for commercial RISC-V cores, including MIPS Tech-
nologies implementations.

R From 
configuration

RSVD 62:16 Reserved R 0

CLASS 15:8 A MIPS Technologies specific field encoding the core 
“class” as follows:
0x00: M-class core (alias = M)
0x01: I-class core (alias = I)
0x02: P-class core (alias = P)
0x03 - 0xFF: Reserved

R From 
configuration

UARCH 7:0 A MIPS Technologies specific field encoding the core 
microarchitecture sub-version for the specified core class. 
See the core user manual for details.

R From 
configuration
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tions, the implementation version is broken down into “major”, “minor”, “patch” and “config” 
versions as described below.   

6.16.4 Machine Hart ID Register (mhartID) — 0xF14
This read-only register contains a number uniquely identifying the hart within the system. 
For RISC-V systems in general, a hart with mhartid = 0 must be present, and other harts can 
be assigned any uniquely identifying number. 

For MIPS Technologies implementations, the hartid is constructed from the number of the 
current clusters within the system, the number of the current cores within the current cluster, 
and the number of the current harts within the current core, as described below. This register 
is organized in the RV32 format.  

Figure 6.71 Machine Implementation ID Register Bit Assignments
63 56 55 48 47 40 39 32

MAJOR MINOR PATCH CONFIGID

31 0

RSVD

Table 6.74 Machine Implementation ID Register Bit Descriptions 

Name Bits Description R/W Reset State

MAJOR 63:56 A MIPS Technologies specific field encoding the core 
major release version.

R From 
configuration

MINOR 55:48 A MIPS Technologies specific field encoding the core 
minor release version.

R From 
configuration

PATCH 47:40 A MIPS Technologies specific field encoding the core 
patch release version.

R From 
configuration

CONFIGID 39:32 A MIPS Technologies specific field which identifies the 
core configuration. The encoding scheme for this field 
may vary by core type, see the core user manual for 
details.

R From 
configuration

RSVD 31:0 Reserved. R

Figure 6.72 Machine Hart ID Register Bit Assignments
63 22 21 16 15 12 11 4 3 0

RSVD CLUSTERNUM RSVD CORENUM HARTNUM

Table 6.75 Machine Hart ID Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:22 Reserved R

CLUSTERNUM 21:16 Cluster number. For MIPS Technologies implementations, 
a contiguous number starting at zero uniquely identifying 
the cluster in the system. The value comes from the BIU 
during configuration. 

R From 
configuration

RSVD 15:12 Reserved. R
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6.16.5 Machine Configuration Pointer Register (mconfigptr) — 0xF15
This read-only register contains information on the configuration pointer.  

6.17 User Counter/Timer Registers

The following registers are used for counter and timer operations in User mode.

6.17.1 Cycle Register (UCYCLE) — offset 0xC00
This is the User cycle (UCYCLE) counter for the RDCYCLE instruction (EXU_CSR). This regis-
ter is a mirror version from the MCYCLE register. While the MCYCLE is accessible through 
machine mode only, this register is accessible from all modes. The accessibility can be con-
trolled using the MCOUNTEREN, HCOUNTEREN, and SCOUNTEREN registers.  

CORENUM 11:4 Core number. For MIPS Technologies implementations, a 
contiguous number starting at zero uniquely identifying 
the core in the cluster.

RO From 
configuration

HARTNUM 3:0 Hart number. For MIPS Technologies implementations, a 
contiguous number starting at zero uniquely identifying 
the hart in the core.

RO From 
configuration

Figure 6.73 Machine Configuration Pointer Register Bit Assignments
63 0

MCONFIGPTR

Table 6.76 Machine Hart ID Register Bit Descriptions 

Name Bits Description R/W Reset State

MCONFIGPTR 63:0 Machine configuration pointer. This register can be used 
by software to discover more hardware configuration 
related information. This field is RO = 0 for the I8500.

RO From 
configuration

Figure 6.74 Cycle Register Bit Assignments
63 0

CYCLE

Table 6.77 Cycle Register Bit Descriptions 

Name Bits Description R/W Reset State

CYCLE 63:0 User mode cycle counter. R/W Undefined

Table 6.75 Machine Hart ID Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.17.2 Read Time Register (RDTIME) — offset 0xC01
This register (RDTIME) is a read only version of the memory-mapped MTIME. It is physically 
implemented in the CM and fanout comes in EXU. Having a separate user accessible MTIME 
helps in other applications to directly read the value without changing the privilege level. 

6.17.3 User Instruction-Retired Counter (UINSTRET) — offset 0xC02
This register (UINSTRET) is a mirrored version of the MINSTRET register. Similar to the above 
CSRs , this is also separate user accessible version of MINSTRET.  

6.17.4 User Performance-Monitor Counter[3-6] (HPMCOUNTER[3-6]) — offset 0xC03/
C04/C05/C06

This register (HPMCOUNTER[3-6]) is a mirrored version of the MHPMCOUNTER[3-6] regis-
ters. Similar to the above CSRs, this is also a separate user-accessible version of MHPM-
COUNTER[3-6].  

NOTE: The HPMCOUNTER[7-31] at offset addresses 0xC07 - 0xC1F are reserved in the 
I8500 Multiprocessing System.

Figure 6.75 Read Time Register Bit Assignments
63 0

RDTIME

Table 6.78 Read Time Register Bit Descriptions 

Name Bits Description R/W Reset State

RDTIME 63:0 Contains timer information and is a read-only version of 
the MTIME register.

RO 0

Figure 6.76 User Instruction-Retired Counter Register Bit Assignments
63 0

UINSTRET

Table 6.79 User Instruction-Retired Counter Register Bit Descriptions 

Name Bits Description R/W Reset State

UINSTRET 63:0 Contains user instruction-retired counter information and 
is a read-only version of the MINSTRET register.

RO Undefined

Figure 6.77 User Performance-Monitor Counter[3-6] Register Bit Assignments
63 0

HPMCOUNTER

Table 6.80 User Performance-Monitor Counter[3-6] Register Bit Descriptions 

Name Bits Description R/W Reset State

HPMCOUNTER 63:0 Contains user HPM counter information and is a read-
only version of the MHPMCOUNTER register.

RO Undefined
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6.18 MIPS Custom Control and Status Registers

MIPS Technologies implementations use the following custom CSRs, which are described in 
more detail in the following subsections. The address map for the custom CSR’s is shown in 
Table 6.81. 

6.18.1 MIPS Trap Vector Base Address Register (mipstvec) — offset = 0x7C0
The MIPS Trap-VECtor base-address register is a programmable base address for custom 
machine mode exceptions for MIPS Technologies implementations of RISC-V. An alignment 
constraint of HART.vectored_int_align bytes is imposed on writes to mipstvec when setting 
the register to vectored mode. That is, the corresponding number of lower bits of the BASE 
value are zeroed out by the hardware when bit zero of the written value equals 1.   

Table 6.81 MIPS Custom Registers Map 

Address Offset Register Name

0x7C0 mipstvec
0x7C5 mipscacheerr
0x7C6 mipserrctl
0x7C8 mipsdiagdata
0x7C9 mipsbconfig
0x7CA mipsbcactvseg
0x7CB mipsintctl
0x7CC mipsdsprambase
0x7CD mipsispram
0x7D1 mipsconfig1
0x7D4 mipsconfig4
0x7D5 mipsconfig5
0x7D6 mipsconfig6
0x7D7 mipsconfig7
0x7E0 pmacfg0
0x7E2 pmacfg2
0x800 mipswfe

Figure 6.78 MIPS Trap Vector Base Address Register Bit Assignments
63 32

BASE[61:30]

31 2 1 0

BASE[29:0] MODE
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6.18.2 MIPS Cache Error Register (mipscacheerr) — offset = 0x7C5
This register is implemented per-core register indicating the cause of cache errors. This reg-
ister is R/W in the Machine and Hypervisor modes only. It is RO in Virtual Supervisor mode. 
This behavior applies only when the MIPS_BCACHE define is present.  

Table 6.82 MIPS Trap Vector Base Address Register Bit Descriptions 

Name Bits Description R/W Reset State

BASE 63:2 Base address for MIPS Technologies custom machine 
mode exceptions.

R/W 0

MODE 1:0 The MODE field is encoded as follows:

0: Direct. All MIPS technologies custom machine mode 
exceptions set the PC to CSR.mipstvec.BASE << 2. 
1: Vectored. MIPS technologies custom machine mode 
exceptions . set pc to (CSR.mipstvec.BASE << 2) + 4 * 
cause
2 - 3: Reserved.

R/W 0

Figure 6.79 MIPS Cache Error Register Bit Assignments
31 30 29 26 25 20 19 17 16 4 3 0

STATE ARRAY ERROR_BITS WAY INDEX WORD

F2 F P S

Table 6.83 MIPS Cache Error Register Bit Descriptions 

Name Bits Description R/W Reset State

STATE 31:30 Cache error state. This field is encoded as follows:
00: None. No Error
01: Corrected. Corrected Error (includes recovery by 
invalidating a clean line with uncorrectable error)
10: Uncorrectable error
11: Reserved

R/W 0

ARRAY 29:26 Identifies the part of the cache that encountered the error. 
This 4-bit field is encoded as follows:

0x0: L1 I-cache Tag. Alias = ICTag
0x1: L1 I-cache Data. Alias = ICData
0x2: L1 D-cache Tag. Alias = DCTag
0x3: L1 D-cache Data. Alias = DCData
0x4: FTLB tag. Alias = FTLB Tag. 
0x5: FTLB data. Alias = FTLB Data.
0x6: L2Tag (also includes RRB bus parity). Alias = L2Tag
0x7: L2Data (also includes MCP bus parity). Alias = 
L2Data.
0x8: DSPRAM
0x9: ISPRAM
0xA - 0xF. Reserved.

R/W 0
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In the table above, the R/W column indicates the behavior in Machine mode. However, this 
behavior can change if the MIPS_BCACHE define is present as shown in Table 6.84. 

ERROR_BITS 25:20 For correctable errors, this field encodes the bit position 
of the detected error within the RAM word. Encoding:

0x00 - 0x3E: Bit position of error within RAM word.
0x3F: Bit position cannot be determined (when a double-
bit error was “corrected” by invalidating a clean line) - cor-
rected by invalidating the whole line.

R/W 0

23 F2. For uncorrectable errors: Second fatal error detected 
while CacheErr still holds details of a previous uncorrect-
able/unrecoverable error (does not include cases where a 
double-bit error was ”corrected” by invalidating a clean 
line).

R/W 0

22 F. For uncorrectable errors: Fatal - Memory silently cor-
rupted (ECC clean) (tag error on dirty replacement victim 
is currently the only Fatal case). Corrupted data may be 
present in the cache/memory subsystem with valid/clean 
ECC.

R/W 0

21 P. For uncorrectable errors: Persistent error detected. A 
correctable (single-bit) error remained in the RAM after 
correction was attempted.

R/W 0

20 S. For uncorrectable errors: Scapegoat error detected. 
Signaled if error was signaled on Scapegoat VP or if a 
second uncorrectable/unrecoverable error was detected. 

The error details recorded in the CacheErr register may 
not correspond to the instruction or thread that took the 
Cache Error exception. This can occur when a second 
uncorrectable error is detected while the CacheErr regis-
ter still contains details of a previous uncorrectable error, 
or when an error is detected on a RAM access that can-
not be attributed to a specific instruction (such as a 
capacity replacement).

R/W 0

WAY 19:17 Indicates the cache or FTLB way where error was 
detected.

R/W 0

INDEX 16:4 Indicates the cache or FTLB index where error was 
detected.

R/W 0

WORD 3:0 Indicates the word in the cache line (for D-cache data 
RAM error) where the error occurred. 

R/W 0

Table 6.84 Access Behavior based on MIPS_BCACHE Define Present 

MIPSCACHEERR 
Fields Machine Mode

Hypervisor/
Supervisor Mode

Virtual Supervisor 
Mode User Mode

All R/W R/W RO None

Table 6.83 MIPS Cache Error Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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If the MIPS_BCACHE define is present, the exception permissions for this register as shown 
in Table 6.85. 

6.18.3 MIPS Error Control Register (mipserrctrl) — offset = 0x7C6
MIPS Error Control register. This is a per-core CSR controlling bus and parity error handling.  

Table 6.85 Exception Permissions Based on MIPS_BCACHE Define Present 

MIPSCACHEERR 
Fields Machine Mode

Hypervisor/
Supervisor Mode

Virtual Supervisor 
Mode User Mode

All No exception Virtual exception 
on write

Virtual exception
Illegal exception

None

Figure 6.80 MIPS Error Control Register Bit Assignments
31 30 20 19 10 9 0

PE RSVD BUSTIMEOUT RSVD

Table 6.86 MIPS Error Control Register Bit Descriptions 

Name Bits Description R/W Reset State

PE 31 Parity enable. This bit enables or disables ECC protection 
for the L1 I-cache, L1 D-cache, and FTLB.

R / R/W 0

RSVD 30:20 Reserved RO 0

BUSTIMEOUT 19:10 Timeout count. This timer can only be programmed in 
increments of 1024 cycles. Thus, the field available to 
software for programming is 19:10. If this field is written 
with 0, the timeout detection is disabled.

R/W 0

RSVD 9:0 Reserved RO 0
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6.18.4 MIPS Diagnostic Data Register (mipsdiagdata) — offset = 0x7C8  

6.18.5 MIPS Buffer Cache Configuration Register (mipsbcconfig) — offset = 0x7C9
 

The R/W column for the above table changes based on the operating mode as shown in Table 
6.89. 

Figure 6.81 MIPS Diagnostic Data Register Bit Assignments
63 0

MIPSDIAGDATA

Table 6.87 MIPS Diagnostic Data Register Bit Descriptions 

Name Bits Description R/W Reset State

MIPSDIAGDATA 63:0 This register stores the value to be written by the 
MDIAGW instruction, of the value that has been read by 
the MDIAGR instruction. 

R/W Undefined

Figure 6.82 MIPS Buffer Cache Configuration Register Bit Assignments
63 16 15 8 7 2 1 0

RSVD SEGBSY RSVD SEGCFG

Table 6.88 MIPS Buffer Cache Configuration Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:16 Reserved. R 0

SEGBSY 15:8 Segment Busy. This field is a per-segment flag indicating 
that a flush is active for that segment.

RO in M, 
HS, and VS 

modes

0

RSVD 7:2 Reserved. R 0

SEGCFG 1:0 Segment configuration. This field contains the encoded 
segment configuration as num_segments = 2^SegCfg.

00: 1 segment
01: 2 segments
10: 4 segments
11: 8 segments

R/W in M 
and HS 

modes, RO 
in VS mode

0

Table 6.89 Access Behavior based on MIPS_BCACHE Define Present 

MIPSBCCONFIG 
Fields Machine Mode

Hypervisor/
Supervisor Mode

Virtual Supervisor 
Mode User Mode

SEGCFG R/W R/W RO None
SEGBSY RO RO RO None
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The exception permissions for this register as shown in Table 6.90. 

6.18.6 MIPS Buffer Cache Active Segment Register (mipsbcactvseg) — offset = 
0x7CA

This register is selectively available in VS mode and raises an exception when accessed in 
VU/U mode.

Note: This CSR is present only if the MIPS_BCACHE configuration is defined.

 

Table 6.90 Exception Permissions Based on MIPS_BCACHE Define Present 

MIPSCACHEERR 
Fields Machine Mode

Hypervisor/
Supervisor Mode

Virtual Supervisor 
Mode User Mode

All No exception Virtual exception 
on write

Virtual exception
Illegal exception

None

Figure 6.83 MIPS Buffer Cache Active Segment Register Bit Assignments
63 62 13 12 5 4 3 2 0

FLUSH RSVD SEGBMASK SD SE SEG

Table 6.91 MIPS Buffer Cache Active Segment Register Bit Descriptions 

Name Bits Description R/W Reset State

FLUSH 63 Flush in progress for current active segment. Flag 
will only be set if En bit is set. MSB used for effi-
cient testing with BLTZ/BGEZ instructions.

RO 0

RSVD 62:13 Reserved. RO 0

SEGBMASK 12:4 8-bit bit-mask for segments. R/W in M and HS 
modes only

0

SD 4 Speculation Disable. When set, prohibit speculative 
bus requests for buffer cache accesses (CCA = 1) 
from the corresponding hart.

R/W in M, HS, and 
VS modes

0

SE 3 Speculation Enable. When set, allow speculative 
bus requests for buffer cache accesses (CCA = 1) 
from the corresponding hart. Simultaneously set-
ting both the SE and SD bits is a software error.

R/W in M, HS, and 
VS modes

0

SEG 2:0 Segment currently selected as active, up to 8 maxi-
mum.

R/W in M and HS 
modes. R/W only if 
the corresponding 
segbmask is set in 

VS mode.

0
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The R/W column for the above table changes based on the operating mode as shown in Table 
6.92. 

The exception permissions for this register as shown in Table 6.93. 

6.18.7 MIPS Interrupt Control Register (mipsintctl) — offset = 0x7CB
MIPS Interrupt Control Register. This register is instantiated on a per-hart basis. Setting bits 
of this register causes the routing of selected interrupts. 

 

Table 6.92 Access Behavior based on MIPS_BCACHE Define Present 

MIPSBCCATVSEG 
Fields Machine Mode

Hypervisor/
Supervisor Mode

Virtual Supervisor 
Mode User Mode

FLUSH RO RO RO None
SD R/W R/W R/W None
SE R/W R/W R/W None

SEG R/W R/W R/W (with segment 
permissions)

None

SEGBMASK R/W RO RO None

Table 6.93 Exception Permissions Based on MIPS_BCACHE Define Present 

MIPSBCCATVSEG 
Fields Machine Mode

Hypervisor/
Supervisor Mode

Virtual Supervisor 
Mode User Mode

All No exception No exception Virtual exception
Illegal exception

None

Figure 6.84 MIPS Interrupt Control Register Bit Assignments
31 6 5 4 3 2 1 0

0 MEI MSI MTI SEI STI VSEI

Table 6.94 MIPS Interrupt Control Register Bit Descriptions 

Name Bits Description R/W Reset State

0 30:6 Reserved. R 0

MEI 5 When this bit is set, MIPS hardware interrupt #5 routes to 
mip.MEIP. Otherwise it routes to custom interrupt bit 
mip[20].

R/W Undefined

MSI 4 When this bit is set, MIPS hardware interrupt #4 routes to 
mip.MSIP. Otherwise it routes to custom interrupt bit 
mip[19].

R/W Undefined

MTI 3 When this bit is set, MIPS hardware interrupt #3 routes to 
mip.MTIP. Otherwise it routes to mip.VSTIP.

R/W Undefined

SEI 2 When this bit is set, MIPS hardware interrupt #2 routes to 
mip.SEIP. Otherwise it routes to custom interrupt bit 
mip[18].

R/W Undefined
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6.18.8 MIPS DSPRAM Base Register (mipsdsprambase) — offset = 0x7CC
MIPS DSPRAM Base Register. Per-core register containing the base address of MIPS Technol-
ogies DSPRAM.  

6.18.9 MIPS ISPRAM Base Register (mipsisprambase) — offset = 0x7CD
MIPS ISPRAM Base Register. Per-core register containing the base address of MIPS Technolo-
gies ISPRAM.   

STI 1 When this bit is set, MIPS hardware interrupt #1 routes to 
mip.STIP. Otherwise it routes to custom interrupt bit 
mip[17].

R/W Undefined

VSEI 0 When this bit is set, MIPS hardware interrupt #0 routes to 
mip.VSEIP. Otherwise it routes to custom interrupt bit 
mip[16].

R/W Undefined

Figure 6.85 MIPS DSPRAM Base Register Bit Assignments 
63 62 61 44 43 32

SO SLF RSVD MIPSDSPRAMBASE[43:32]

31 12 11 6 5 1 0

MIPSDSPRAMBASE[31:12] RSVD SIZE EN

Table 6.95 MIPS DSPRAM Base Register Bit Descriptions 

Name Bits Description R/W Reset State

SO 63 Set this bit to enforce strict ordering. R/W 0

SLF 62 Set this bit to enable the Store-to-Load facility. R/W 0

RSVD 61:44 Reserved. R 0

MIPSDSPRAMBASE 43:12 Contains MIPS DSPRAM Base address in memory. 
Base_address[47:16] must be aligned to max (size, 
64KB) minimum window is 64KB. 

R/W 0

RSVD 11:6 Reserved. R 0

SIZE 5:1 Size of the device. This field is encoded as 2^SIZE 
bytes. This value is preset at build time. 
For a 64 KB DSPRAM, the SIZE field should be 5'h10.

RO 0

EN 0 Enables special access address. R/W 0

Figure 6.86 MIPS ISPRAM Base Register Bit Assignments 
63 44 43 32

RSVD MIPSISPRAMBASE[47:36]

Table 6.94 MIPS Interrupt Control Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.18.10 MIPS Configuration 1 Register (mipsconfig1) — offset = 0x7D1
MIPS Configuration register 1. Per-core register containing collection of bitfields showing cus-
tom capabilities and status for the MIPS Technologies implementation of the RISCV standard.  

31 12 11 6 5 1 0

MIPSISPRAMBASE[35:16] RSVD SIZE EN

Table 6.96 MIPS ISPRAM Base Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:44 Reserved. R 0

MIPSISPRAMBASE 43:12 Contains bits 47:16 of MIPS ISPRAM base address in 
memory.

R/W 0

RSVD 11:6 Reserved. R 0

SIZE 5:1 Size of the device. This field is encoded as 2^SIZE 
bytes. This value is preset at build time. 
For a 64 KB DSPRAM, the SIZE field should be 5'h10.

RO 0

EN 0 Write 1 to enable ISPRAM access. Read gives the cur-
rent value of the bit. 

R/W 0

Figure 6.87 MIPS Configuration 1 Register Bit Assignments
31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 0

L2C RSVD IS IL IA DS DL DA RSVD

Table 6.97 MIPS Configuration 1 Register Bit Descriptions 

Name Bits Description R/W Reset State

L2C 31 When this bit is set, the L2 cache exists and its size can be 
found via the L2_CONFIG GCR. 
An L3 cache may also exist and its size can be found via the 
L3_CONFIG GCR.

RO From
configuration

RSVD 30:25 Reserved. RO 0

IS 24:22 Number of I-cache sets. Number of I-cache sets is 2**(IS+6) if 
IS != 7, else 32.
000: 2 * 6 = 12
001: 2 * (6+1) = 14. etc. 

RO From
configuration

IL 21:19 I-cache line size. This field encodes the I-cache line size in 
bytes. is 0 if IL == 0 else 2**(IL+1)
000: 0 bytes
001: 2 * 2 = 4 bytes
010: 2 * 3 = 6 bytes
011: 2 * 4 = 8 bytes
100: 2 * 5 = 10 bytes 

RO From
configuration
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NOTE: the mipsconfig2 (0x7D2) and mipsconfig3 (0x7D3) registers are not implemented in 
the I8500 Multiprocessing System.

6.18.11 MIPS Configuration 4 Register (mipsconfig4) — offset = 0x7D4
MIPS Configuration register 4. Per-core register containing collection of bit-fields showing 
custom capabilities and status for the MIPS Technologies implementation of the RISC-V stan-
dard. 

IA 18:16 I-cache Associativity. Number of I-cache ways is IA + 1.
000: 1-way
001: 2-way
010: 3-way
011: 4-way
100: 5-way
101: 6=way
110: 7-way
111: 8-way

RO From
configuration

DS 15:13 D-cache Sets. Number of D-cache sets is 2**(DS+6) if DS != 7 
else 32.

RO From
configuration

DL 12:10 D-cache Line size. D-cache line size in bytes is 0 if DL = 0, 
else 2**(DL+1).

RO From
configuration

DA 9:7 D-cache Associativity. Number of D-cache ways is DA + 1. RO From
configuration

0 6:0 Reserved. RO 0

Figure 6.88 MIPS Configuration 4 Register Bit Assignments
31 10 9 8 7 2 1 0

RSVD TANDEM_CTU TANDEM_ALU RSVD TLB_SHARE RTG_PREF

Table 6.98 MIPS Configuration 4 Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 31:10 Reserved. RO 0

TANDEM_CTU 9 Setting this bit enables Control Transfer Unit (CTU) instruc-
tions to execute in tandem.

R/W 1

TANDEM_ALU 8 Setting this bit enables Arithmetic Logic Unit (ALU) instructions 
to execute in tandem.

R/W 0

RSVD 7:2 Reserved. RO 0

TLB_SHARE 1 Allows sharing of FTLB and VTLB entries across harts (as long 
as all other attributes match).

R/W 0

RTG_PREF 0 Forces the NSPREF instruction (prefetch to non-speculative 
region) to use the safer but slower RTG mechanism.

R/W 0

Table 6.97 MIPS Configuration 1 Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.18.12 MIPS Configuration 5 Register (mipsconfig5) — offset = 0x7D5
MIPS Configuration register 5. Per-hart register containing collection of bit fields showing 
custom capabilities and status for the MIPS Technologies implementation of the RISCV stan-
dard.  

Figure 6.89 MIPS Configuration 5 Register Bit Assignments
63 16 15 14 7 6 5 4 3 2 1 0

RSVD TW RSVD PGVA MDIAGL MPPV MPPPS MTW MPTW ERL

Table 6.99 MIPS Configuration 5 Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:16 Reserved. RO 0

TW 15 When TW is set to 1, writes to the mipswfe CSR take an ille-
gal instruction exception when the hart is not in M-mode.

R/W 0

RSVD 14:7 Reserved. Write as zero. RO 0

PGVA 6 Previous Guest Physical Address. This bit is copied from 
mstatus.GVA on M-mode exceptions using the mipstvec 
exception vector, or M-mode exceptions when
mipsconfig5.MTW = 1. 

When PGVA is set, MRET behavior is modified to set msta-
tus.GVA to 1 instead of 0. Implemented on H-extension cores 
with software table walker only.

R/W 0

MDIAGL 5 MDIAG lock. Software can write this bit to 1 to permanently 
disable the MDIAGR/MDIAGW instructions. Can only be 
unlocked by a CPU reset.

R/W 0

MPPV 4 Machine Previous-Previous Virtualization Mode - Set to 1 on 
mipstvec exceptions if mstatus.MPV is 1, or on other M-mode 
exceptions if mipsconfig5.MTW is 1 and mstatus.MPV is 1. 
When MPPV is set, MRET behavior is modified to set msta-
tus.MPV to 1 instead of 0. Implemented on H-extension cores 
with software table walker only.

R/W 0

MPPPS 3 Machine Previous-Previous Privilege Supervisor - Set to 1 on 
mipstvec exceptions if mstatus.MPP is 1 (supervisor), or on 
other M-mode exceptions when mipsconfig5.MTW=1 and 
mstatus.MPP is 1. 

When MPPPS = 1, MRET behavior is modified to set msta-
tus.MPP to 1 instead of 0. Implemented on cores with soft-
ware table walker only.

R/W 0

MTW 2 Machine Table Walk. Setting this bit forces M-mode loads and 
stores to execute with table walker mapping and privilege. 

Cleared by M-mode traps and restored from MPTW by 
MRET. Implemented on cores with software table walker only.

R/W 0

MPTW 1 Machine Previous Table Walk. This bit contains the value of 
the mipsconfig5.MTW bit prior to the most recent M-mode 
trap, restored to MTW by MRET. 

Implemented on cores with software table walker only.

R/W 0
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6.18.13 MIPS Configuration 6 Register (mipsconfig6) — offset = 0x7D6
MIPS Configuration register 6. Per-hart register containing collection of bit fields showing 
custom capabilities and status for the MIPS Technologies implementation of the RISCV stan-
dard.  

6.18.14 MIPS Configuration 7 Register (mipsconfig7) — offset = 0x7D7
MIPS Configuration register 7. Per-hart register containing collection of bit fields showing 
custom capabilities and status for the MIPS Technologies implementation of the RISC-V stan-
dard. 

As bit-fields in this register affect all running threads, software should use the following safe 
sequence to modify the register:

DVP

SYNC

CSR.mipsconfig7

EVP

ERL 0 Error Level. This bit is set on NMI and Cache Error excep-
tions. Cleared by MRET and SRET instructions. Forces all 
memory accesses to be uncached and disables all interrupts 
except for Reset and NMI.

R/W 0

Figure 6.90 MIPS Configuration 6 Register Bit Assignments
63 4 3 2 1 0

RSVD AMO_TRAP AMO_II RSVD PRI

Table 6.100 MIPS Configuration 6 Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 31:4 Reserved R 0

AMO_TRAP 3 If this bit is 0, hardware executes AMOs. 
If this bit is 1, then the hardware looks at the amo_ii 
bit to determine whether we do an illop trap or a fast-
trap to MIPSTVEC.

R/W 0

AMO_II 2 Atomic Memory Operation Illegal Instruction. When 
set, executing one of the AMO* instructions on a 
“no_amo” core gives an illegal instruction exception. 
Otherwise, cases where the AMO instruction does not 
generate any addressing related exceptions (page 
faults, TLB misses or access faults) give a custom 
mipstvec exception with mcause set to the Illegal 
Instruction value, allowing for fast emulation of the 
atomic memory operation. LR/SC instructions are not 
affected by this bit. 

R/W
(W when AMO_TRAP 
is 1 or will be assigned 
to 0) ; AMO_TRAP = 0 
and AMO_II = 1 is not 

an allowed 
configuration

0

RSVD 1 Reserved. R 0

PRI 0 When set, the hart has priority for MCP accesses. R/W 0

Table 6.99 MIPS Configuration 5 Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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Figure 6.91 MIPS Configuration 7 Register Bit Assignments
31 30 29 28 25 24 23 22 21 20 19 18 17 16

HCI RSVD DIVA RSVD DSBPK DSMBR DSM DSUTLB FTLB64 FTLBP DSSM DSLM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VTLB_-
FULL_POT_

EN
RSVD DSBND DLBND DSLD RSVD DMALN TL DHTW DDWP DIWP DJRC DGHR DDBP DBP DRPS

Table 6.101 MIPS Configuration 7 Register Bit Descriptions 

Name Bits Description R/W Reset State

HCI 31 When set by hardware, Hardware Cache Initialization is pres-
ent. 
1: Indicates that a cache does not require initialization by soft-
ware. This bit will most likely only be set on simulation-only 
cache models and not on real hardware.

RO From
configuration

RSVD 30 Reserved. RO 0

DIVA 29 Disable Instruction Virtual Aliasing. Setting this bit disables the 
hardware alias removal on the instruction cache. If this bit is 
cleared, alias removal is not disabled.

R/W 0

RSVD 28:25 Reserved. RO 0

DSBPK 24 Disable Branch/Jump Prediction in translation = BARE mode. R/W 0

DSMBR 23 When this bit is set, disable Sleep Mode when a long bus 
transaction is pending. The core won't go into sleep mode if a 
long bus transaction is pending.

0: Enabled
1: Disabled

R/W 0

DSM 22 When this bit is set, disable Sleep Mode. The core won't go 
into sleep mode if this bit is set.

0: Enabled
1: Disabled

R/W 0

DSUTLB 21 When this bit is set, disable speculative handling of uTLB 
misses.

0: Enabled
1: Disabled

R/W 0
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FTLB64 20 FTLB holds 64KB pages. In implementations where the FTLB 
cannot hold 4KB pages and 64KB pages simultaneously, soft-
ware can set this bit to 1 to indicate that 64KB pages are 
expected to be more common and should be stored in the 
FTLB (with 4KB pages stored in the VTLB). 

In such implementations, if this bit is zero (the reset value) 
4KB pages will be stored in the FTLB and 64KB pages will be 
stored in the VTLB. In implementations where the FTLB can 
hold 4KB and 64KB pages simultaneously, this bit is reserved.

0: 64KB pages stored to FTLB, 4 KB pages stored to VTLB.
1: 64KB pages stored to VTLB, 4 KB pages stored to FTLB.

R/W 0

FTLBP 19:18 FTLB probability. This field allows some TLBWR instruction to 
go to the VTLB instead of the FTLB whenever the PageMask 
register matches the FTLB page size. If the contents of the 
PageMask register do not match the FTLB page size, the 
TLBWR instruction always goes to the VTLB.

This field is encoded as follows:

00 - FTLB:VTLB = 63:1. For every 64 TLBWR instructions, 63 
go to the FTLB and 1 goes to the VTLB.
01 - FTLB:VTLB = 31:1. For every 32 TLBWR instructions, 31 
go to the FTLB and 1 goes to the VTLB.
10 - FTLB:VTLB = 15:1. For every 16 TLBWR instructions, 15 
go to the FTLB and 1 goes to the VTLB.
11 - FTLB only. All TLBWR instructions go to the FTLB.

R/W 0

DSSM 17 When this bit is set, disable speculative bus fetch requests for 
a store miss. A speculative fetch implies that the core is 
allowed to issue a bus request for instructions that won't nec-
essarily complete.

R/W 0

DSLM 16 When this bit is set, disable speculative bus fetch requests for 
a load miss.

R/W 0

VTLB_FULL_POT_EN 15 For svnapot extension, if set, all power of two * 4KB page 
sizes are supported. Otherwise, only xxxx 1000: 64KB is sup-
ported.

R/W 0

RST 14 Reset TAGE. A 0 -> 1 transition of this bit causes the TAGE 
branch prediction unit to be reset. To reset TAGE again, re-
write this bit to 0, then set it to 1 again.

R/W 0

DSBND 13 When this bit is set, store bonding is disabled.
0: Enabled
1: Disabled

R/W 0

DLBND 12 When this bit is set, load bonding is disabled.
0: Enabled
1: Disabled

R/W 0

Table 6.101 MIPS Configuration 7 Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.18.15 MIPS Wait For Event Register (mipswfe) — offset = 0x800
It is a Read Only 0 CSR. Writes to this CSR will put the thread to halt until a system defined 
event or interrupt comes. Unlike WFI , the instruction sequence will only resume and not 
jump to a tvec register. Like the TW field in mstatus for WFI, a TW bit (bit 15) in the config5 
register is used to limit its access in non-M mode.  

DSLD 11 When this bit is set, disable the speculative issue of instruc-
tions that consume the result of a load.

0: Enable speculative issue of load-consumer instructions.
1: Stall load-consumer instructions until the load result is con-
firmed to be available.

R/W 0

0 10 Reserved. R/W 0

DMALN 9 Disable misaligned load/store. When set, all misaligned 
accesses generate an address misaligned exception.

R/W 0

TL 8 When this bit is set, MIPS Trace Logic is implemented.
0: Not implemented
1: Implemented

RO From
configuration

DHTW 7 When this bit is set, disable the hardware table walker (if both 
hardware and software table walkers are implemented)

R/W 0

DDWP 6 When this bit is set, disable data cache way prediction. R/W 0

D1WP 5 When this bit is set, disable instruction cache way prediction. R/W 0

DJRC 4 When this bit is set, disable the Jump Register Cache.

When this bit is set, the instruction fetch unit waits for the exe-
cution unit to redirect for all JR instructions except JR $31.

R/W 0

DGHR 3 0: Enable branch history table. When this bit is cleared, 
dynamic branch history prediction is performed.
1: Disable branch history table. 

When this bit is set, dynamic branch history reduction is dis-
abled. In this case, unconditional branches are always taken, 
branch backward branches are always taken, and branch for-
ward branches are not taken.

R/W 0

DDBP 2 When this bit is set, disable dynamic branch prediction. 
When DDBP = 1 and DBP = 0:
- Unconditional Branches are always taken
- Conditional branches are always not taken

R/W 0

DBP 1 When this bit is set, disable branch prediction. In this case, the 
execution unit performs the branch resolution.

R/W 0

DRPS 0 When this bit is set, disable the return prediction stack. In this 
case, the instruction fetch unit waits for the execution unit to 
redirect when JR $31 is fetched.

R/W 0

Figure 6.92 MIPS Wait for Event Register Bit Assignments
31 0

NI

Table 6.101 MIPS Configuration 7 Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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6.18.16 PMA Configuration Registers
The I8500 contains 2 PMA configuration registers that store a total of 16 PMA configurations. 
Each PMAxCFG configuration listed below is represented by an 8-bit field. 

Table 6.103 shows the address mapping for each of these 16 registers. 

In the RV64 format, the PMACFG0 register is 64 bits and contains fields PMA7CFG - 
PMA0CFG. In this case PMA3CFG - PMA0CFG are in the lower 32 bits, and PMA7CFG - 
PMA4CFG are in the upper 32 bits. 

6.18.17 PMA Configuration 0 Register (PMACFG0) — offset = 0x7E0
PMA Configuration register 0.  

Table 6.102 MIPS Wait for Event Register Bit Descriptions 

Name Bits Description R/W Reset State

NI 31:8 Not Implemented. This CSR is used to detect only a write, no 
specific value is written.

RO 0

Table 6.103 PMA Configuration Register Address Mapping 

Address Offset Register Name RV64

0x7E0 PMACFG0 PMA7CFG - PMA0CFG
0x7E2 PMACFG2 PMA15CFG - PMA8CFG

Figure 6.93 PMA Configuration 0 Register Bit Assignments 
63 56 55 48 47 49 39 32

PMA7CFG PMA6CFG PMA5CFG PMA4CFG

31 24 23 16 15 8 7 32

PMA3CFG PMA2CFG PMA1CFG PMA0CFG

Table 6.104 PMA Configuration 0 Register Bit Descriptions 

Name Bits Description R/W Reset State

PMA7CFG 63:56 PMA7 configuration field in the RV-64 format. R/W Undefined

PMA6CFG 55:48 PMA6 configuration field in the RV-64 format. R/W Undefined

PMA5CFG 47:40 PMA5 configuration field in the RV-64 format. R/W Undefined

PMA4CFG 39:32 PMA4 configuration field in the RV-64 format. R/W Undefined

PMA3CFG 31:24 PMA3 configuration field in the RV-64 format. R/W Undefined

PMA2CFG 23:16 PMA2 configuration field in the RV-64 format. R/W Undefined

PMA1CFG 15:8 PMA1 configuration field in the RV-64 format. R/W Undefined

PMA0CFG 7:0 PMA0 configuration field in the RV-64 format. R/W Undefined
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6.18.18 PMA Configuration 2 Register (PMACFG2) — offset = 0x7E2
PMA Configuration register 2.   

Figure 6.94 PMA Configuration 2 Register Bit Assignments 
63 56 55 48 47 49 39 32

PMA15CFG PMA14CFG PMA13CFG PMA12CFG

31 24 23 16 15 8 7 32

PMA11CFG PMA10CFG PMA9CFG PMA8CFG

Table 6.105 PMA Configuration 2 Control and Status Register Bit Descriptions 

Name Bits Description R/W Reset State

PMA15CFG 63:56 PMA15 configuration field in the RV-64 format. R/W Undefined

PMA14CFG 55:48 PMA14 configuration field in the RV-64 format. R/W Undefined

PMA13CFG 47:40 PMA13 configuration field in the RV-64 format. R/W Undefined

PMA12CFG 39:32 PMA12 configuration field in the RV-64 format. R/W Undefined

PMA11CFG 31:24 PMA11 configuration field in the RV-64 format. R/W Undefined

PMA10CFG 23:16 PMA10 configuration field in the RV-64 format. R/W Undefined

PMA9CFG 15:8 PMA9 configuration field in the RV-64 format. R/W Undefined

PMA8CFG 7:0 PMA8 configuration field in the RV-64 format. R/W Undefined
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6.19 Debug Control and Status Register — offset = 0x7B0

There is one Debug Control and Status register (DCSR) in the I8500 as described below.  

Figure 6.95 Debug Control and Status Register Bit Assignments 
31 28 27 16 15 14 13 12 11 10 9 8 6 5 4 3 2 1 0

XDEBUGVER 0 EBREAKM 0 EBREAKS EBREAKU STEPIE STOP
COUNT

STOP
TIME CAUSE 0 MPRVEN NMIP STEP PRV

Table 6.106  Debug Control and Status Register Bit Descriptions 

Name Bits Description R/W Reset State

XDEBUGVER 31:28 Debug version. This field is encoded as follows. All values 
not shown are reserved. 

0x0: There is no external debug support.
0x4: External debug support exists as it is described in this 
document.
0xF: There is external debug support, but it does not con-
form to any available version of this spec.

R Preset

0 27:16 Reserved. R 0

EBREAKM 15 EBREAK instruction in machine mode. This field is encoded 
as follows:

0: EBREAK instructions in M-mode behave as described in 
the privileged spec.
1: EBREAK instructions in M-mode enter Debug mode.

R/W 0

0 14 Reserved. R 0

EBREAKS 13 EBREAK instruction in supervisor mode. This field is 
encoded as follows:

0: EBREAK instructions in S-mode behave as described in 
the privileged spec.
1: EBREAK instructions in S-mode enter Debug mode.

R/W 0

EBREAKU 12 EBREAK instruction in user mode. This field is encoded as 
follows:

0: EBREAK instructions in U-mode behave as described in 
the privileged spec.
1: EBREAK instructions in U-mode enter Debug mode.

R/W 0

STEPIE 11 Single step interrupt enable. This bit is encoded as follows:

0: Interrupts are disabled during single stepping.
1: Interrupts are enabled during single stepping.

Implementations may hard wire this bit to 0. In that case 
interrupt behavior can be emulated by the debugger. The 
debugger must not change the value of this bit while the hart 
is running.

R From
configuration
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STOPCOUNT 10 Stop count incrementing. This bit is encoded as follows:

0: Increment counters as usual.
1: Don't increment any counters while in Debug

Mode or on ebreak instructions that cause entry into Debug 
Mode. These counters include the cycle and instret CSRs. 
This is preferred for most debugging scenarios.
An implementation may hard wire this bit to 0 or 1.

R Undefined

STOPTIME 9 Stop hart timers from incrementing. This field is encoded as 
follows:

0: Increment timers as usual.
1: Don't increment any hart-local timers while in Debug 
Mode.

An implementation may hard wire this bit to 0 or 1.

R 0

CAUSE 8:6 This field explains why debug mode was entered and is 
encoded as follows. When there are multiple reasons to 
enter debug mode in a single cycle, hardware should set 
cause to the cause with the highest priority as defined 
below. All values not shown are reserved.

0x1: An ebreak instruction was executed. (priority 3)
0x2: The trigger module caused a breakpoint exception. 
(priority 4, highest)
0x3: The debugger requested entry to debug mode using 
haltreq. (priority 1)
0x4: The hart single stepped because step was set.
(priority 0, lowest)
0x5: The hart halted directly out of reset due to resethaltreq. 
It is also acceptable to report 3 when this happens. 
(priority 2)

R 0

0 5 Reserved. R 0

MPRVEN 4 Machine mode status.

0: MPRV in mstatus is ignored in debug mode.
1: MPRV in mstatus takes eect in debug mode.

Implementing this bit is optional. It may be tied to either 0 or 
1.

R 0

NMIP 3 Non-Maskable-Interrupt Pending (NMIP) for the hart.
Since an NMI can indicate a hardware error condition, rel 
able debugging may no longer be possible once this bit 
becomes set. This is implementation-dependent.

R 0

STEP 2 When set and not in Debug Mode, the hart will only execute 
a single instruction and then enter debug mode. If the 
instruction does not complete due to an exception, the hart 
will immediately enter Debug Mode before executing the 
trap handler, with appropriate exception registers set. The 
debugger must not change the value of this bit while the hart 
is running.

R 0

Table 6.106  Debug Control and Status Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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PRV 1:0 Contains the privilege level the hart was operating in when 
debug mode was entered. This field is encoded as follows:

00: User/Application
01: Supervisor
10: Reserved
11: Machine

A debugger can change this value to change the hart's privi-
lege level when exiting Debug Mode. Not all privilege levels 
are supported on all harts. If the encoding written is not sup-
ported or the debugger is not allowed to change to it, the 
hart may change to any supported privilege level.

R 0

Table 6.106  Debug Control and Status Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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Exceptions and Interrupts 

The I8500 core receives exceptions from a number of sources, misses in the translation loo-
kaside buffer (TLB), I/O interrupts, and environment calls. When the CPU detects an excep-
tion, the normal sequence of instruction execution is suspended and the processor enters 
machine mode, disables interrupts, loads the Exception Program Counter (mepc) register with the 
location where execution can restart after the exception has been serviced, and forces execu-
tion of a software exception handler located at a specific address.

The software exception handler saves the context of the processor, including the contents of 
the program counter, the current operating mode, and the status of the interrupts (enabled 
or disabled). This context is saved so it can be restored when the exception has been ser-
viced.

Exceptions may be precise or imprecise. Precise exceptions are those for which the mepc can 
be used to identify the instruction that caused the exception. For precise exceptions, the 
restart location in the mepc register is the address of the instruction that caused the excep-
tion. LDA are examples of precise exceptions.
Imprecise exceptions, on the other hand, are those for which the instruction that caused the 
exception cannot be identified. Bus error exceptions are examples of imprecise exceptions. 
Imprecise exceptions are normally attached to the next instruction PC to be graduated. Basi-
cally uses the PC (program counter) of very next instruction to graduate as the return 
address. The instructions which caused imprecise exception may get graduated even before 
processing the exception, hence these are imprecise exceptions. STA related bus errors are 
imprecise exceptions.

7.1 Exception Conditions

When an exception condition occurs, the instruction causing the exception and all those that 
follow it in the pipeline are cancelled. Accordingly, any stall conditions and any later exception 
conditions that may have referenced this instruction are inhibited.

The term epc in RISC-V can be DEPC, SEPC, or MEPC, where D = Debug, S = Supervisor, and 
M = Machine.

When the exception condition is detected on an instruction fetch, the CPU aborts that instruc-
tion and all instructions that follow. When the instruction graduates, the exception flag 
causes it to write various CSR registers with the exception state, change the current program 
counter (PC) to the appropriate exception vector address, and clear the exception bits of ear-
lier pipeline stages.

For most types of exceptions, this implementation allows all preceding instructions to com-
plete execution and prevents all subsequent instructions from completing. Thus, the value in 
the DPC/SEPC/MEPC is sufficient to restart execution. It also ensures that exceptions are 
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taken in program order. An instruction taking an exception may itself be aborted by an 
instruction further down the pipeline that takes an exception in a later cycle.

The Error PC or Exception PC of the instruction which raised the exception is updated to one 
of the mepc registers available, based on the mode in which exception is being processed. 

Imprecise exceptions are taken after the instruction that caused them has completed and 
potentially after following instructions have completed.

7.2 Selecting the Exception Address

In the baseline MIPS implementation, the exception vector address for several types of 
exceptions are provided by the trap vector address CSR. The processor mode (Machine, 
Supervisor, Hypervisor) in which exceptions or interrupts are processed will decide the trap 
vector address CSR. It could be from mtvec CSR, stvec CSR or vstvec CSR.

MIPS custom exception trap vector address is provided by mipstvec CSR.

The exception vector for several types of exceptions is constrained to the lower 512MB of 
memory.  The mtvec, stvec, vstvec, or mipstvec CSR registers can be used to position the 
base address anywhere in the 256TB 48-bit address space. The GCR.HART.RESET_BASE reg-
ister also supports specifying a separate reset vector for each thread.
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Coherence Manager

The Coherence Manager (CM) communicates with all cores and other devices in the I8500 
Multiprocessing System (MPS), as well as coherent devices external to the I8500 MPS, to 
achieve system-wide coherence. In a multi-cluster system, the CM also interfaces to an 
external Network-on-Chip (NOC) controller, which facilitates communication between clus-
ters.

The CM includes an integrated low-latency shared L2 cache. A directory-based coherence 
protocol is used to efficiently maintain coherence among the L1 data caches of each I8500 
core, with up to eight I/O coherence units (IOCUs), providing the I/O subsystem coherent 
access to the L1 Data and L2 caches.

This chapter provides an overview of the CM register ring bus and associated table that lists 
each device ID on the bus. The programmer uses this information to access these devices. An 
overview of the CM register address space is also provided. In addition, the chapter describes 
how to program the CM to perform various functions, including setting the base addresses in 
memory, accessing another hart in the same core, accessing a hart in another core, accessing 
the Advanced Interrupt Architecture (AIA) Controller, Cluster Power Controller (CPC), and/or 
Debug Unit (DBU) registers via the CM, and setting the clock ratios between the various 
I8500 system components. For the exact revision number of the Coherence Manager, refer to 
the Release Notes.

8.1 CM Overview

This section provides an overview of the CM and describes information necessary for pro-
gramming, including the register ring bus and device ID information, and the CM register 
map.

8.1.1 Modes of Operation
The Coherence Manager supports the following modes:

• Single non-coherent cluster: The CM ensures local coherence among directly attached 
cores and IOCUs. CM connects to the system via a non-coherent AXI-4 interface.

• One or multiple coherent clusters: The CM ensures coherence between directly attached 
cores and IOCUs and other coherent agents in the system via a fully-coherent ACE sys-
tem interface to a coherent NoC.

In all modes, the CM maintains coherence between the L2 cache and all directly attached 
coherent agents.  For Shogun cores, the CM provides full cache coherence between L1 and L2 
caches. 
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8.1.1.1 IOCU Coherence
For IOCUs, the CM provides I/O coherence with a coherent view of L2, and snooping caches 
on behalf of IOCU requests. However, the CM assumes that the IOCUs do not have caches 
themselves.

8.1.1.2 Custom Instructions
The CM also provides support for:

• LR/SC for atomic accesses for both cacheable and uncacheable memory, on a 64B reser-
vation granule. For more information on the atomic extension, refer to Section 1.18.4.3, 
A Extension in Chapter 1.

• MIPS custom instructions for cross-cluster fences and invalidations

• MIPS custom instructions for cache maintenance and "globalized" L2 cache operations

8.1.1.3 Multi-Cluster Mode
In multi-cluster mode, the CM manages coherence across multiple clusters and system-level 
coherent agents via its ACE connection to an external coherent interconnect. In this mode, 
the CM also extends software cache maintenance requests to all CMs in the coherent domain.

8.1.1.4 External GCR Slave Access
CM also supports an external GCR slave access port (REGTC), and 0 to 4 non-coherent AXI-4 
auxiliary ports for access to a non-coherent system level fabric. 

8.1.2 CM Interface — Register Ring Bus and Device ID’s
The CM communicates with the various system devices via a register ring bus. The devices 
connected to the CM are shown in Figure 8.1. The I8500 Multiprocessing System can have up 
to 6 cores per cluster.
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Figure 8.1 Interface Ports and Register Ring Bus Interface to the CM  

Certain devices such as the cores and IOCU’s connect to the CM via an internal proprietary 
bus called the MIPS Coherence Protocol (MCP) bus. This bus consists of three unidirectional 
channels used to maximize throughput. The bus implements a credit-based protocol to allow 
multiple simultaneous in-flight operations. In the above figure, note that the I8500 MPS sup-
ports up to a total of eight cores and IOCUs together. For example, if there are four cores, 
there can only be up to four IOCUs.

The CM accesses the registers of the various devices shown in Figure 8.1 using a register ring 
bus, indicated by the dotted line. As shown above, the CM and DBU can function as both 
Master (M) and Slave (S). All other devices, including the cores, are slave devices. Each 
device on the ring bus is assigned a 6-bit ID value stored in the destination ID (dest_id) or 
source ID (src_id) fields of the packet being sent. When a device initiates an access to the 
registers of another device, the corresponding ID is attached to the packet. Only the device 
whose ID number matches that in the packet accepts the transaction. Table 8.1 lists the ID 
values for each logic block shown in Figure 8.1. These values are used to write to registers in 
these blocks as described in the following subsections. All values not shown are reserved. 

Table 8.1 Register Ring Bus Device ID Values 

dest_id / src_id
(Decimal value)

dest_id / src_id
(Hexadecimal value) Device Accessed

0 0x00 Core 0
1 0x01 Core 1
2 0x02 Core 2
3 0x03 Core 3
4 0x04 Core 4
5 0x05 Core 5
16 0x10 IOCU0

Core 0 Core 5 IOCU 0 IOCU 7

MCP MCPMCPMCP

Coherence Manager (CM)

Interrupt
Controller

Memory NOC Custom 
GCR

S

M

S

S S

S

S

GCR
CPC

M

Debug 
Unit

(DBU)

From I/O
ACE/AXI4

S S

From I/O

Legend:
M = Master
S = Slave

Register 
Ring Bus

ACE/AXI4
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The following example shows the path taken in order for core 0 to read a register from the 
AIA controller. The data path for this access is shown in Figure 8.2. This figure is similar to 
Figure 8.1, except only those devices involved in the example transaction are shown. The red 
color indicates the access request path, and the blue color indicates the data return path. The 
following sequence is enumerated in Figure 8.2. In this example the following actions would 
occur.

1. Core 0 sends a request to the CM over the MCP ‘Request’ bus. Note that Core 0 cannot access the 
AIA controller registers directly because it is only a Slave on the ring bus as indicated.

2. The CM processes this request, assigns the appropriate ID number as defined in Table 8.1, and drives 
this request onto the register ring bus through its Master port.

3. The AIA controller decodes the ID on the bus and gets a match.

4. The AIA controller then fetches the requested data and drives the data onto the ring bus.

5. Data is returned to the CM through its dedicated register ring bus Slave port.

17 0x11 IOCU1
18 0x12 IOCU2
19 0x13 IOCU3
20 0x14 IOCU4
21 0x15 IOCU5
22 0x16 IOCU6
23 0x17 IOCU7
24 0x18 AIA
25 0x19 User Defined GCR’s
26 0x1A Memory
32 0x20 CM
33 0x21 CPC
34 0x22 GCR
35 0x23 DBU Master
36 0x24 DBU dmxseg_normal
37 0x25 DBU dmxseg_debug
40 0x28 AUX 0
41 0x29 AUX 1
42 0x2A AUX 2
43 0x2B AUX 3
62 0x3E No Destination Error
63 0x3F No Destination OK

Table 8.1 Register Ring Bus Device ID Values (continued)

dest_id / src_id
(Decimal value)

dest_id / src_id
(Hexadecimal value) Device Accessed
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6. The CM sends the requested data back to Core 0 over the dedicated MCP ‘Response’ bus.
Figure 8.2 Data Path of Core 0 Access of IOCU0 Registers 

8.1.3 Cluster to Cluster Accesses
In addition to facilitating core-to-core and hart-to-hart accesses within the same cluster, the 
I8500 also allows for cluster-to-cluster accesses. This allows a core or hart (VP) in one clus-
ter to access the registers in a core or hart of another cluster through the Network-On-Chip 
(NOC) interface. This interface is shown in Figure 8.3. 

Figure 8.3 Cluster-to-Cluster Register Accesses Using the NOC 

For example, a hart within a core in Cluster 1 can access and update a register in a hart in 
Cluster 2 as shown. The access is processed by the CM and driven onto the NOC. The NOC 
then routes the request to the appropriate cluster where the access is scheduled by the CM in 
the destination cluster.

If a register access is within a given cluster as shown above, the NOC is not used and the 
access is placed onto the Register Ring Bus (RRB) described in the section entitled CM 
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Interface — Register Ring Bus and Device ID’s. If the register access is to another cluster, the 
NOC is used to transfer the access request where it is placed onto the RRB of the destination 
cluster. There are dedicated unidirectional AXI bus interfaces that move the access from the 
cluster to the NOC, and from the NOC to the cluster. A separate bidirectional bus is used to 
manage coherence as shown above.

8.2 Verifying Overall System Configuration

At IP configuration time, the customer selects the number of cores and the number of I/O 
coherency units (IOCU’s) in the system. When the device is built, these values are hard wired 
into the Global Configuration register at offset address 0x0000. All of these fields are read-only 
and allow kernel software to quickly determine the system configuration.

CM GCR Register Interface
Reading the Global Configuration register provides the following information:

• Bits 7:0 — Number of cores in the system (up to 6)

• Bits 11:8 — Number of IOCU’s (up to 8)

• Bits 19:16 — Number of MMIO address regions

• Bits 22:20 — Number of auxiliary memory ports

• Bits 29:23 — Number of clusters in the system

• Bits 39:32 — Indicates the ID number for the current cluster. Each cluster has a 
unique ID number.

• Bit 40 — Indicates if a Debug Unit is present
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8.3 Programming the Base Addresses in Memory

This section describes how to set the base address of the CM logic. 

8.3.1 CM GCR Register Interface
The address map is programmable through the GCR_BASE register as summarized in Table 
8.2. 

8.4 CM Register Access Permissions

A requestor can request access to selected CM registers. A requestor can be either a core or 
an IOCU. The CM allows up to eight requestors in a system in any combination of cores and 
IOCU’s, from 8 cores and no IOCU’s, to 8 IOCU’s and no cores, or anywhere in between. 

8.4.1 Enabling Access Permissions
Access permissions to the CM GCR registers follows the memory access permission rules as 
defined in the Physical Memory Protection (PMP) section of the RISC-V Privileged Architecture 
Manual. Privileged code can program the PMP registers to control which CM registers are 
accessible from each privileged mode on each hart.

8.5 Coherency Enable

The I8500 Multiprocessing System allows each power domain to be placed in either a coher-
ent or non-coherent mode. Because the I8500 implements a directory-based coherence pro-
tocol, MIPS recommends that each domain be placed in coherent mode during normal 
operation. The non-coherent mode should only be used during boot-up and power-down. 
Software should not execute any cacheable memory accesses (instruction fetch or load/
store) while coherence is disabled.

In the CM, coherency is either enabled or disabled using the Coherence Enable (COH_EN) register. 
There is one of these registers per core. Each register can be accessed at address: 
0x020f8 + 0x100 * CORENUM + GCR_BASE for Core 0 through 7.

8.6 L2 Cache Prefetch

The coherence manager in the I8500 MPS contains an L2 prefetcher used to enhance L2 per-
formance. The L2 prefetcher is managed using two CM GCR registers.

• L2 Prefetch Control register (GCR_L2_PFT_CONTROL) at offset 0x0300

• L2 Prefetch 2nd Control register (GCR_L2_PFT_CONTROL_B) at offset 0x0308

Table 8.2 Setting the Base Address for the GCR_BASE Register

Block Register Name
Offset 

Address Field Name Bits Description

GCR GCR_BASE 0x0008 GCR_BASE_ADDR 47:12 GCR Base Address register. Sets the 
base address of the GCR registers. 
Note that this region must reside on a 
512 KB boundary.
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These registers control the following L2 capabilities:

• Minimum operating system page size (supports 4K - 64K pages in multiples of two)

• Prefetch enable

• Coherent invalidate requests

• Code prefetch enable

• L2 prefetching port ID. Each bit corresponds to a CM port ID. If the bit is set, the corre-
sponding CM port is monitored for prefetching.

8.6.1 Prefetch Enable
The number of prefetch units implemented in the I8500 Multiprocessing System is deter-
mined by the user during IP configuration. This value is programmed by hardware into the 
NPFT field (bits 7:0) of the L2 Prefetch Control register (GCR_L2_PFT_CONTROL) located at 
offset address 0x0300 in the GCR Global register space. This read-only field allows kernel 
software a convenient way to determine the number of prefetch units implemented.

CM GCR Register Interface

Prefetching is enabled by setting the PFTEN bit in the GCR_L2_PFT_CONTROL register. Note 
that the number of prefetch units implemented as described above must be greater than 0 in 
order for this bit to have meaning.

8.6.2 Select Ports for L2 Prefetching
The CM allows up to 8 ports to be selected for L2 prefetching. These ports correspond to the 
(up to) six cores and (up to) eight IOCU’s as shown in Figure 8.1. L2 prefetching can be 
selected for some of all of these ports using the 8-bit PORT_ID field in the GCR_L2_PFT_-
CONTROL_B register. Each bit of this field corresponds to a single port. There can be any 
number of cores and IOCU’s up to the maximum or eight. For example, if there are 8 cores, 
then there must be 0 IOCU’s to make a total or 8, or 4 cores and 4 IOCU’s, etc. If a given bit 
is set, L2 prefetching is monitored for that port. If the bit is cleared, L2 prefetching does not 
occur. 

The field is organized as cores followed by IOCU’s starting from bit 0. So in a 4-core and 2-
IOCU system, bits 0 - 3 of the field would represent cores 0 - 3 respectively. Bits 4 - 5 of the 
field would represent IOCU 0 - 1 respectively. Bits 6 - 7 would not be used in this example.

8.6.3 Enabling Code Prefetch
In addition to data prefetching, the CM allows prefetching of the code stream. Code prefetch-
ing is enabled by setting the CEN bit in the GCR_L2_PFT_CONTROL_B register. 

8.7 CM Uncached Semaphore Management

The I8500 CM provides a mechanism for managing uncached semaphores. This mechanism 
is managed by the Global CM Semaphore (GCR_SEM) register located at offset address 
0x0640.

A write to this register with write data bit 31 = 1 is inhibited if the SEM_LOCK bit is already 1. 
A write to this register proceeds normally if the write data has bit 31 = 0 or if the SEM_LOCK 
bit is currently 0. 

CM GCR Register Interface
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To acquire the semaphore:

1. Write this register with bit 31 = 1 and the lower bits with the threads VPID.

2. Read the register.

3. If the value read in step #2 is the same as the value as written in step #1, then a semaphore has been 
acquired, else go to step #1.

To release the semaphore:

1. Write the register with bit 31 = 0.
For more information, refer to the CM GCR Semaphore Lock register (GCR_SEM) at offset 
0x0640 in the I8500 Registers companion document. 

8.8 Custom GCR Implementation

The CM provides the ability for the system designer to implement a 64 KB block of custom 
registers that can be used to control system level functions. These registers are defined by 
the system designer and then instantiated into the design.

The existence of a custom GCR implementation in the system is selected during IP Configura-
tion. If this option is selected, the GGU_EX bit is set in the Global Custom Status register at offset 
address 0x0068 in GCR Global address space. This bit indicates that a custom GCR block is 
connected to the CM.

CM GCR Register Interface
The CM provides two global registers to handle the implementation of custom registers: the 
GCR Base register at offset 0x0008, and the Global Custom Status register located at offset 
0x0068. If a custom block is implemented, the starting address in memory of the 64 KB 
block by adding the value in GCR_BASE[47:32] to 0x10000. Note that the GCR_BASE field 
does not have a default base address and this field is undefined at reset. Therefore, it is pro-
grammer’s responsibility to program the base address into this field during boot time if a cus-
tom GCR block is implemented.

In addition, the selected address region where the registers will reside must be enabled by 
setting the GGU_EN bit in the Global Custom Base register. Note that the accessibility of this bit 
depends on the state of the GGU_EX bit. If GGU_EX is cleared (zero), indicating that no custom 
GCR is connected to the CM, then the GGU_EN bit becomes RO and is not accessible by the 
kernel. If this bit is set, indicating that a custom GCR is connected to the CM, then the 
GGU_EN bit becomes R/W and is accessible by kernel software.

This concept is described in Figure 8.4. 
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Figure 8.4 Relationship Between the CM_Present Signal and the GGU_EX and GGU_EN Bits at Reset

8.9 Error Processing

The CM detects, reports, and handles several types of hardware and software errors. When 
an error is detected, information that may be useful in debugging the error is captured in the 
Global CM Error Cause Register and the Global CM Error Address Register. The encoding of these regis-
ters is determined by the type of error. For more information, refer to Section 
8.14.4.7 “Global CM3 Error Cause Register (GCR_ERR_CAUSE): Offset 0x0048” and Section 
8.14.4.8 “Global CM3 Error Address Register (GCR_ERR_ADDR): Offset 0x0050”.

CM GCR Register Interface

When an error occurs, hardware updates the read-only ERR_TYPE field (bits 63:58) of the 
Global CM Error Cause register with one of the values listed in Table 8.3. When this field is writ-
ten, hardware also updates the 58-bit ERROR_INFO field that provides additional information 
about the error. The organization of this field varies depending on the value in the ERR_TYPE 
field. When an error occurs, kernel software can read this register to determine the type of 
error and take the appropriate actions.

If a second error is detected, it is captured in bits 63:58 of the CM Error Multiple Register. 
The only exception is if the first error was an L2 RAM correctable error (MP_CORRECT-
ABLE_ECC_ERR). In this case, the second error overwrites the first error stored in the Global 
CM Error Cause register. Note that for the second error, only the error type is captured, not the 
associated error address.

The GCR_ERROR_CAUSE.ERR_TYPE field and the GCR_ERROR_MULT.ERR_TYPE fields can be 
cleared by either a reset or by writing the current value of GCR_ERROR_CAUSE.ERR_TYPE to 
the GCR_ERROR_CAUSE. ERR_TYPE register. 

When the Global CM Error Cause Register is loaded, an interrupt may be generated if the corre-
sponding bit for that type of error is set in the Global CM Error Mask Register located at offset 
address 0x0040 (physical address 0x1FBF_8040).

Note that in the CM, the error response is independent of the mask setting, which is different 
from the previous generation CM2. If the normal response should be an ERROR, then an 
ERROR response is returned regardless of the Error Mask Register setting. The mask setting con-
trols whether an interrupt is generated in addition to the normal error response.

Table 8.3 lists the errors detected by the CM. The following subsections describe each type of 
error in more detail and provides the encoding of the ERR_INFO field for each error type. For 

GU_Present 
(Hardwired to 0)

GU_PresentCustom GCR 
Block Custom GCR block present.

No custom GCR block.

Logic 0

Logic 1

GGU_EX bit

State Access
0 RO
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a detailed description of each error type and the encoding of each error code field, refer to 
the I8500 Technical Reference Manual. 

Table 8.3 CM Error Types 

Error
Type Error Name Description Action

0 - Reserved -
1 MP_CORRECTABLE_ECC_ERR A correctable ECC error 

occurred during an L2 cache 
access. 

The error is corrected
Signal an interrupt if CM_ER-
ROR_MASK[1] = 1

2 MP_REQUEST_DECODE_ERR A decoding error was 
detected in the request.

Respond with an error to the origi-
nal requestor.
Signal an interrupt if CM_ER-
ROR_MASK[2] = 1

3 MP_UNCORRECTABLE_
ECC_ERR

An uncorrectable ECC error 
occurred during an L2 cache 
access.

Signal an interrupt if 
CM_ERROR_MASK[3] = 1

4 MP_PARITY_ERR A parity error was detected in 
the L2 data coming from 
either the core of the mem-
ory.

Signal an interrupt if 
CM_ERROR_MASK[4] = 1

5 MP_FNL_ERR If an L2 fetch and lock (FNL) 
cacheop is processed when 
only one or zero ways of the 
cache are unlocked, including 
pseudo-locks, then the FNL 
fails. 

Signal an interrupt if 
CM_ERROR_MASK[5] = 1

6 CMBIU_REQUEST_
DECODE_ERR

A decoding error was 
detected during a request on 
the BIU.

Signal an interrupt if 
CM_ERROR_MASK[6] = 1

7 CMBIU_PARITY_ERR The BIU detected a parity 
error.

Signal an interrupt if 
CM_ERROR_MASK[7] = 1

8 CMBIU_AXI_RESP_ERR The BIU detected a response 
error was detected on the AXI 
bus. 

Signal an interrupt if 
CM_ERROR_MASK[8] = 1

9 CMBIU_WID_ERR Signal an interrupt if 
CM_ERROR_MASK[9] = 1

10 RBI_BUS_ERR An error occurred on the 
Register Ring Bus during a 
register access.

Signal Interrupt if 
CM_ERROR_MASK[10] = 1

11 IOC_REQUEST_ERR An error occurred during an 
AXI request.

Signal Interrupt if 
CM_ERROR_MASK[11] = 1

12 IOC_PARITY_ERR The IOCU detected a parity 
error.

Signal Interrupt if 
CM_ERROR_MASK[12] = 1

13 IOC_RESP_ERR The IOCU detected a 
response error.

Signal Interrupt if 
CM_ERROR_MASK[13] = 1



143
mips.com

Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS I8500 Multiprocessing System Programmer’s Guide — Revision 1.00

8.10 I/O Coherence Unit (IOCU)

The I/O Coherence Unit provides an I/O coherent AXI-4 request interface to the CM. 
I/O coherent read requests see the most recently written data. I/O coherent write requests invalidate, with 
writeback if needed, copies of data held in L1 data caches. I/O coherent devices are otherwise outside the 
coherent domain. The CM assumes I/O coherent devices do not cache data, and therefore does not send 
interventions to IOCUs.

8.10.1 IOCU Features
IOCU supports the following features for easier integration:
• AXI INCR bursts up to 256 beats (128 bits/beat). IOCU translates AXI-4 burst transactions into a 

sequence of cache-line sized requests within the CM.
• Ordered coherent writes. IOCU issues coherent writes to CM in the order it receives them.
The IOCU uses the AXI signals AxCACHE[3:2] and AxUSER[0] to determine coherence, allocation, and 
prefetch attributes of each request. These signals are defined as follows:
• AxCACHE[3:2]

– 2'b00: Uncached request. Bypasses caches and coherency directory.
– 2'b10, 'b01, or 'b11: Coherent request. Consults L2 cache and coherence directory.

• ARCACHE[2]:
– 1’b0: Do not allocate in L2.
– 1’b1: Read-allocate in L2. (Coherent requests only.)

• AxUSER[0]:
– 1'b0: Not eligible for L2 prefetch.
– 1'b1: Eligible for L2 prefetch. (Coherent requests only.)

The IOCU does not support an IOMMU.

8.10.2 IOCU Control
The I8500 CM contains up to eight I/O Coherency Units (IOCU) for managing cache coher-
ency between the CM and external devices. The IOCU is a hardware block and is not directly 
programmable. However, the IOCU can be indirectly controlled using the following register 
fields:

14 HALF_PIPE_ERR The main pipeline received 
an error from the half-pipe.

Signal Interrupt if 
CM_ERROR_MASK[14] = 1

15 RBI_REGTC_REQ_ERR An illegal request was 
received by the REGTC.

Signal Interrupt if 
CM_ERROR_MASK[15] = 1

Table 8.3 CM Error Types (continued)

Error
Type Error Name Description Action
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• The read-only NUMIOCU field in bits 11:8 of the Global Config register (GCR_CONFIG) 
located at offset 0x0000 of CM GCR address space and indicates the number of IOCUs 
instantiated in the design. This field is filled by hardware during IP configuration.

• IOCU requests are prevented from being issued to MMIO regions by setting the bit 13 of 
the Global CM Control register (GCR_CONTROL) at offset 0x0010 in CM GCR address 
space. 

• IOCU requests to external devices are counted toward the outstanding request limit when 
bit 12 of the Global CM Control register (GCR_CONTROL) at offset 0x0010 in CM GCR 
address space. If this bit is set, IOCU accesses to MMIO regions are blocked once the 
MMIO outstanding limit is reached. Note that bit 13 of this register must be 0 for this bit 
to have meaning as described above.

• Software can select which IOCUs are allowed to access the CM GCR registers by program-
ming bits 23:16 of the Global CSR Access Privilege register (GCR_ACCESS) at offset 
0x0120 in CM GCR address space. Each bit corresponds to one of eight IOCUs. If the cor-
responding bit is set, accesses from that IOCU are allowed to write the GCR and Cluster 
Power Controller (CPC) registers. 

8.11 MMIO Address Regions

As described in the section entitled Verifying Overall System Configuration, the number of 
MMIO address regions is determined at IP configuration time. The I8500 supports up to four 
MMIO regions. Each region is assigned an upper and lower address bound. 

The MMIO regions are intended to be used for communicating with external PCIe devices. 
The MMIO registers allow for counting of number of non-speculative code fetches of 
uncached requests in order to avoid potential deadlock condition by having too many 
requests outstanding. This is accomplished by programming the MMIO_REQ_LIMIT field. 

8.11.1 CM GPR Register Interface
Software can set the number of MMIO requests that can be in-flight at any given time by pro-
gramming the MMIO_REQ_LIMIT field of the MMIO Request Limit register (GCR_M-
MIO_REQ_LIMIT) at offset 0x6F8.

In addition, the address range of each MMIO region is defined using the Upper and Lower 
Bound MMIO region registers. A pair of registers are used for each MMIO region, with each 
register containing a 32-bit address bound value. These registers are located at:

• Lower bound of MMIO region 0 (GCR_MMIO0_BOTTOM) at offset 0x0700

• Upper bound of MMIO region 0 (GCR_MMIO0_TOP) at offset 0x0708

• Lower bound of MMIO region 1 (GCR_MMIO1_BOTTOM) at offset 0x0710

• Upper bound of MMIO region 1 (GCR_MMIO1_TOP) at offset 0x0718

• Lower bound of MMIO region 2 (GCR_MMIO2_BOTTOM) at offset 0x0720

• Upper bound of MMIO region 2 (GCR_MMIO2_TOP) at offset 0x0728

• Lower bound of MMIO region 3 (GCR_MMIO3_BOTTOM) at offset 0x0730

• Upper bound of MMIO region 3 (GCR_MMIO3_TOP) at offset 0x0738
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8.11.2 MMIO Region Control
Each of the four MMIO regions listed above can be enabled or disabled by programming the 
MMIO_EN bit that resides in the Lower Bound register for each MMIO region (GCR_MMIO[0-
3]_BOTTOM). If the MMIO region is enabled, then the request address and CCA are used to 
determine if the request falls into an MMIO Region. The decoded address is used to deter-
mine if the access is to a MMIO region as shown in the following equation:

MMIO_BOTTOM_ADDR[47:16] <= phys_address[47:16] <= MMIO_TOP_ADDR[47:16]

If bits 47:16 of the physical address fall between the value in MMIO_BOTTOM_ADDR[47:16] 
and MMIO_TOP_ADDR[47:16], then the access is to the corresponding MMIO region.

If MMIO_CCA is set to 0x0, just the request address is used to determine whether the 
request is to an MMIO region as shown above.  If MMIO_CCA is set to 0x01, then the address 
comparison above is further qualified by whether the request has CCA = UC.  In other words, 
only UC requests will be considered eligible to hit the MMIO region. If MMIO_CCA is set to 
0x2, then the request is qualified by CCA = UCA.  If MMIO_CCA = 0x3, then the request is 
qualified by CCA = UC or CC = UCA.  In other words, either UC or UCA requests can match 
the MMIO region.  

If an address hits in multiple MMIO register address regions, then the lowest-numbered 
enabled MMIO region hit takes precedence for determining which MMIO region the request 
matches. Once a request is determined to reside in an MMIO region, that region MMIO_PORT 
field in the Lower Bound register determines where the request will be routed.  Options are 
the main memory port or an Auxiliary interface.  See section 5.13. 

The user can limit the total number of MMIO requests issued by the CM, which can be useful 
to avoid deadlock when accessing PCIe bridges that also service incoming coherent requests. 
The limit is defined by the MMIO_REQ_LIMIT field in bits 7:0 of the MMIO Request Limit 
(GCR_MMIO_REQ_LIMIT) register at offset 0x06F8 in GCR address space. Once the limit is 
reached, the CM stops serializing uncached and code fetches until a response to an MMIO 
request has been received. For example, a value of 0x01 in this field indicates one outstand-
ing MMIO request is permitted. Setting this value to 0x00 disables the MMIO limiting feature, 
allowing any amount of outstanding requests to occur. The MMIO_DISABLE_REQ_LIMIT bit in 
the region's Lower Bound Register can be set to indicate that requests to the particular MMIO 
region should not be limited.

By default, IOCU uncached requests are never considered part of the MMIO limit (to allow for 
forward progress). However, this is controllable via the GCR_CONTROL.CM_MMIO_IOCU_EN-
ABLE_REQ_LIMIT. When this bit is set, IOCU uncached requests are counted as outstanding 
MMIO requests. In this case, IOCU uncached requests are blocked if the MMIO request limit 
has been reached.

8.12 Auxiliary Interfaces

The CM supports up to four non-coherent Auxiliary AXI4 buses, called AUX0 - AUX3. The AUX 
master ports are intended to be used for lower latency access to peripherals or instruction 
SRAM. Each cluster supports up to four AUX ports. Each AUX interface has a configurable 
data width. Values of 32, 64, 128, 256 and 512 are supported. The data width is determined 
during IP configuration. Each AUX address width is 48 bits. The number of AUX ports is 
stored in the 3-bit NUMAUX field of the Global Configuration register (GCR_CONFIG) at offset 
0x0000 in GCR address space. 

The clock for each AUX interface can be provided internally by the cluster or provided exter-
nally from outside the cluster. Each internally provided AUX clock can have an independent 
clock ratio.  An externally provided clock can be provided on the external AUX clock pin.  An 
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externally provided clock is assumed to be asynchronous to the cluster. Selection between an 
internal versus external clock is done during IP configuration. 

The AUX ports are memory mapped by the MMIO GCR control registers.  There are up to 4 
MMIO regions. Each GCR_MMIO<x>_BOTTOM register listed above contains an MMIO_PORT 
field in bits 5:2 that indicates which auxiliary port the request should be routed to. This field 
is encoded as shown in Table 8.4. 

8.13 Error Processing

The CM detects, reports, and handles several types of errors that may be caused by errant 
software or hardware soft or hard errors. When an error is detected, information that may be 
useful in debugging the error is captured in the Global CM Error Cause Register and Global CM Error 
Address Register. 

When an error occurs, hardware updates the read-only ERR_TYPE field in bits 63:58 of the 
Global CM Error Cause register with one of the values listed in Table 8.3 above. When this field is 
written, hardware also updates the 58-bit ERROR_INFO field that provides additional infor-
mation about the error. The organization of this field varies depending on the value in the 
ERR_TYPE field. 

**Below text may be removed. Waiting on Darshan to reply.
When a second error is detected, it will overwrite the first error if the first error was an L2 
ram correctable error (MP_CORRECTABLE_ECC_ERR). Otherwise, the second error is cap-
tured in the CM Error Multiple Register. Note that for the second error, only the error type is 
captured, not the associated error address or error information.

When a second error is detected, the CM Error Cause (GCR_ERR_CAUSE) register should be 
overwritten if the previous error was a correctable error. The CM Error Multiple (GCR ERR_-
MULT) register traps the error information if the previous error is not correctable. Note that 
for the second error, only the error type is captured, not the associated error address or error 
information.

The GCR_ERROR_CAUSE.ERR_TYPE field and the GCR_ERROR_MULT.ERR_TYPE fields can be 
cleared by either a reset or by writing the current value of GCR_ERROR_CAUSE.ERR_TYPE to 
the GCR_ERROR_CAUSE. ERR_TYPE register. 

Table 8.4 Encoding of MMIO_PORT Field

Field Name Register Bits Encoding Port Accessed

MMIO_PORT 5:2 0x0 Main memory
0x8 AUX port 0
0x9 AUX port 1
0xA AUX port 2
0xB AUX port 3
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When the Global CM Error Cause Register is loaded, an interrupt may be generated if the corre-
sponding bit for that type of error is set in the Global CM Error Mask Register located at offset 
address 0x0040.

One distinction between error management in the CM and the previous generation CM2-
based products is in error responses when the Error Mask register is set. In CM2-based prod-
ucts; 

• If the error was generated by a request that requires a response and the corresponding 
Global CM2 Error Mask Register bit is 0, then the CM2 issues an ERROR response. 

• If the corresponding Global CM2 Error Mask Register bit is 1, then the CM2 issues a normal 
response and an interrupt is generated instead. 

In the CM version in the I8500, the error response is independent of the mask setting. If the 
normal response should be an ERROR, then an ERROR response is returned regardless of the 
Error Mask Register setting. The mask setting controls whether an interrupt is generated in addi-
tion to the normal error response.

Table 8.3 lists the errors detected by the CM. The following subsections describe each type of 
error in more detail and provide the encoding of the ERR_INFO field for each error type. 

Table 8.5 CM Error Types 

Error
Type Error Name Description Action

0 - Reserved -
1 MP_CORRECTABLE_ECC_ERR A correctable ECC error occurred 

during an L2 cache access. 
The error is corrected.
Signal an interrupt if CM_ER-
ROR_MASK[1] = 1

2 MP_REQUEST_DECODE_ERR A decoding error was detected in 
the request.

Respond with an error to the 
original requestor.
Signal an interrupt if CM_ER-
ROR_MASK[2] = 1

3 MP_UNCORRECTABLE_
ECC_ERR

An uncorrectable ECC error 
occurred during an L2 cache 
access.

Signal an interrupt if 
CM_ERROR_MASK[3] = 1

4 MP_PARITY_ERR A parity error was detected in the 
L2 data coming from either the 
core or the memory.

Signal an interrupt if 
CM_ERROR_MASK[4] = 1

5 MP_FNL_ERR If an L2 fetch and lock (FNL) 
cacheop is processed when only 
one or zero ways of the cache are 
unlocked, including pseudo-locks, 
then the FNL fails. 

Signal an interrupt if 
CM_ERROR_MASK[5] = 1

6 CMBIU_REQUEST_
DECODE_ERR

A decoding error was detected 
during a request on the BIU.

Signal an interrupt if 
CM_ERROR_MASK[6] = 1

7 CMBIU_PARITY_ERR The BIU detected a parity error. Signal an interrupt if 
CM_ERROR_MASK[7] = 1

8 CMBIU_AXI_RESP_ERR The BIU detected a response 
error was detected on the AXI 
bus. 

Signal an interrupt if 
CM_ERROR_MASK[8] = 1
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8.13.1 Error Codes 1 and 3 — Tag ECC Error
If the decimal value in the ERR_TYPE field is either 1 or 3 and there is a Tag ECC error, the 
ERROR_INFO field in the Global CM Error Cause register is organized as shown in Table 8.6

9 CMBIU_WID_ERR Signal an interrupt if 
CM_ERROR_MASK[9] = 1

10 RBI_BUS_ERR An error occurred during a register 
ring bus during a register access.

Signal Interrupt if 
CM_ERROR_MASK[10] = 1

11 IOC_REQUEST_ERR An error occurred on an IOCU 
request on the AXI bus.

Signal Interrupt if 
CM_ERROR_MASK[11] = 1

12 IOC_PARITY_ERR The IOCU detected a parity error. Signal Interrupt if 
CM_ERROR_MASK[12] = 1

13 IOC_RESP_ERR The IOCU detected a response 
error.

Signal Interrupt if 
CM_ERROR_MASK[13] = 1

14 HALF_PIPE_ERR The main pipeline received an 
error from the half-pipe.

Signal Interrupt if 
CM_ERROR_MASK[14] = 1

15 RBI_REGTC_REQ_ERR An illegal request was received by 
the REGTC bus during a NOC 
access.

Signal Interrupt if 
CM_ERROR_MASK[15] = 1

Table 8.6 State of ERR_INFO Field for Tag Error Types 1 or 3 

Bit Meaning

57 Error type
0: Tag error
1: Data error

56:45 Reserved
44:29 Indicates the way of the cache that caused the error. There is one bit per way as follows:

Bit 29: way 0
Bit 30: way 1
Bit 31: way 2
...
Bit 44: way 15

28 Bank in which the error occurred.
0: Bank 0
1: Bank 1

Table 8.5 CM Error Types (continued)

Error
Type Error Name Description Action
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27:22 Core ID value. 

The first IOCU encoding is always directly after the last core encoding. For example, in a system with 
four cores and two IOCU’s, the cores would occupy encoding 0x0 - 0x3, and the IOCU’s would 
occupy encoding 0x4 - 0x5. 

So 0x0 - 0x[n] = cores, and 0x[n+1] - 0x[m] = IOCU’s. The following example shows the encoding for 
a system with six cores and two IOCU’s. 

0x0: core 0
0x1: core 1
0x2: core 2
0x3: core 3
0x4: core 4
0x5: core 5
0x6: IOCU 0
0x7: IOCU 1

21:18 Hart ID value.
0x0: hart 0 
0x1: hart 1
0x2: hart 2
0x3: hart 3

17:14 Command. This field indicates the command type. Refer to Table 8.8 through Table 8.11 for the 
encoding of this field.

13:11 Command Group. This field indicates the command group. Refer to Table 8.7 for the encoding of this 
field.

10:8 Cache Coherency Attribute (CCA) value. This field indicates the CCA value corresponding to the 
transaction. Refer to Table 8.12 for the encoding of this field.

7:5 MCP bus transfer size. Indicates the size of the transfer on the bus. This field is encoded as 2(MCP 

size).
0x0: 1 byte
0x1: 2 bytes
0x2: 4 bytes
0x3: 8 bytes
0x4: 16 bytes
0x5: 32 bytes (Reserved. Not used in the I8500)
0x6: 64 bytes
0x7: 128 bytes (Reserved. Not used in the I8500)

4:1 Transaction type. This field indicates the type of bus transaction that caused the error. Refer to Table 
8.13 for the encoding of this field.

0 Scheduler. The I8500 core can be configured at build time with either 1 or 2 pipeline schedulers. If 
the build is configured with one scheduler, this bit is always 0. If configured with two schedulers, this 
bit can be either 0 or 1 and indicates the scheduler involved in the error.

Table 8.6 State of ERR_INFO Field for Tag Error Types 1 or 3 (continued)

Bit Meaning
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8.13.1.1 Command Group Field Encoding
Bits 13:11 indicate the type of command group. The command group is used along with the 
command to specify the operation to be performed. Memory reads and writes (cacheable as 
well as non-cacheable) usually use the "NORM" command group. Some special cache mainte-
nance operations (L1I, L1D, L2, L3) must be able to target a specific cache level as well as 
specify the operation to be performed. The encoding for the different values is given in the 
table below.

This field is decoded as shown in Table 8.7. The encoding table for each of these command 
group types are described in the following subsections.

NORM Command Field Encoding

Bits 17:14 in Table 8.7 indicate the type of command to be performed. When the Command 
Group field in bits 13:11 is set to 3’b000, indicating the NORM field encoding, the Command 
field in bits 17:14 is decoded as shown in Table 8.8. 

Table 8.7 Command Group Field Encoding 

Encoding Mnemonic Description Usage

0 NORM Normal loads and stores use this space. Normal loads and stores

1 REGS Register reads / writes and sync operations. Register access and 
sync

2 GBL Globalized (to local and other clusters) I-cache and TLB 
invalidates.

Global instruction cache 
and TLB maintenance

3 Reserved N/A

4 L1I The command is targeted at the level 1 instruction cache. Cache maintenance 
operations.

5 L1D The command is targeted at the level 1 data cache.

6 L3 The command is targeted at the level 3 cache.

7 L2 The command is targeted at the level 2 cache.

Table 8.8 NORM Command Field Encoding 

Encoding Mnemonic Description

0 Read Legacy read.

1 Write Legacy write.

2 CohReadOwn Requests an exclusive copy of the cache line.

3 CohReadShare Requests a shared copy of the cache line.

4 CohReadDiscard Request the latest copy of the cache line and is leaving the coherent domain.

5 CohEvict The line has been evicted from the cache without a change. The directory can 
be updated.

6 CohUpgrade Request ownership of a shared cache line.

7 CohUpgradeSC Request ownership of a shared cache line for the purpose of executing a Store 
Conditional instruction.
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REGS Command Field Encoding

Bits 17:14 in Table 8.7 indicate the type of command to be performed. When the Command 
Group field in bits 13:11 is set to 3’b001, indicating the REGS field encoding, the Command 
field in bits 17:14 is decoded as shown in Table 8.9. 

8 CohWriteBack Transfers ownership of a cache line back to the next level along with the new 
copy of the line data.

9 CohWriteInvali-
date

Injects new, possibly sub cache line data into a coherent system. This com-
mand is only valid from the L1 to the L2 and is also called a Commit to L2.

10 CohReadDiscar-
dAlloc

Request the latest copy of the cache line and is leaving the coherent domain. 
The next level cache should allocate the line if no present. This command is 
expected to be used for cacheable instruction fetches.

11 CohPrefOwn This command attempts to pre-fetch the specified line in to the L2 cache in the 
“exclusive” state. If the line already exists in the cache in the exclusive or modi-
fied states, then this command does not change the line. Otherwise, a com-
mand needs to get sent to the next level to gain ownership of the line. No data 
is returned to the requestor.

12 CohPrefShr This command attempts to pre-fetch the specified line in to the L2 cache in the 
“shared” state. If the line already exists in the cache, then this command does 
not change the line. Otherwise, a command needs to get sent to the next level 
to obtain a shared copy of the line. No data is returned to the requestor.

13 CohPrefWriteInv This prefetch command is similar to the CohPrefOwn command but in addition 
to bringing the cache line in to the L2 in one of the ‘exclusive’ states, it makes 
sure that the line is not currently owned by any L1. This command is not 
expected to be issued by a core but can be used by the L2 prefetcher within the 
CM main pipeline.

14 CohGetOwn This command is used to get ownership of the cache line from the next level 
without asking for the data. This command can only be issued when the entire 
cache line is being overwritten and is not expected to be issued by the core.

15 TagErr This command is used to indicate that a tag error has been detected by the 
requestor as it tried to send out a command. This command is typically used on 
a write type command where the data has already been sent out on the WID 
channel and an error is detected while trying to generate the address for the 
request. This command is sent to the next level so that the SDB Id is not left 
hanging. The receiver just frees up the resources as it processes the command 
sending back a response without data.

Table 8.9 REGS Command Field Encoding 

Encoding Mnemonic Description

0 DbgRead Debug Read. This is used by the core (and CM to CMBIU) for debug register 
reads (DMXSEG, DRSEG and CSR).

Table 8.8 NORM Command Field Encoding (continued)

Encoding Mnemonic Description
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GBL Command Field Encoding

Bits 17:14 in Table 8.7 indicate the type of command to be performed. When the Command 
Group field in bits 13:11 is set to 3’b010, indicating the GBL field encoding, the Command 
field in bits 17:14 is decoded as shown in Table 8.10. 

1 DbgWrite Debug Write. This is used by the core (and CM to CMBIU) for debug register 
writes (DMXSEG, DRSEG and CSR).

2 RegRead Register Read. This is used by the core for Fast Debug Channel (FDC) reads.  
This is used by CM to CMBIU for both FDC reads and memory mapped register 
reads.

3 RegWrite Register Write. This is used by the core for Fast Debug Channel (FDC) writes.  
This is used by CM to CMBIU for both FDC writes and memory mapped regis-
ter writes.

4 - 7 Reserved. 

8 MemSync0 This is used for memory synchronization operations and has a type of 0. This 
value does not correspond to the "stype" field of a SYNC instruction.

9 MemSync1 This is used for memory synchronization operations and has a type of 1. This 
value does not correspond to the "stype" field of a SYNC instruction.

10 MemSync2 This is used for memory synchronization operations and has a type of 2. This 
value does not correspond to the "stype" field of a SYNC instruction.

11 MemSync3 This is used for memory synchronization operations and has a type of 3. This 
value does not correspond to the "stype" field of a SYNC instruction.

12 - 15 Reserved.

Table 8.10 GBL Command Field Encoding 

Encoding Mnemonic Description

0 GBL_HIT_INVI Invalidate the specified Physical Address (PA) in all I-caches.

1 GBL_ONE_INVI Invalidate all addresses in one I-cache, selected by the General Number Regis-
ter (GNR).

2 GBL_ALL_INVI Invalidate all addresses in all I-cache.

3 Reserved

4 GBL_GINVGT Guest invoked, Invalidate one or many lines except for wired in matching Guest 
TLB.

5 GBL_RINVGT Root invoked, Invalidate one or many lines including wired in matching Guest 
TLB

6 GBL_INVT Invalidate one or many lines in Root TLB, except for wired entries.

Table 8.9 REGS Command Field Encoding 

Encoding Mnemonic Description
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Cache Maintenance (L1I, L1D, L2, L3) Command Field Encoding

Bits 17:14 in Table 8.7 indicate the type of command to be performed. When the Command 
Group field in bits 13:11 is set to 3’b100 through 3’b111, indicating the Cache Maintenance 
encodings, the Command field in bits 17:14 is decoded as shown in Table 8.11.

The first set of encodings correspond to the encoding of bits [20:18] of the CACHE instruc-
tion. The last encoding is only valid for the L1I command group. 

7 GBL_SYNC Sync and return only when all previous Global group commands have com-
pleted their tasks.

8 - 15 Reserved.

Table 8.11 Cache Maintenance Command Field Encoding 

Encoding Mnemonic Description

0 IdxWbInval This command corresponds to the "Index invalidate / Index write-
back invalidate" CacheOp. Write-back caches flush out the data to 
the next level if the line was dirty. All caches invalidate the line at the 
end of the operation.

1 IdxLdTag This command corresponds to the "Index load tag / data" type 
CacheOp. The tag and data RAMs are read out at the location spec-
ified by the index and returned with the response.
IdxLdTag (0x1) loads both Tag RAM and Data RAM into the L2 
GCR’s.

2 IdxStTag This command corresponds to the "Index store tag/data" type 
CacheOp. This command is accompanied with write data that con-
tains the tag/data bits to be written.
IdxStTag (0x2) stores both Tag RAM and Data RAM into the L2 
GCR’s.

3 Impl / Reserved This command corresponds to the "Implementation Dependent" 
CacheOp. This command is currently unsupported and considered 
reserved.

4 ConInvalidate / HitInvl This command corresponds to the "Hit invalidate" type CacheOp or 
the "Coherent Invalidate" command on the OCP 3.0 bus protocol. It 
indicates that the addressed line needs to be invalidated irrespec-
tive of its ownership status.

5 CohCopyBackInval / Hit-
WbInvl

This command corresponds to the "Hit Write Back Invalidate" type 
CacheOp or the "Coherent Copy Back Invalidate" command on the 
OCP 3.0 bus protocol. It indicates to the system that the addressed 
line needs to be flushed from the system if in a dirty state and invali-
dated.

Table 8.10 GBL Command Field Encoding 

Encoding Mnemonic Description
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8.13.1.2 CCA Field Encoding
Bits 10:8 indicate the cache coherency attribute. This field is decoded as shown in Table 8.12. 

8.13.1.3 Type Field Encoding
Bits 4:1 indicate the type of transaction when the error occurred. This field is decoded as 
shown in Table 8.12. 

6 CohCopyBack / HitWb This command corresponds to the "Hit Write Back" type CacheOp 
or the "Coherent Copy Back" command on the OCP 3.0 bus proto-
col. It indicates that the addressed line needs to be written out to 
memory if in a dirty state. The line can continue to stay valid in the 
caches if already present.

7 FetchNLock This command corresponds to the "Fetch and Lock" type CacheOp. 
The line should be brought in to the cache and locked so that it does 
not get evicted due to random replacement.

8 - 15 Reserved.

Table 8.12  Cache Coherency Attributes Field Encoding 

CCA[10:8] Attribute

3’b000 Mapped to ‘3b101 (Cached Coherent Read-Share).

3’b001 Mapped to ‘3b101 (Cached Coherent Read-Share).

3’b010 Uncached.

3’b011 Mapped to ‘3b101 (Cached Coherent Read-Share).

3’b100 Mapped to ‘3b101 (Cached Coherent Read-Share).

3’b101 Cached Coherent Read-Share.

3’b110 Mapped to ‘3b101 (Cached Coherent Read-Share).

3’b111 Uncached Accelerated.

Table 8.13 Type Field Encoding

 Encoding  Mnemonic Description

0 ReqNoData Normal request with no associated data. Used for most requests.
1 Reserved
2 ReqWData Normal request with associated data. Used for stores & write back requests.
3 Reserved
4 IReqNoResp Intervention request with no response required.
5 IReqWResp Intervention request with a response required.

Table 8.11 Cache Maintenance Command Field Encoding (continued)

Encoding Mnemonic Description



155
mips.com

Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS I8500 Multiprocessing System Programmer’s Guide — Revision 1.00

8.13.2 Error Codes 1 and 3 — Data ECC Error
If the decimal value in the ERR_TYPE field is either 1 or 3 and there is a Data ECC error, the 
ERROR_INFO field in the Global CM Error Cause register is organized as shown in Table 8.14

6 IReqNoRespDat Intervention request with associated data and no response required.
7 IReqWRespDat Intervention request with associated data and response required.
8 RespNoData Normal response with no data returned.
9 RespDataFol Normal response with data to follow on a different transaction.
10 RespWData Normal response with data being returned (3 clocks later).
11 RespDataOnly Normal response with data being returned (3 clocks later) as a consequence of 

a "data-to-follow" response.
12 IRespNoData Intervention response with no data returned.
13 IRespDataFol Intervention response with data to follow on a different transaction.
14 IRespWData Intervention response with data being returned (3 clocks later).
15 IRespDataOnly Intervention response with data being returned (3 clocks later) as a conse-

quence of a "data-to-follow" response.

Table 8.14 State of ERR_INFO Field for Data Error Types 1 or 3 

Bit Meaning

57 Error type
0: Tag error
1: Data error

56:49 DWORD with error. This field indicates the DWORD that caused the error.
48:45 Indicates the way of the cache that caused the error. This field is encoded as follows. Note that this 

field is handled differently from the Tag error shown in Table 8.6, where the field is one bit per way.
0x0: way 0
0x1: way 1
0x2: way 2
...
0xF: way 15

44:29 Indicates which one of up to 8K sets of the cache that caused the error. This field is encoded as fol-
lows:
0x0000: set 0
0x0001: set 1
0x0002: set 2
...
0x1FFE: set 8,190
0x1FFF: set 8,191

28 Bank in which the error occurred.
0: Bank 0
1: Bank 1

Table 8.13 Type Field Encoding

 Encoding  Mnemonic Description
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27:22 Core ID value. 

The first IOCU encoding is always directly after the last core encoding. For example, in a system 
with four cores and two IOCU’s, the cores would occupy encoding 0x0 - 0x3, and the IOCU’s would 
occupy encoding 0x4 - 0x5. 

So 0x0 - 0x[n] = cores, and 0x[n+1] - 0x[m] = IOCU’s. The following example shows the encoding for 
a system with six cores and two IOCU’s. 

0x0: core 0
0x1: core 1
0x2: core 2
0x3: core 3
0x4: core 4
0x5: core 5
0x6: core 6
0x7: core 7
0x8: IOCU 0
0x9: IOCU 1
0xA: IOCU 2
0xB: IOCU 3
0xC: IOCU 4
0xD: IOCU 5
0xE: IOCU 6
0xF: IOCU 7

21:18 Hart ID value.
0x0: hart 0 
0x1: hart 1
0x2: hart 2
0x3: hart 3

17:14 Command. This field indicates the command type. Refer to Table 8.8 for more information.
13:11 Command Group. This field indicates the command group. Refer to Table 8.7 for the encoding of 

this field.
10:8 Cache Coherency Attribute (CCA) value. This field indicates the CCA value corresponding to the 

transaction. Refer to Table 8.12 for the encoding of this field.
7:5 MCP bus transfer size. Indicates the size of the transfer on the bus. This field is encoded as 2(MCP 

size).
0x0: 1 byte
0x1: 2 bytes
0x2: 4 bytes
0x3: 8 bytes
0x4: 16 bytes
0x5: 32 bytes (Reserved. Not used in the I8500)
0x6: 64 bytes
0x7: 128 bytes (Reserved. Not used in the I8500)

4:1 Transaction type. This field indicates the type of bus transaction that caused the error. Refer to 
Table 8.13 for the encoding of this field.

Table 8.14 State of ERR_INFO Field for Data Error Types 1 or 3 (continued)

Bit Meaning
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8.13.3 Error Code 2 — Request Decode Error
If the decimal value in the ERR_TYPE field is 2, indicating a decode request error, the 
ERROR_INFO field in the Global CM Error Cause register is organized as shown in Table 8.15. 

0 Scheduler. The I8500 core can be configured at build time with either 1 or 2 pipeline schedulers. If 
the build is configured with one scheduler, this bit is always 0. If configured with two schedulers, this 
bit can be either 0 or 1 and indicates the scheduler involved in the error.

Table 8.15 State of ERR_INFO Field for Data Error Type 2 

Bit Meaning

57 Reserved.
56 AIA access error. Hardware sets this bit to indicate a code fetch was sent to AIA address 

space.
55 Non-Coherent MMIO error. Hardware sets this bit to indicate if an invalid MMIO access 

was made to MMIO address space.
54 Coherent MMIO error. Hardware sets this bit to indicate that coherent access was made to 

MMIO address space.
53 Reserved.
52 CCA or LL/SC error. Hardware sets this bit to indicate that the error occurred in the decod-

ing of the CCA field, either a register access with CCA not equal to UC was attempted, or 
or an LLSC request was made to a register.

51 Size error. Hardware sets this bit to indicate that the error occurred in the decoding of the 
Size field. A register access with size not equal to 4 or 8 bytes was attempted.

50 Multiple regions error. Hardware sets this bit to indicate that the error occurred in the 
decoding of multiple regions. 

49 Coherency request or redirect error. Hardware sets this bit to indicate that a coherent 
request was made to either a register-mapped address, or a redirect access was made to 
a block redirect that does not exist.

48 Debug register access error. Hardware sets this bit to indicate a Debug register access. 
47 FDC Register Access. Hardware sets this bit to indicate a Fast Debug Channel (FDC) 

access.
46 Normal Register Access. Hardware sets this bit to indicate a normal register mapped 

access.
45 GCR Hit. Hardware sets this bit to during a hit to the GCR registers. 
44 User GCR Hit. Hardware sets this bit to during a hit to the User GCR registers. 
43 CPC Hit. Hardware sets this bit to during a hit to the Cluster Power Controller (CPC). 
42 AIA Hit. Hardware sets this bit to during a hit to the Advanced Interrupt Architecture (AIA). 
41 IOCU Hit. Hardware sets this bit to during a hit to the I/O Coherence Unit (IOCU). 

40:37 Decode CMD. This field indicates the command sent to memory on a register request. 
This field has the same encoding as the Command field. The bit orientation of this field 
depends on the type of error as listed in Table 8.7 through Table 8.11. 

Table 8.14 State of ERR_INFO Field for Data Error Types 1 or 3 (continued)

Bit Meaning
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36:34 Decode CMD Group. This field indicates the indicates the Command Group sent to mem-
ory on a register request. The field has the same encoding as Table 8.7.

33:28 Decode Destination ID. This field indicates the destination ID sent to memory on a register 
request.

27:22 Core ID value. 

The first IOCU encoding is always directly after the last core encoding. For example, in a 
system with four cores and two IOCU’s, the cores would occupy encoding 0x0 - 0x3, and 
the IOCU’s would occupy encoding 0x4 - 0x5. 

So 0x0 - 0x[n] = cores, and 0x[n+1] - 0x[m] = IOCU’s. The following example shows the 
encoding for a system with six cores and two IOCU’s. 

0x0: core 0
0x1: core 1
0x2: core 2
0x3: core 3
0x4: core 4
0x5: core 5
0x6: IOCU 0
0x7: IOCU 1

21:18 Hart ID value. 
0x0: hart 0 
0x1: hart 1
0x2: hart 2
0x3: hart 3

17:14 Command. This field indicates the command type. Refer to Refer to Table 8.8 for the 
encoding of this field.

13:11 Command Group. This field indicates the command group. Refer to Table 8.7 for the 
encoding of this field.

10:8 Cache Coherency Attribute (CCA) value. This field indicates the CCA value corresponding 
to the transaction. Refer to Table 8.12 for the encoding of this field.

7:5 MCP bus transfer size. Indicates the size of the transfer on the bus. This field is encoded 
as 2(MCP size).

0x0: 1 byte
0x1: 2 bytes
0x2: 4 bytes
0x3: 8 bytes
0x4: 16 bytes
0x5: 32 bytes (Reserved. Not used in the I8500)
0x6: 64 bytes
0x7: 128 bytes (Reserved. Not used in the I8500)

4:1 Transaction type. This field indicates the type of bus transaction that caused the error. 
Refer to Table 8.13 for the encoding of this field.

Table 8.15 State of ERR_INFO Field for Data Error Type 2 (continued)

Bit Meaning
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8.13.4 Error Code 4 — Parity Error
If the decimal value in the ERR_TYPE field is 4, indicating a parity error, the ERROR_INFO 
field in the Global CM Error Cause register is organized as shown in Table 8.16. 

0 Scheduler. The I8500 core can be configured at build time with either 1 or 2 pipeline 
schedulers. If the build is configured with one scheduler, this bit is always 0. If configured 
with two schedulers, this bit can be either 0 or 1 and indicates the scheduler involved in the 
error.

Table 8.16 State of ERR_INFO Field for Data Error Type 4 

Bit Meaning

57:36 Reserved.
35:28 DWORD with error. This field indicates the DWORD that caused the error.
27:22 Port ID value. This field indicates the port ID value of all cores and IOCU’s in the system. 

The first IOCU encoding is always directly after the last core encoding. For example, in a system 
with four cores and two IOCU’s, the cores would occupy encoding 0x0 - 0x3, and the IOCU’s 
would occupy encoding 0x4 - 0x5.

So 0x0 - 0x[n] = cores, and 0x[n+1] - 0x[m] = IOCU’s. The example below shows the encoding for 
a six core and two IOCU system.

0x0: core 0
0x1: core 1
0x2: core 2
0x3: core 3
0x4: core 4
0x5: core 5
0x6: IOCU 0
0x7: IOCU 1

21:18 Hart ID value. 
0x0: hart 0 
0x1: hart 1
0x2: hart 2
0x3: hart 3

17:14 Command. This field indicates the command type. The encoding of this field depends on the type 
of error. Refer to Table 8.8 through Table 8.11 for the encoding of this field.

13:11 Command Group. This field indicates the command group. Refer to Table 8.7 for the encoding of 
this field.

10:8 Cache Coherency Attribute (CCA) value. This field indicates the CCA value corresponding to the 
transaction. Refer to Table 8.12 for the encoding of this field.

Table 8.15 State of ERR_INFO Field for Data Error Type 2 (continued)

Bit Meaning
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8.13.5 Error Code 5 — Fetch and Lock Error
If the decimal value in the ERR_TYPE field is 5, indicating a fetch and lock error, the 
ERROR_INFO field in the Global CM Error Cause register is organized as shown in Table 8.17. 

7:5 MCP bus transfer size. Indicates the size of the transfer on the bus. This field is encoded as 
2(MCP size).

0x0: 1 byte
0x1: 2 bytes
0x2: 4 bytes
0x3: 8 bytes
0x4: 16 bytes
0x5: 32 bytes (Reserved. Not used in the I8500)
0x6: 64 bytes
0x7: 128 bytes (Reserved. Not used in the I8500)

4:1 Transaction type. This field indicates the type of bus transaction that caused the error. Refer to 
Table 8.13 for the encoding of this field.

0 Scheduler. The I8500 core can be configured at build time with either 1 or 2 pipeline schedulers. If 
the build is configured with one scheduler, this bit is always 0. If configured with two schedulers, 
this bit can be either 0 or 1 and indicates the scheduler involved in the error.

Table 8.17 State of ERR_INFO Field for Data Error Type 5 

Bit Meaning

57:29 Reserved.
28 Bank in which the error occurred.

0: Bank 0
1: Bank 1

27:22 Port ID value. This field indicates the port ID value of all cores and IOCU’s in the system. 

The first IOCU encoding is always directly after the last core encoding. For example, in a system 
with four cores and two IOCU’s, the cores would occupy encoding 0x0 - 0x3, and the IOCU’s 
would occupy encoding 0x4 - 0x5.

So 0x0 - 0x[n] = cores, and 0x[n+1] - 0x[m] = IOCU’s. The example below shows the encoding for 
a six core and two IOCU system.

0x0: core 0
0x1: core 1
0x2: core 2
0x3: core 3
0x4: core 4
0x5: core 5
0x6: IOCU 0
0x7: IOCU 1

Table 8.16 State of ERR_INFO Field for Data Error Type 4 (continued)

Bit Meaning
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8.13.6 Error Codes 6, 7, 8 — Bus Interface Unit (BIU) Errors
If the decimal value in the ERR_TYPE field is between 6 and 8, the ERR_INFO field in the 
Global Error Cause register is organized as shown in Table 8.18. 

21:18 Hart ID value. 
0x0: hart 0 
0x1: hart 1
0x2: hart 2
0x3: hart 3

17:14 Command. This field indicates the command type. The encoding of this field depends on the type 
of error. Refer to Table 8.8 through Table 8.11 for the encoding of this field.

13:11 Command Group. This field indicates the command group. Refer to Table 8.7 for the encoding of 
this field.

10:8 Cache Coherency Attribute (CCA) value. This field indicates the CCA value corresponding to the 
transaction. Refer to Table 8.12 for the encoding of this field.

7:5 MCP bus transfer size. Indicates the size of the transfer on the bus. This field is encoded as 
2(MCP size).

0x0: 1 byte
0x1: 2 bytes
0x2: 4 bytes
0x3: 8 bytes
0x4: 16 bytes
0x5: 32 bytes (Reserved. Not used in the I8500)
0x6: 64 bytes
0x7: 128 bytes (Reserved. Not used in the I8500)

4:1 Transaction type. This field indicates the type of bus transaction that caused the error. Refer to 
Table 8.13 for the encoding of this field.

0 Scheduler. The I8500 core can be configured at build time with either 1 or 2 pipeline schedulers. If 
the build is configured with one scheduler, this bit is always 0. If configured with two schedulers, 
this bit can be either 0 or 1 and indicates the scheduler involved in the error.

Table 8.18 State of ERR_INFO Field for Error Types 6 through 8 

Bit Meaning

57:54 Subcode. This field indicates the type of bus error and is encoded as follows:

0: Internal MCP request decode error
1: AXI parity error
2: Internal MCP parity error
3: AXI xRESP error (SLVERR or DECERR)
4: Unexpected AXI RID
5: Unexpected AXI BID
6: Reserved
7: AXI CD parity error
8: MMIO port error
9: NOC_REG_ACCESS error

53:49 Reserved

Table 8.17 State of ERR_INFO Field for Data Error Type 5 (continued)

Bit Meaning
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48:41 AXI ID value. Valid if TYPE = 8. This value applies to subcodes 1, 3, 4, and 5 in bits 57:54 above. 
Refer to Table 8.3 for a list of error types.

40:37 RRESP/BRESP. Valid if TYPE = 8. This value applies to subcodes 1, 3, 4, and 5 in bits 57:54 above. 
Refer to Table 8.3 for a list of error types.

36 Request data buffer lock (rdb_lock). This field is valid for subcodes 0 - 3, 6, 8 and 9.
35:31 Request data buffer thread ID (req_thrd_id). This field is valid for subcodes 0 - 3, 6, 8 and 9.
30:27 Request port (req_port). This field is valid for subcodes 0 - 3, 6, 8 and 9. See the table below for 

encoding.
26 Request data buffer write (rdb_wr). This field is valid for subcodes 0 - 3, 6, 8 and 9.
25 Request data buffer uncached accelerated (rdb_uca). This field is valid for subcodes 0 - 3, 6, 8 and 

9.
24 Request data buffer uncached (rdb_uc). This field is valid for subcodes 0 - 3, 6, 8 and 9.

23:0 Reserved.

Table 8.19 BIU Error Request Port (req_port) Field Encoding — Bits 30:27

Bits 30:27 Output Channel

0x0 C_MEM_AR (memory read)
0x1 C_MEM_AW (memory write)
0x2 AUX0_AR (Aux port 0 read)
0x3 AUX0_AW (Aux port 0 write)
0x4 AUX1_AR (Aux port 1 read)
0x5 AUX1_AW (Aux port 1 write)
0x6 AUX2_AR (Aux port 2 read)
0x7 AUX2_AW (Aux port 2 write)
0x8 AUX3_AR (Aux port 3 read)
0x9 AUX3_AW (Aux port 3 write)

0x10 - 0x11 Reserved
0x12 ITU_AR (ITU read)
0x13 ITU_AW (ITU write)
0x14 Reserved
0x15 RBI local registers read and write

Table 8.18 State of ERR_INFO Field for Error Types 6 through 8 (continued)

Bit Meaning
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8.13.7 Error Code 10 — Ring Bus Error
If the decimal value in the ERR_TYPE field is 10, the ERR_INFO field in the Global CM Error Cause 
register is organized as shown in Table 8.20.  

Table 8.20 State of ERR_INFO Field for Error Type 10 

Bit Meaning

57:54 Sub-code
0: reserved
1: Master endpoint response error (see CMD[1:0] field for error type)
2: Register ring bus error
3. Byte enable error

53:48 Reserved
47 cmd[3]. In the I8500, this bit is always 0.

0: Standard packets
1: Extended packets (reserved for future implementations)

46 cmd[2]. Identifies the packet as a read or write packet. This field is encoded as follows:
0: Read
1: Write

45:44 cmd[1:0]
0: No error (packet is valid)
1: Endpoint not available. When an endpoint is powered down or in the clock-off state, the slave 
node responds with an "Endpoint Unavailable Error". 
2: Destination not found or byte enable error on MCP/REGTC requests. If the master acting as the 
request terminator finds an unclaimed request, it turns the packet into a response packet swapping 
the src/dest ID’s and signal a "Destination Not Found Error". This error can also indicate that a byte 
enable error has occurred attempting to not write all bytes of the word or double-word transaction
3: Parity error on RRB. If a bus parity error occurs, the endpoint responds with a "Bus Parity Error".  
Normal request packets created by the master endpoints set this field to zero.
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43:38 Destination ID. Indicates the destination of the operation when the error occurred. This field is 
encoded in decimal as follows:

0 - 5: Core 0 through Core 5. Values 6 - 7 are reserved
8 - 15: Reserved
16 - 23: IOCU 0 through IOCU 7
24: GIC
25: User-defined GCR block
26: Memory
27 - 31: Reserved
32: CM master
33: CPC
34: GCR block
35: DBU master
36: DBU dmxseg normal
37: DBU dmxseg debug
38 - 39: Reserved
40: AUX 0
41: AUX 1
42: AUX 2
43: AUX 3
44 - 61: Reserved
62: No destination error
63: No destination OK

The values 36-37 accommodate DBU dmxseg normal and debug mode accesses.  The slave node 
connected to the Debug Unit slave block allows multiple dest_id's to match the slave node and be 
forwarded to the Debug Unit slave interface.  This allows access the Debug Unit dmxseg block 
memory mapping using two modes of operation (normal and debug/privileged).

The values 62-63 allow the address decode block of the CM to indicate to the register bus interface 
that there is no destination for an enabled memory mapped register area or that a write from a 
requestor has been blocked by global access control.  The register bus interface returns a 
response packet to the initiator without sending a packet over the register bus.  If the register bus 
interface decodes a dest_id of "No Dest Err", an error response packet is returned.  If the register 
bus interface decodes a dest_id of "No Dest OK", a normal response packet is returned.  Read 
responses for dest_ids of "No Dest Err" and "No Dest OK" will return data that is all zeros.

37:32 Destination cluster ID. 
This field indicates the destination ID number of the cluster where the error occurred. Each register 
bus cluster request node and cluster response node is enumerated with a CLUSTER_ID.  The 
CLUSTER_ID input is hardwired to its associated identifier when it is instantiated.  This value of the 
CLUSTER_ID is compared against the value in this field to determine if the register bus cluster 
node should send the packet along its own cluster ring or sent it to the multi-cluster ring. 

31:24 Shared data buffer ID (sbd_id)
This identifier is used to match the response to the original request.  This field is determined by the 
originating master of the transaction, i.e. CM or Debug Unit, and will be returned to that master.

23:18 Source ID. Indicates the source of the operation when the error occurred. This field is encoded the 
same as the destination ID field in bits 43:38.

Table 8.20 State of ERR_INFO Field for Error Type 10 (continued)

Bit Meaning
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8.13.8 Error Code 11 — IOCU Request Error
If the decimal value in the ERR_TYPE field is 11, the ERR_INFO field in the Global CM Error Cause 
register is organized as shown in Table 8.21.  

17:12 Source cluster ID.
This field indicates the source ID number of the cluster where the error occurred. Each register bus 
cluster request node and cluster response node is enumerated with a CLUSTER_ID.  The CLUS-
TER_ID is hardwired to its associated identifier when it is instantiated.  This value of the CLUS-
TER_ID is compared against the value in this field to determine if the register bus cluster node 
should send the packet along its own cluster ring or sent it to the multi-cluster ring. 

11:6 Address (reads only)
This field gives the byte address for the register bus transaction.

5:3 Size (reads only).
The data byte length is interpreted as 2size.  The protocol supports 1 to 64 bytes of data in powers 
of two.  For register transactions only 32-bit (4 byte) and 64-bit (8-byte) sizes are supported. This 
field is encoded as follows:

3’b000: Byte
3’b001: Half -word (2 bytes)
3’b010: Word (4 bytes)
3’b011: Double-word (8 bytes)
3’b100: Quad-word (16 bytes)
3’b101: Reserved (32 bytes)
3’b110: Cache line (64 bytes)
3’b111: Reserved (128 bytes)

2:0 Reserved

Table 8.21 State of ERR_INFO Field for Error Type 11 

Bit Meaning

57:54 Sub-code
0x0: FIXED mode. AXI burst is set to FIXED mode. This mode is not supported by the IOCU.
0x1: WRAP mode. On a read request, if burst mode is set to WRAP, then the LEN field must be 
either 0 or 3. If the LEN field is neither 0 or 3, an error is generated. 
0x2: LEN > 0 and SIZE < 128. If the LEN field is greater than 0 and the SIZE field is <128, an error 
is generated. 
0x3: For a write request with the Burst mode set to WRAP and the LEN field set to 3, the starting 
offset must be 0. If the offset is non-zero, an error is generated.
0x4 - 0xF: Reserved

53:0 Reserved

Table 8.20 State of ERR_INFO Field for Error Type 10 (continued)

Bit Meaning
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8.13.9 Error Code 12 — IOCU Parity Error
If the decimal value in the ERR_TYPE field is 12, the ERR_INFO field in the Global CM Error Cause 
register is organized as shown in Table 8.22.  

8.13.10 Error Code 13 — IOCU Response Error
If the decimal value in the ERR_TYPE field is 13, the ERR_INFO field in the Global CM Error Cause 
register is organized as shown in Table 8.23.  

Table 8.22 State of ERR_INFO Field for Error Type 12 

Bit Meaning

57:56 Reserved
55:54 IOCU command

0: Reserved
1: Write
2: Read
3: Reserved

53:52 IOCU Cache coherency attribute
0: Reserved
1: Coherent
2: Non-coherent
3: Reserved

51:50 Reserved
49:44 AXI device ID. This field is configurable and can be any value up to a maximum of 64 device ID’s. 

49:44 = 6’b000000: AXI device ID 0
....
49:44 = 6’b111111: AXI device ID 63

43 Reserved
42:39 AXI request ID. This field is configurable and can be any value up to a maximum of 16 request 

ID’s. Note that there can be up to 16 read requests and 16 write requests.

42:39 = 0x0: AXI request ID 0
....
42:39 = 0xF: AXI request ID 15

38:0 Reserved

Table 8.23 State of ERR_INFO Field for Error Type 13 

Bit Meaning

57:56 Error type.
0: No RIN error
1: Bus error
2. Cache error

55:54 IOCU command
0: Reserved
1: Write
2: Read
3: Reserved
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8.13.11 Error Code 15 — RBI REGTC Bus Request Error
If the decimal value in the ERR_TYPE field is 15, the ERR_INFO field in the Global CM Error Cause 
register is organized as shown in Table 8.24.  

53:52 IOCU Cache coherency attribute
0: Reserved
1: Coherent
2: Non-coherent
3: Reserved

51:50 Reserved
49:44 AXI device ID. This field is configurable and can be any value up to a maximum of 64 device ID’s. 

49:44 = 6’b000000: AXI device ID 0
....
49:44 = 6’b111111: AXI device ID 63

43 Reserved
42:39 AXI request ID. This field is configurable and can be any value up to a maximum of 16 request ID’s. 

Note that there can be up to 16 read requests and 16 write requests.

42:39 = 0x0: AXI request ID 0
....
42:39 = 0xF: AXI request ID 15

38:0 Reserved

Table 8.24 State of ERR_INFO Field for Error Type 15 

Bit Meaning

57:56 Subcode.
0: Burst error
1: Size error
2. Length error

53 Reserved
52:42 AxID. This field stores the REGTC AxID of the REGTC request that generated the error. 

41 Read/write.
0: Write
1: Read

40:20 AxUSER. This field stores the AxUSER of the REGTC request that generated the error.
19:0 AxADDR. This field stores the AxADDR of the REGTC request that generated the error.

Table 8.23 State of ERR_INFO Field for Error Type 13 (continued)

Bit Meaning
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8.14 CM3 General Control Registers

The General Control Registers (GCR) address space contains control/status registers for the 
entire Coherent Processing System cluster and for the individual Core-CPUs in the cluster. 
The GCR address space has a total size of 32 KB in the 512KB block of memory. The location 
of GCR block in the system address map is controlled by the GCR_BASE register. Physically, 
the registers are located within the GCR block of the Coherence Manager (CM) and are 
accessed by the Core-CPUs using load/store instructions, or via the I/O Coherence Unit 
(IOCU), using read/write instructions. 

At reset, GCR_BASE is set to the first naturally aligned 512KB block of memory below the 
reset PC of the cluster's core number 0, unless the GCR_BASE reset value has been overrid-
den in the system configuration. GCR_BASE can be reprogrammed by writing to the 
GCR_BASE register within the GCR block.

8.14.1 Accessing the GCR’s
The diagram illustrates a typical setup for a single cluster register ring. The MIPS register bus 
interface connects to both a master and a slave node on the register bus. The GCR block is 
linked to the register bus slave node. This example system includes 8 register bus slave 
nodes, each connected to a different slave endpoint. Traffic on the register ring moves clock-
wise through point-to-point connections. Masters can send read and write requests to any 
slave. When a slave node receives a request for its endpoint, it processes the request and 
sends a response back. For read requests, the response includes data; for write requests, it's 
just an acknowledgment. The slave node then forwards the response to the next node.

Figure 8.5 GCR Accesses on the Register Ring Bus
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Requests to access GCRs can come from either of the two master nodes connected to end-
points at CM3_DBU or CM3_RBI in CM3_BIU. If the destination ID matches a GCR register 
endpoint, the request is sent there. If not, the packet continues to the network adapter or 
memory interface.

8.14.2 Controlling the GCR’s
The CM3_BIU receives MCP requests from the CM3_MAINPIPE.  If the request is for register 
bus address space, then the transaction is translated to the Register Bus Interface (RBI) for-
mat and sent onto the Register Ring Bus (RRB). 

The CM3 design allows the GCR blocks to have a write access control to their register 
regions. This is controlled by using the Global CSR Access Privilege Register (GLOBAL_AC-
CESS_REG Offset 0x0120) within the GCR block this register is a 24-bit register. 

The lower 8-bits [7:0] correspond to each core requestor. Bit 0 corresponds to Core0; Bit 1 
corresponds to Core1, and so on. The upper 8-bits [23:16] corresponds to each IOCU 
requestor. Bit 16 corresponds to IOCU0; Bit 17 corresponds to IOCU 1 and so on. 

The default value for the GLOBAL_ACCESS_REG 0s 0xFF00FF, which allows all the requesters 
in the system to have write access to both GCR and CPC registers. To disable write access to 
the GCR and CPC registers, software needs to clear the corresponding requestor's bit. This 
will prevent the corresponding requester from writing to the GCR and CPC registers.

8.14.3 CM3 GCR Group Offsets
The GCR address space is divided into two types; a Global address space that contains per-
cluster CM registers that are accessible by all cores, and a Core address space that contains 
the per-core CM registers. The offset locations of these registers relative to GCR_BASE is 
shown in Table 8.25. 

8.14.4 GCR Global Registers
The GCR.Global region contains the following registers, which are described in detail in the 
subsequent per-register descriptions. These registers are accessible by all cores in the sys-
tem. A map of the global register is shown in Table 8.26. 

Table 8.25 CM GCR Register Group Offsets

Offset from GCR_BASE  Size  Register Block Type  Description

  0x0_0000 - 0x0_1FFF  8,192 bytes   GCR.Global   Per-cluster CM registers
  0x0_2000 - 0x0_5FFF  16,384 bytes   GCR.Core   Per-core CM registers
  0x0_6000 - 0x0_7FFF  8,192 bytes ----  Reserved

Table 8.26 CM GCR Global Registers 

Offset from 
GCR_BASE   Register Name  Description

  0x0_0000   GCR_CONFIG CM global configuration
  0x0_0008   GCR_BASE Base address of GCR block
  0x0_0010   GCR_CONTROL Control bits for the Coherence Manager
  0x0_0030   GCR_REV RevisionID for the GCR hardware
  0x0_0038   GCR_ERR_CONTROL Controls Error Checking/Correct logic within the CM3
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  0x0_0040   GCR_ERR_MASK Controls what Errors are reported as Interrupts
  0x0_0048   GCR_ERR_CAUSE Captures info when an error occurs within the CM3
  0x0_0050   GCR_ERR_ADDR Captures address which caused the CM3 error.
  0x0_0058   GCR_ERR_MULT Captures information for subsequent CM3 errors.
  0x0_0068   GCR_CUSTOM_STATUS Existence and status of the custom user-defined GCR
  0x0_00D0   GCR_AIA_STATUS Existence and status of AIA
  0x0_00E0   GCR_CACHE_REV Revision of cache attached to the coherent Cluster
  0x0_00F0   GCR_CPC_STATUS Existence and status of CPC
  0x0_0120   GCR_ACCESS Controls which Cores/IOCUs can modify the GCR and 

CPC Registers
  0x0_0130   GCR_L2_CONFIG Provides L2 cache configuration
  0x0_0160   GCR_SDB_CONFIG Defines the Memory, Intervention, PFU and total SDB for 

the cluster
  0x0_0200   GCR_IOCU_REV Revision of IOCU
  0x0_0208   GCR_DBU_REV Revision of Debug Unit
  0x0_0210   GCR_AIA_REV Revision of AIA
  0x0_0240   GCR_L2_RAM_CONFIG Configuration of the L2 cache and control the dynamic L2 

RAM low power states
  0x0_0280   GCR_SCRATCH0 General Purpose Read/Write Register
  0x0_0288   GCR_SCRATCH1 General Purpose Read/Write Register
  0x0_0300   GCR_L2_PFT_CONTROL Controls the L2 prefetcher
  0x0_0308   GCR_L2_PFT_CONTROL_B L2 prefetch 2nd control register
  0x0_0600   GCR_L2_TAG_ADDR Holds Address Portion of CACHE L2 Load or Store Tag & 

Data CACHE instruction
  0x0_0608   GCR_L2_TAG_STATE Holds State Portion of CACHE L2 Load or Store Tag & 

Data instruction
  0x0_0610   GCR_L2_DATA Holds Results Portion of CACHE L2 Load or Store Tag & 

Data instruction
  0x0_0618   GCR_L2_ECC Holds ECC Portion of CACHE L2 Load or Store Tag & 

Data instruction
  0x0_0620   GCR_L2SM_COP Holds CMD, TYPE, MODE, RESULT and PRESENT bit 

info of L2 Cache Op State machine
  0x0_0628   GCR_L2SM_TAG_ADDR_COP Holds Tag address details L2 CacheOp State Machine
  0x0_0640   GCR_SEM Provides Uncached Semaphore
  0x0_0650   GCR_TIMEOUT_TIMER_LIMIT Timeout limit for transaction timeout timer in number of 

CM clocks. This register is only available if MIPS_FUSA_-
TIMER is implemented.

  0x0_06F8   GCR_MMIO_REQ_LIMIT Number of MMIO requests that the CM3 will allow to be in 
flight.

Table 8.26 CM GCR Global Registers (continued)

Offset from 
GCR_BASE   Register Name  Description
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  0x0_0700   GCR_MMIO0_BOTTOM Lowest address of MMIO Region 0
  0x0_0708   GCR_MMIO0_TOP Highest address of MMIO Region 0
  0x0_0710   GCR_MMIO1_BOTTOM Lowest address of MMIO Region 1
  0x0_0718   GCR_MMIO1_TOP Highest address of MMIO Region 1
  0x0_0720   GCR_MMIO2_BOTTOM Lowest address of MMIO Region 2
  0x0_0728   GCR_MMIO2_TOP Highest address of MMIO Region 2
  0x0_0730   GCR_MMIO3_BOTTOM Lowest address of MMIO Region 3
  0x0_0738   GCR_MMIO3_TOP Highest address of MMIO Region 3
  0x0_0740   GCR_MMIO4_BOTTOM Lowest address of MMIO Region 4
  0x0_0748   GCR_MMIO4_TOP Highest address of MMIO Region 4
  0x0_0750   GCR_MMIO5_BOTTOM Lowest address of MMIO Region 5
  0x0_0758   GCR_MMIO5_TOP Highest address of MMIO Region 5
  0x0_0760   GCR_MMIO6_BOTTOM Lowest address of MMIO Region 6
  0x0_0768   GCR_MMIO6_TOP Highest address of MMIO Region 6
  0x0_0770   GCR_MMIO7_BOTTOM Lowest address of MMIO Region 7
  0x0_0778   GCR_MMIO7_TOP Highest address of MMIO Region 7
  0x0_0900   GCR_DB_PC_CTL Controls starting/stopping of Performance Counters
  0x0_0920   GCR_DB_PC_OV Indicate which performance counters have overflowed
  0x0_0930   GCR_DB_PC_EVENT Select event type of each CM3 performance counter
  0x0_0980   GCR_DB_PC_CYCL Count Cycles
  0x0_0990   GCR_DB_PC_QUAL0 Performance counter 0 event qualifiers.
  0x0_0998   GCR_DB_PC_CNT0 Performance Counter a value.
  0x0_09A0   GCR_DB_PC_QUAL1 Performance counter 0 event qualifiers.
  0x0_09A8   GCR_DB_PC_CNT1 Performance Counter a value.
  0x0_1000   GCR_DB_PC_HIST_CTL Histogram Performance Counter Enable bits.
  0x0_1008   GCR_DB_PC_HIST_GRAN Used to set the granularity of counters.
  0x0_1010   GCR_DB_PC_HIST_CNT[0-63] 64-bit histogram performance counter [0-15]
  0x0_1018

  ……….
  0x0_1208

Table 8.26 CM GCR Global Registers (continued)

Offset from 
GCR_BASE   Register Name  Description
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8.14.4.1 Global Config Register (GCR_CONFIG): Offset 0x0000
This register provides information on the overall system configuration. These fields are read-
only and their reset state is determined at IP configuration time.   

8.14.4.2 GCR Base Register (GCR_BASE): Offset 0x0008
Within the physical address space, the location of the GCR is set by the GCR_BASE register. 
The MIPS default power-up value produces the physical address 0x1FB8_0000. A different 
default value may be specified at IP configuration time.   

Figure 8.6 Global Config Register Bit Assignments
63 44 43 42 41 40 39 32

RSVD
CLUS-

TER_COH_CA-
PABLE

REGTC_
PRESENT RSVD DBU_PRESENT CFG_CLUSTER_ID

31 30 29 23 22 20 19 16 15 12 11 9 8 7 0

ITU_PRESENT RSVD NUM_CLUSTERS NUMAUX ADDR_REGIONS RSVD NUMIOCU PCORES

Table 8.27 Global Config Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:44 Reserved. RO 0

CLUSTER_COH_
CAPABLE

43 Set to 1 if the cluster supports ACE coherent intercon-
nect.

RO Config

REGTC_PRESENT 42 Set to 1 if REGTC is present in this cluster. RO Config

RSVD 41 Reserved RO 0

DBU_PRESENT 40 Set to 1 if Debug Unit (DBU) is present in this cluster. RO Config

CFG_CLUSTER_ID 39:32 Indicates the cluster ID of the current cluster. RO Cluster_ID

ITU_PRESENT 31 Set to 1 if ITU is present in this cluster. This bit is always 0 
as the ITU is not implemented in the I8500.

RO Config

RSVD 30 Reserved. RO Config

NUM_CLUSTERS 29:23 Indicates total number of clusters present in the design. RO Config

NUMAUX 22:20 Number of auxiliary memory ports in this cluster. RO Config

ADDR_REGIONS 19:16 Number of MMIO address region registers. This value is 
determined by the IP configuration.

RO Config

RSVD 15:12 Reserved. RO 0

NUMIOCU 11:8 Total number of IOCUs in this cluster. RO Config

PCORES 7:0 Total number of CPU Cores - 1 in this cluster, not includ-
ing the IOCUs. 

RO Config

Figure 8.7 GCR Base Register Bit Assignments
63 48 47 32

RSVD GCR_BASE[47:32]

31 15 14 0

GCR_BASE[31:15] RSVD
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8.14.4.3 Global CM3 Control Register (GCR_CONTROL): Offset 0x0010
This register contain the control bits for the CM3.    

Table 8.28 GCR Base Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:48 Reserved. RO 0

GCR_BASE 47:15 This field sets the base address of the 32KB GCR block.
When writing this register with a 64b write the register 
acts normally and all bits are updated immediately. How-
ever, when this register is written with 32b writes, then bits 
47:32 must be written first, followed by the write to the 
lower 32b. 

A 32b write to the upper portion of the register does not 
immediately change the GCR_BASE value. Instead, the 
write data is stored in an internal shadow register. A sub-
sequent 32b write to the lower portion of this register 
causes updates GCR_BASE[47:32] to be loaded with the 
value stored in the internal shadow register and 
GCR_BASE[31:15] to be loaded with the value being writ-
ten.

Note that GCR[47:32] is only updated on a 32b write if 
there was a previous 32b write to the GCR_BASE[47:32].

R/W Config

RSVD 14:0 Reserved. RO 0

Figure 8.8 Global CM3 Control Register Bit Assignments
63 40 39 32

RSVD MEM_UC_PORT_READ_WRITE_UNORDER

31 30 25 24 23 22 21 20 19 18 17 16

RSVD ARB_PRI_
RAISE_CNT

MEM_CACHED
_BUFFERABLE

MEM_UC_
BUFFERABLE

MEM_UCA_
BUFFERABLE RSVD

MEM_UC_-
FORCE_PEND_RE

SP

MEM_AXPROT1_
ROOT_SECURE

DISABLE_WR
_ORDER RSVD

15 14 13 12 11 9 8 7 6 5 0

IOCU_RD_
ALLOC_OWN

CORE_RD_
OWN

CM3_MMIO_IOCU
_DISABLE_UC_

REQS

CM3_MMIO_IOCU
_ENABLE_REQ_

LIMIT
RSVD

MEM_G-
CR_CHANG
E_PENDING

IOC_FIFOS-
_1_1_DISABLE

MEM_FIFOS-
_1_1_DISABLE RSVD

Table 8.29 Global CM3 Control Register Bit Descriptions 

Name Bits Description R/W
Reset 
State

RSVD 63:40 Reserved. Must be written with a value of 0. RO 0
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MEM_UC_PORT_READ_
WRITE_UNORDER

39:32 When this bit is cleared (0), UC requests enforce order 
by reusing an AxID in each read/write channel, and 
between reads and writes by waiting for request 
responses on AXI before issuing the next request. 

When this bit is set (1), all UC requests are allowed to be 
issued on AXI independent from each other. This may 
cause Write-Write, Read-Write, or Write-Read order 
errors unless order is protected elsewhere in the sys-
tem.  Bits 0 to (n-1) for n cores, n to (n+m-1) for m iocus 

R/W 0

RSVD 31 Reserved. RO 0

ARB_PRI_RAISE_CNT 30:25 Determines how main arbiter treats low priority requests. 
Normally high priority requests are always selected for 
serialization ahead of low priority requests. However, 
setting ARB_PRI_RAISE_CNT to a non-zero value will 
ensure that a low priority will be serviced after waiting 
ARB_PRI_RAISE_CNT cycles.

R/W 0x20

MEM_CACHED_BUFFERABLE 24 Sets the BUFFERABLE bit on the memory AXI port for 
cached requests.

R/W 0

MEM_UC_BUFFERABLE 23 Sets the BUFFERABLE bit on the memory AXI port for 
uncached requests.

R/W 0

MEM_UCA_BUFFERABLE 22 Sets the BUFFERABLE bit on the memory AXI port for 
uncached accelerated requests.

R/W 0

RSVD 21 Reserved. RO 0

MEM_UC_FORCE_
PEND_RESP

20 Setting this bit causes UC requests not be issued on the 
AXI bus until previous UC response has been received.

R/W 0

MEM_AXPROT1_
ROOT_SECURE

19 When set, causes AxPROT[1] to be 0 (secure) for any 
access from a zero guestID.

R/W 0

Table 8.29 Global CM3 Control Register Bit Descriptions (continued)

Name Bits Description R/W
Reset 
State
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DISABLE_WR_ORDER 18:17 The DISABLE_WR_ORDER field controls how coherent 
writes are handled by the CM. Coherent writes can be 
issued though the IOCU’s and by the cores. 

The DISABLE_WR_ORDER field changes the behavior 
of the CM in two ways. First, it determined if the CM 
ensures that coherent writes are globally visible in order 
or not. Second, it determines the type of request issued 
to the ACE bus when a coherent write misses the L2 
cache. Type of requests include:

DISABLE_           ENSURE                 ACE
WR_                      WRITE                     REQUEST
ORDER                ORDER                   TYPE

00                           YES                   CleanUnique
01                           Reserved          Reserved
10                           NO                    CleanUnique
11                           NO                    MakeUnique

When DISABLE_WR_ORDER is 10 or 11, the CM does 
not ensure that coherent writes are globally visible in 
order. In the case of IOCU coherent writes, if ordering is 
required then the IO subsystem must ensure the order 
itself by not issuing a subsequent write until it has 
received a response from the previous one.

If DISABLE_WR_ORDER is 10, a full line coherent write 
that misses the L2 cache causes the CM to issue an 
ACE CleanUnique command, which forces the network 
to writeback data to memory if another cluster has the 
line in a MODIFIED state.

If DISABLE_WR_ORDER is 11,  a full line coherent write 
that misses the L2 cache causes the CM to issue an 
ACE MakeUnique command, which does not require the 
network to writeback data to memory.

R/W Config

RSVD 16 Reserved. RO 0

Table 8.29 Global CM3 Control Register Bit Descriptions (continued)

Name Bits Description R/W
Reset 
State



176
mips.com

Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS I8500 Multiprocessing System Programmer’s Guide — Revision 1.00

IOCU_RD_ALLOC_OWN 15 If IOCU_RD_ALLOC_OWN is 0, when a Read with L2 
Allocation is issued through the IOCU, then the CM 
issues a read to the coherent directory without request-
ing ownership of the line. If the line is in the MODIFIED 
state in another cluster, the coherent network may write 
the data to memory prior to providing the data to the 
requesting cluster. 

If IOCU_RD_ALLOC_OWN is 1, when a Read with L2 
Allocation is issued through the IOCU, then the CM 
issues a read for ownership to the coherent directory. 
If the line is in the MODIFIED state in another cluster, 
then coherent network is not required to write the data to 
memory, thereby providing a performance improvement. 
However, in this mode, the change in ownership may 
cause reduced system level performance in the case of 
read-only sharing involving the IOCU.

R/W Config

CORE_RD_OWN 14 If CORE_RD_OWN is 0, when the Core executes a load 
instruction that misses the L1 and L2 caches, then the 
CM issues a read to the coherent directory without 
requesting ownership of the line. If the line is in the 
MODIFIED state in another cluster, the coherent direc-
tory may write the data to memory prior to providing the 
data to the requesting cluster.

If CORE_RD_OWN is 1, when a Core executes a load 
instruction that misses the L1 and L2 caches, then the 
CM issues a read for ownership to the coherent direc-
tory. 

If the line is in the MODIFIED state in another cluster, 
then coherent network is not required to write the data to 
memory, thereby providing a performance improvement. 
However, in this mode, the change in ownership may 
cause reduced system level performance in the case of 
read-only sharing.

R/W Config

CM3_MMIO_IOCU_
DISABLE_UC_REQS

13 Incoming IOCU UC requests will be prevented from 
being issued to MMIO regions and will receive a BUS-
ERR response.  (This can be enabled by software to 
assist in MMIO debugging if required).

R/W 0

CM3_MMIO_IOCU_
ENABLE_REQ_LIMIT

12 Enables IOCU UC requests to be counted in MMIO out-
standing request limit and to have its UC requests 
blocked if the MMIO outstanding request limit is 
reached.  This field only has an effect if CM3_MMIO_IO-
CU_DISABLE_UC_REQS = 0.

R/W 0

RSVD 11:9 Reserved. RO 0

MEM_GCR_CHANGE_PENDING 8 Indicates that a change to one of the MEM_* bits 
changed it that CM has not yet observed the change.

RO 0

IOC_FIFOS_1_1_DISABLE 7 When set this disables the ioc clock crossing fifos ability 
to use 1:1 mode. Typically this should be programmed to 
0.

R/W 0

Table 8.29 Global CM3 Control Register Bit Descriptions (continued)

Name Bits Description R/W
Reset 
State
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8.14.4.4 GCR Revision Register (GCR_REV): Offset 0x0030
This register provides the revision number of the CM3, with major and minor revision.   

8.14.4.5 GCR Error Control Register (GCR_REV): Offset 0x0038
This register control the error control functions for the L2 cache.   

MEM_FIFOS_1_1_DISABLE 6 When set this disables the mem clock crossing FIFOs 
ability to use 1:1 mode. Typically this should be pro-
grammed to 0.

R/W 0

RSVD 5:0 Reserved. RO 0

Figure 8.9 GCR Revision Register Bit Assignments
63 32

RSVD

31 16 15 8 7 0

RSVD MAJOR_REV MINOR_REV

Table 8.30 GCR Revision Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:16 Reserved. Must be written with a value of 0. RO 0

MAJOR_REV 15:8 CM3 Major revision number. This field reflects the major 
revision of the GCR block. A major revision might reflect 
the changes from one product generation to another. This 
value changes based on the processor revision. Refer to 
the errata sheet for the exact value of this field.

RO Config

MINOR_REV 7:0 CM3 Minor revision number. This field reflects the minor 
revision of the GCR block. A minor revision might reflect 
the changes from one release to another. This value 
changes based on the processor revision. Refer to the 
errata sheet for the exact value of this field.

RO Config

Figure 8.10 GCR Error Control Register Bit Assignments
63 32

RSVD

31 2 1 0

RSVD L2_ECC_EN L2_ECC_SUPPORTED

Table 8.31 GCR Error Control Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:2 Reserved. RO 0

Table 8.29 Global CM3 Control Register Bit Descriptions (continued)

Name Bits Description R/W
Reset 
State
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8.14.4.6 Global CM3 Error Mask Register (GCR_ERR_MASK): Offset 0x0040
Controls what errors are reported as interrupts.This register is used in conjunction with the 
Global CM3 Error Cause and Global CM3 Error Address registers to determine the type of 
error and the address which caused the error.   

8.14.4.7 Global CM3 Error Cause Register (GCR_ERR_CAUSE): Offset 0x0048
This register captures info when an error occurs within the CM3. This register is used in con-
junction with the Global CM3 Error Mask and Global CM3 Error Address registers to determine 
the type of error and the address which caused the error.

NOTE: this register is reset on a cold reset only.   

L2_ECC_EN 1 Setting this bit enables L2 ECC checking and error report-
ing. 

R/W 1

L2_ECC_SUPPORTED 0 This bit is set by hardware if L2 ECC is supported. Cur-
rently L2 ECC is always available.

RO 1

Figure 8.11 Global CM3 Error Mask Register Bit Assignments
63 32

ERR_MASK[63:32]

31 0

ERR_MASK[31:0]

Table 8.32 Global CM3 Error Mask Register Bit Descriptions 

Name Bits Description R/W Reset State

ERR_MASK 63:0 CM3 Error Mask field. Each bit in this field represents an 
Error Type. If the bit is set, an interrupt is generated if an 
error of that type is detected. For a list of error codes, 
refer to Table 8.5.

If the bit is set, the transaction for Read-Type Errors com-
pletes with OK response to avoid double reporting of the 
error.

R/W 0

Figure 8.12 Global CM3 Error Cause Register Bit Assignments
63 58 57 32

ERR_TYPE ERR_INFO

Table 8.31 GCR Error Control Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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8.14.4.8 Global CM3 Error Address Register (GCR_ERR_ADDR): Offset 0x0050
This register captures address which caused the CM3 error. This register is used in conjunc-
tion with the Global CM3 Error Mask and Global CM3 Error Address registers to determine the 
type of error and the address which caused the error.

NOTE: this register is reset on a cold reset only.   

8.14.4.9 Global CM3 Error Multiple Register (GCR_ERR_MULT): Offset 0x0058
This register captures information for subsequent CM3 errors. The Global CM3 Error Cause, 
Global CM3 Error Address, and Global CM3 Error Mask registers described above provide 
information on the type of error, and the address which caused the error. This register is used 
to log the type of secondary error.

NOTE: this register is reset on a cold reset only.   

31 0

ERR_INFO

Table 8.33 Global CM3 Error Cause Register Bit Descriptions 

Name Bits Description R/W Reset State

ERR_TYPE 63:58 Indicates type of error detected. When ERROR_TYPE is 
zero, no errors have been detected. When ERROR_-
TYPE is non-zero, another error will not be reloaded until 
a power-on reset or this field is written to the current value 
of ERR_TYPE.

R/W 0

ERR_INFO 57:0 Information about the error. Refer to Section 8.13 “Error 
Processing” for more information. 

RO 0

Figure 8.13 Global CM3 Error Address Register Bit Assignments
63 48 47 32

RSVD ERR_ADDR

31 0

ERR_ADDR

Table 8.34 Global CM3 Error Address Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:48 Reserved RO 0

ERR_INFO 47:0 Request address which caused error. Loaded when the 
Global Error Cause Register is loaded. 

RO Undefined

Figure 8.14 Global CM3 Error Multiple Register Bit Assignments
63 58 57 32

ERR_2ND RSVD

31 0

RSVD
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8.14.4.10 GCR Custom Status Register (GCR_CUSTOM_STATUS): Offset 0x0068
This register determines the existence and status of the custom user-defined GCR block.   

8.14.4.11 GCR AIA Status Register (GCR_AIA_STATUS): Offset 0x00D0
This register determines the existence and status of the AIA interrupt architecture block.   

Table 8.35 Global CM3 Error Multiple Register Bit Descriptions 

Name Bits Description R/W Reset State

ERR_2ND 63:58 Type of second error.  Loaded when the Global CM3 Error 
Cause Register has valid error information and a second 
error is detected. 

When ERR_2ND is zero, a second error has not been 
detected. When ERR_2ND is non-zero, this field will not 
be reloaded until a power-on reset or this field is written to 
current value of ERR_TYPE.

RO 0

RSVD 57:0 Reserved RO 0

Figure 8.15 GCR Custom Status Register Bit Assignments
63 32

RSVD

31 1 0

RSVD GCU_EX

Table 8.36 GCR Custom Status Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:1 Reserved RO 0

GCU_EX 0 If this bit is set, the Custom GCR is connected to the 
CM3. The state of this bit is set based on whether or not 
this block is implemented at build time as determined by 
the state of the GU_Present signal. 

If a Custom GCR block is not present, the GU_Present 
pin is driven to 0. If there is a custom GCR block present, 
then the user must drive GU_Present = 1 inside their cus-
tom GCR module.

RO 0

Figure 8.16 GCR AIA Status Register Bit Assignments
63 32

RSVD

31 1 0

RSVD AIA_EX
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8.14.4.12 Cache Revision Register (GCR_CACHE_REV): Offset 0x00E0
This register determines the revision of the cache attached to the coherent cluster.   

8.14.4.13 GCR Cluster Power Controller Status Register (GCR_CPC_STATUS): Offset 0x00F0
This register determines the existence and status of the CPC power control block.   

Table 8.37 GCR AIA Status Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:1 Reserved RO 0

AIA_EX 0 If this bit is set, the AIA is present in the CM3. RO 1

Figure 8.17 Cache Revision Register Bit Assignments
63 32

RSVD

31 16 15 8 7 0

RSVD MAJOR_REV‘ MINOR_REV

Table 8.38 Cache Revision Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:16 Reserved RO 0

MAJOR_REV 0 This field reflects the major revision of the Cache block 
inside the CM3.

RO Config

MINOR_REV 0 This field reflects the minor revision of the Cache block 
inside the CM3.

RO Config

Figure 8.18 GCR CPC Status Register Bit Assignments
63 32

RSVD

31 1 0

RSVD CPC_EX

Table 8.39 GCR CPC Status Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:1 Reserved RO 0

AIA_EX 0 This bit is always 1 as the CPC is always connected to the 
CM3.

RO 1
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8.14.4.14 Global CSR Address Privilege Register (GCR_ACCESS): Offset 0x0120
This register controls which Cores/IOCUs can modify the GCR and CPC Registers. This regis-
ter can be used to inhibit specific cores or IOCUs from writing GCR and CPC registers. Each 
bit in this register controls the access from a particular requestor. Bits 7:0 control access for 
cores 7-0 and bits 23:16control access from IOCU7 to IOCU0. 

If the bit is set, the corresponding requester is able to write to the GCR and CPC registers. 
This includes all registers within the Global and Global Debug control blocks. If the bit is 
clear, any write request from that requestor to the GCR registers will be dropped. 

NOTE: Care must be taken to not write a 0 to all fields in this register. Writing all zeros inhib-
its writes from all requestors to all registers until the CM3 is reset.

**I don’t think we have CORE-LOCAL and CORE_OTHER anymore. I removed these 
references from the second paragraph above. Needs technical review by the SME. 
Siddharth to review second paragraph.
  

Figure 8.19 Global CSR Access Privilege Register Bit Assignments
63 24 23 22 21 20

RSVD ACCESS_EN
_IOCU_7

ACCESS_EN
_IOCU_6

ACCESS_EN_
IOCU_5

ACCESS_EN
_IOCU_4

19 18 17 16 15 8 7 0

ACCESS_EN
_IOCU_3

ACCESS_EN
_IOCU_2

ACCESS_EN
_IOCU_1

ACCESS_EN
_IOCU_0 RSVD ACCESS_EN

Table 8.40 Global CSR Access Privilege Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:24 Reserved RO 0

ACCESS_EN_IOCU_7 23 When this bit is set (1), accesses from IOCU7 (if imple-
mented) are enabled to write the GCR and CPC registers. 
When this bit is cleared (0), accesses from IOCU7 (if 
implemented) are inhibited.

RO 1

ACCESS_EN_IOCU_6 22 When this bit is set (1), accesses from IOCU6 (if imple-
mented) are enabled to write the GCR and CPC registers. 
When this bit is cleared (0), accesses from IOCU6 (if 
implemented) are inhibited.

R/W 1

ACCESS_EN_IOCU_5 21 When this bit is set (1), accesses from IOCU5 (if imple-
mented) are enabled to write the GCR and CPC registers. 
When this bit is cleared (0), accesses from IOCU5 (if 
implemented) are inhibited.

R/W 1

ACCESS_EN_IOCU_4 20 When this bit is set (1), accesses from IOCU4 (if imple-
mented) are enabled to write the GCR and CPC registers. 
When this bit is cleared (0), accesses from IOCU7 (if 
implemented) are inhibited.

R/W 1

ACCESS_EN_IOCU_3 19 When this bit is set (1), accesses from IOCU3 (if imple-
mented) are enabled to write the GCR and CPC registers. 
When this bit is cleared (0), accesses from IOCU3 (if 
implemented) are inhibited.

R/W 1
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8.14.4.15 GCR L2 Configuration Register (GCR_L2_CONFIG): Offset 0x0130
This register provides the L2 cache configuration. The L2 cache size (in bytes) can be com-
puted as associativity * line_size * sets_per_way.

For example, if SET_SIZE = 4 (1K), LINE_SIZE = 5 (64 Bytes), and ASSOC = 15 (16-ways), 
the L2 cache is 1024 * 64 * 16 = 1MB.   

ACCESS_EN_IOCU_2 18 When this bit is set (1), accesses from IOCU2 (if imple-
mented) are enabled to write the GCR and CPC registers. 
When this bit is cleared (0), accesses from IOCU2 (if 
implemented) are inhibited.

R/W 1

ACCESS_EN_IOCU_1 17 When this bit is set (1), accesses from IOCU1 (if imple-
mented) are enabled to write the GCR and CPC registers. 
When this bit is cleared (0), accesses from IOCU1 (if 
implemented) are inhibited.

R/W 1

ACCESS_EN_IOCU_0 16 When this bit is set (1), accesses from IOCU0 (if imple-
mented) are enabled to write the GCR and CPC registers. 
When this bit is cleared (0), accesses from IOCU0 (if 
implemented) are inhibited.

R/W 1

RSVD 15:8 Reserved. RO 0

ACCESS_EN 7:0 Access enables for each core, where bit 0 corresponds to 
Core0, and bit 7 corresponds to Core7.

When a given bit is set (1), accesses from the Core  (if 
implemented) are enabled to write the GCR and CPC reg-
isters. When the bit is cleared (0), accesses from the Core  
(if implemented) are inhibited.

R/W 0xFF

Figure 8.20 GCR L2 Configuration Register Bit Assignments
63 32 31 30 27 26 25 24

RSVD REG_
EXISTS RSVD COP_

LRU_WE
COP_TAG_
ECC_WE

COP_-
DATA_EC-

C_WE

23 21 20 19 16 15 12 11 8 7 0

RSVD L2_BYPASS RSVD SET_SIZE LINE_SIZE ASSOC

Table 8.41 GCR L2 Configuration Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:32 Reserved RO 0

REG_EXISTS 31 This bit is hardwired to '1' to indicate the presence of the 
Config2 register.

RO 1

RSVD 30:27 Reserved. RO 0

Table 8.40 Global CSR Access Privilege Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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8.14.4.16 System SDB Configuration Register (GCR_SDB_CONFIG): Offset 0x00160
This register determines the existence and status of the CPC power control block.   

COP_LRU_WE 26 When set to 1, the TAG_LRU field of the 
GCR_L2_TAG_STATE field is written into the L2 LRU 
RAM when an L2 Store Tag and Data Cache Op is exe-
cuted. 

When set to 0, the L2 LRU RAM is not updated when an 
L2 Store Tag and Data Cache Op is executed.

R/W 1

COP_TAG_ECC_WE 25 When set to 1, the TAG_ECC  field of GCR_L2_ECC reg-
ister is written into the ECC portion of the L2 Tag RAM 
when an L2 Store and Data Tag Cache Op is executed. 

When set to 0, the ECC written is computed for the values 
in GCR_L2_TAG_ADDR and GCR_L2_TAG_STATE 
when the L2 Store Tag and Data Cache Op is executed.

R/W 0

COP_DATA_ECC_WE 24 When set to 1, the DATA_ECC field of GCR_L2_ECC reg-
ister is written into the ECC portion of the L2 Data RAM 
when an L2 Store Tag and Data Cache Op is executed. 

When set to 0, the ECC written is computed for the values 
in GCR_L2_DATA and GCR_L2_ when the L2 Store Tag 
and Data Cache Op is executed.

R/W 0

RESERVED 23:21 Reserved. RO 0

L2_BYPASS 20 When set to 1, the L2 cache is placed in bypass mode. R/W 0

RSVD 19:16 Reserved. RO 0

SET_SIZE 15:12 Set Size. This field sets the L2 cache number of sets per 
way and is encoded as follows: 

0x2: 256 sets per way
0x3: 512 sets per way
0x4: 1024 sets per way
0x5: 2048 sets per way
0x6: 4096 sets per way
0x7: 8192 sets per way
0x8: 16K sets per way
0x9: 32K sets per way
0xA: 64K sets per way

RO Config

LINE_SIZE 11:8 L2 data cache line size. 0x5 indicates a 64 byte cache line 
size.

RO 0x5

ASSOC 7:0 L2 cache associativity. 0xF indicates 16-way associativity. RO Config

Figure 8.21 System SDB Configuration Register Bit Assignments
63 56 55 48 47 40 39 32

RSVD CM3_SDB_NUM_
ENT_REQUIRED CM3_PFU_SDB_COUNT CM3_PFU_BASE_SDB_ID

Table 8.41 GCR L2 Configuration Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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8.14.4.17 IOCU Revision Register (GCR_IOCU_REV): Offset 0x0200
This register determines the revision of the IOCU device attached to the coherent cluster.   

8.14.4.18 DBU Revision Register (GCR_DBU_REV): Offset 0x0208
This register determines the revision of the DBU device attached to the coherent cluster.   

31 24 23 16 15 8 7 0

CM3_INTV_SDB_COUNT CM3_INTV_BASE_SDB_ID CM3_MEM_SDB_COUNT CM3_MEM_BASE_SDB_ID

Table 8.42 GCR System SDB Configuration Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:56 Reserved RO 0

CM3_SDB_NUM_
ENT_REQUIRED

55:48 Provides total number of SDBs required. RO Config

CM3_PFU_SDB_COUNT 47:40 Provides SDB count for PFU. RO Config

CM3_PFU_BASE_SDB_ID 39:32 Provides BASE_SDB_ID for PFU SDBs. RO Config

CM3_INTV_SDB_COUNT 31:24 Provides SDB count for Intervention. RO Config

CM3_INTV_BASE_SDB_ID 23:16 Provides BASE_SDB_ID for Intervention SDBs, RO Config

CM3_MEM_SDB_COUNT 15:8 Provides SDB count for memory. RO Config

CM3_MEM_BASE_SDB_ID 7:0 Provides BASE_SDB_ID for memory SDBs, RO Config

Figure 8.22 IOCU Revision Register Bit Assignments
63 32

RSVD

31 16 15 8 7 0

RSVD MAJOR_REV‘ MINOR_REV

Table 8.43 IOCU Revision Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:16 Reserved RO 0

MAJOR_REV 0 This field reflects the major revision of the IOCU attached 
to the CM3. A major revision might reflect the changes 
from one product generation to another. The value of 0x0 
means that no IOCU is attached. 

RO Config

MINOR_REV 0 This field reflects the minor revision of the IOCU attached 
to the CM3. A minor revision might reflect the changes 
from one release to another. 

RO Config

Figure 8.23 DBU Revision Register Bit Assignments
63 32

RSVD
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8.14.4.19 AIA Revision Register (GCR_AIA_REV): Offset 0x0210
This register determines the revision of the AIA device attached to the coherent cluster.   

8.14.4.20 L2 RAM Configuration Register (GCR_L2_RAM_CONFIG): Offset 0x0240
Provides information about the configuration of the L2 cache and controls the dynamic L2 
RAM low power states.   

31 16 15 8 7 0

RSVD MAJOR_REV‘ MINOR_REV

Table 8.44 DBU Revision Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:16 Reserved RO 0

MAJOR_REV 0 This field reflects the major revision of the DBU attached 
to the CM3. A major revision might reflect the changes 
from one product generation to another. The value of 0x0 
means that no DBU is attached. 

RO Config

MINOR_REV 0 This field reflects the minor revision of the DBU attached 
to the CM3. A minor revision might reflect the changes 
from one release to another. 

RO Config

Figure 8.24 AIA Revision Register Bit Assignments
63 32

RSVD

31 16 15 8 7 0

RSVD MAJOR_REV‘ MINOR_REV

Table 8.45 AIA Revision Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:16 Reserved RO 0

MAJOR_REV 0 This field reflects the major revision of the AIA attached to 
the CM3. A major revision might reflect the changes from 
one product generation to another. The value of 0x0 
means that no AIA is attached. 

RO Config

MINOR_REV 0 This field reflects the minor revision of the AIA attached to 
the CM3. A minor revision might reflect the changes from 
one release to another. 

RO Config

Figure 8.25 L2 RAM Configuration Register Bit Assignments
63 62 61 60 59 56 55 48 47 32

RSVD GCR_L2_DYN_
SLEEP_MODE RSVD GCR_L2_DYN_SLEEP

_WAKEUP_DELAY RSVD



187
mips.com

Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS I8500 Multiprocessing System Programmer’s Guide — Revision 1.00

31 30 29 28 10 9 8 7 6 5 4 3 2 1 0

PRESENT HCI_DONE HCI_
SUPPORTED RSVD L2_TAGRAM

_STALLS RSVD L2_WSRAM
_STALLS RSVD L2_DATARAM

_STALLS

Table 8.46 L2 RAM Configuration Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:62 Reserved. RO 0

GCR_L2_DYN_
SLEEP_MODE

61:60 This field controls the L2 cache RAM low power mode 
entered when all cores are in "sleep" mode and the 
IOCUs are idle. This field is encoded as follows:

00: No low power mode
01: Light Sleep
10: Reserved
11: Reserved

R/W Config

RSVD 59:56 Reserved. RO 0

GCR_L2_DYN_SLEEP_
WAKEUP_DELAY

55:48 Indicates number of CM clock cycles it takes to wake up 
the L2 Cache RAMs upon wakeup.

R/W Config

RSVD 47:32 Reserved. RO 0

PRESENT 31 This bit is always 1 to indicate this register exists. RO 1

HCI_DONE 30 Hardware sets this bit to indicate that hardware cache ini-
tialization is complete.

RO 1

HCI_SUPPORTED 29 When set, this bit indicates that hardware cache initializa-
tion is supported.

RO 0

RSVD 28:10 Reserved. RO 0

L2_TAGRAM_STALLS 9:8 Indicates the number of wait states assumed when 
accessing the L2 Tag RAMs.

RO Config

RSVD 7:6 Reserved. RO 0

L2_WSRAM_STALLS 5:4 Indicates the number of wait states assumed when 
accessing the L2 Way Select RAMs.

RO Config

RSVD 3:2 Reserved. RO 0

L2_DATARAM_STALLS 1:0 Indicates the number of wait states assumed when 
accessing the L2 Data RAMs

RO Config
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8.14.4.21 Scratch0 Register (GCR_SCRATCH0): Offset 0x0280   

8.14.4.22 Scratch1 Register (GCR_SCRATCH1): Offset 0x0288   

8.14.4.23 L2 Prefetch Control Register (GCR_L2_PFT_CONTROL): Offset 0x0300
This register controls the L2 hardware prefetcher.   

Figure 8.26 Scratch0 Register Bit Assignments
63 32

SCRATCH0

31 0

SCRATCH0

Table 8.47 Scratch0 Register Bit Descriptions 

Name Bits Description R/W Reset State

SCRATCH0 63:0 General purpose scratch register 0. R/W 0

Figure 8.27 Scratch1 Register Bit Assignments
63 32

SCRATCH1

31 0

SCRATCH1

Table 8.48 Scratch0 Register Bit Descriptions 

Name Bits Description R/W Reset State

SCRATCH1 63:0 General purpose scratch register 1. R/W 0

Figure 8.28 L2 Prefetch Control Register Bit Assignments
63 32

RSVD

31 12 11 9 8 7 0

PAGE_MASK RSVD PFTEN NPFT

Table 8.49 L2 Prefetch Control Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:32 Reserved. RO 0
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8.14.4.24 L2 Prefetch Control Register 2 (GCR_L2_PFT_CONTROL_B): Offset 0x0308
This register controls the L2 hardware prefetcher along with the L2_PFT_CONTROL register 
described above.   

PAGE_MASK 31:12 This field is a mask that indicates the minimum operating 
system page size. Address bits larger than 31 default to a 
bit mask of 1. The following settings are supported: 

4K page  =  0xFFFFF 
8K page =  0xFFFFE 
16K page =  0xFFFFC 
32K page = 0xFFFF8 
64K page = 0xFFFF0

R/W Config

RSVD 11:9 Reserved. RO 0

PFTEN 8 Prefetch enable. This bit should be set by software only if 
the number of prefetch units in the NPFT field is greater 
than zero.

R/W Config

NPFT 7:0 Number of prefetch units. Note that if this field contains a 
value greater than 0, the PFTEN bit must be set in order 
for prefetching to occur.

RO Config

Figure 8.29 L2 Prefetch Control Register 2 Bit Assignments
63 32

RSVD

31 14 13 12 11 10 9 8 7 0

RSVD PFU_
PAUSED

PFU_
IDLE RSVD WRI_

MODE CEN PORT_ID

Table 8.50 L2 Prefetch Control Register 2 Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:14 Reserved. RO 0

PFU_PAUSED 13 When set, indicates that the L2 Prefetcher is paused. RO 0

PFU_IDLE 12 When set, indicates that all Prefetch trackers have aged 
out and the Prefetcher is idle.

RO 0

RSVD 11 Reserved. RO 0

WRI_MODE 10:9 Determines how the Prefetch unit handles Coherent Write 
Invalidate requests.

00: No prefetch
01:Prefetch by reading memory data.
10: Prefetch optimized for ownership when possible, else 
read memory data
11: Reserved.

R/W 0x2

CEN 8 Code Prefetch enable. R/W Config

Table 8.49 L2 Prefetch Control Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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8.14.4.25 L2 Tag RAM Cache Op Address Register (GCR_L2_TAG_ADDR): Offset 0x0600
This register is loaded with the address information from the L2 Tag RAMs when the L2 Load 
Tag and Data CACHE instruction is executed. The value of this register is written to the 
address portion of L2 Tag RAM when an L2 Store Tag and Data CACHE instruction is exe-
cuted.   

8.14.4.26 L2 Tag RAM Cache Op State Register (GCR_L2_TAG_STATE): Offset 0x0608
This register is loaded with the state information from the L2 Tag RAMs when the L2 Load Tag 
and Data CACHE instruction is executed. The value of this register is written to the state por-
tion of L2 Tag RAM when an L2 Store Tag and Data CACHE instruction is executed.   

PORT_ID 7:0 Enable port ID for L2 prefetching. Each bit in this field cor-
responds to a CM3 port ID. Each bit of this field is 
encoded as follows: 

0: Requests from the corresponding CM3 port are not 
monitored for L2 prefetching. 
1: Requests from the corresponding CM3 port are moni-
tored for L2 prefetching.

R/W 0xFF

Figure 8.30 L2 Tag RAM Cache Op Address Register Bit Assignments
63 48 47 32

RSVD TAG_ADDR

31 15 14 0

TAG_ADDR RSVD

Table 8.51 L2 Tag RAM Cache Op Address Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:48 Reserved. RO 0

TAG_ADDR 47:15 This field holds the address portion of L2 Tag RAM entry. 
The format of this field changes depending up the cache 
configuration as described in the System Programmer's 
Reference

R/W 0

RSVD 14:0 RO 0

Figure 8.31 L2 Tag RAM Cache Op State Register Bit Assignments
63 47 46 32

RSVD TAG_LRU

31 12 11 0

RSVD TAG_STATE

Table 8.50 L2 Prefetch Control Register 2 Bit Descriptions (continued)

Name Bits Description R/W Reset State
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8.14.4.27 L2 Data RAM Cache Op Register (GCR_L2_DATA): Offset 0x0610
This register is loaded with the information from the L2 Data RAMs when the L2 Load Tag and 
Data CACHE instruction is executed. The value of this register is written to the L2 Data RAM 
when a L2 Store Tag and Data CACHE instruction is executed.   

8.14.4.28 L2 Tag and Data ECC Cache Op Register (GCR_L2_ECC): Offset 0x0618
This register is loaded with the ECC information from the L2 Tag and Data RAMs when the L2 
Load Tag & Data CACHE instruction is executed. If the GCR_L2_CONFIG.COP_DATA_ECC_WE 
bit is set then value of the DATA_ECC register is written to the ECC portion of the L2 Data 
RAM when a L2 Store Tag & Data CACHE instruction is executed. 

If the GCR_L2_CONFIG.COP_TAG_ECC_WE bit is set then value of the TAG_ECC register is 
written to the ECC portion of the L2 Tag RAM when a L2 Store Tag and Data CACHE instruc-
tion is executed.   

Table 8.52 L2 Tag RAM Cache Op Address Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:47 Reserved. RO 0

TAG_LRU 46:32 This field holds the address portion of L2 Tag RAM entry. 
The format of this field changes depending up the cache 
configuration as described in the System Programmer's 
Reference.

R/W 0

RSVD 31:12 Reserved. RO 0

TAG_STATE 11:0 This field holds the L2/L1 state for the L2 Tag RAM entry. 
The format of this field changes depending up the value of 
L1_SHARED and the number of CPU Cores on the clus-
ter as described in the System Programmer's Reference.

R/W 0

Figure 8.32 L2 Data RAM Cache Op Register Bit Assignments
63 32

DATA

31 0

DATA

Table 8.53 L2 Data RAM Cache Op Register Bit Descriptions 

Name Bits Description R/W Reset State

DATA 63:0 This register is loaded with the information from the L2 
Data RAMs when the L2 Load Tag and Data CACHE 
instruction is executed. 

The value in this register is stored in the L2 Data RAMs 
when the L2 Store Tag and Data CACHE instruction is 
executed.

R/W 0

Figure 8.33 L2 Tag and Data ECC Cache Op Register Bit Assignments
63 62 40 39 32

TAG_ECC_DET RSVD TAG_ECC
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8.14.4.29 L2 Cache Op State Machine Control Register (GCR_L2SM_COP): Offset 0x0620
This register stores the CMD, TYPE, MODE, RESULT and PRESENT bit info of L2 Cache Op 
State machine.   

31 30 8 7 0

DATA_ECC_DET RSVD DATA_ECC

Table 8.54 L2 Tag and Data ECC Cache Op Register Bit Descriptions 

Name Bits Description R/W Reset State

TAG_ECC_DET 63 Tag ECC error was detected during the most recent L2 
CacheOp load Tag and Data CACHE Instruction.

R/W 0

RSVD 62:40 Reserved. RO 0

TAG_ECC 39:32 This register is loaded with the ECC information from the 
L2 Tag RAMs when the L2 Load Tag & Data CACHE 
instruction is executed. 

If the GCR_L2_CONFIG.COP_TAG_ECC_WE bit is set 
then the value in this register is stored in the ECC portion 
L2 Tag RAMs when the L2 Store Tag & Data CACHE 
instruction is executed.

R/W 0

DATA_ECC_DET 31 Data ECC error was detected during the most recent L2 
CacheOp load Tag and Data CACHE Instruction.

R/W 0

RSVD 30:8 Reserved. RO 0

DATA_ECC 7:0 This register is loaded with the ECC information from the 
L2 Data RAMs when the L2 Load Tag & Data CACHE 
instruction is executed. 

If the GCR_L2_CONFIG.COP_DATA_ECC_WE bit is set 
then the value in this register is stored in the ECC portion 
L2 Data RAMs when the L2 Store Tag and Data CACHE 
instruction is executed.

R/W 0

Figure 8.34 L2 Cache Op State Machine Control Register Bit Assignments
63 32

RSVD

31 30 9 8 6 5 4 2 1 0

L2SM_COP_REG
_PRESENT RSVD L2SM_COP

_RESULT
L2SM_COP_

MODE
L2SM_COP

_TYPE
L2SM_COP

_CMD

Table 8.55 L2 Cache Op State Machine Control Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:32 Reserved. RO 0

L2SM_COP_REG
_PRESENT

31 Data ECC error was detected during the most recent L2 
CacheOp load Tag and Data CACHE Instruction.

RO 1

RSVD 30:9 Reserved. RO 0
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8.14.4.30 L2 Cache Op State Machine Tag Address Register (GCR_L2SM_TAG_ADDR_COP): Offset 
0x0628

This register stores the tag address details for the L2 CacheOp State Machine.   

L2SM_COP_RESULT 8:6 This field is written by hardware and stores the result of 
the operation and is encoded as follows:

0x0: DON'T CARE    [During RUNNING mode or after 
reset]  
0x1: DONE - NO_ERR [When completes the COP and 
switches to IDLE mode] 
0x2: DONE - ERR    [When completes the COP and 
switches to IDLE mode] 
0x3: ABORT- NO_ERR [When completes the COP and 
switches to IDLE mode] 
0x4: ABORT- ERR    [When completes the COP and 
switches to IDLE mode]

RO 0

L2SM_COP_MODE 5 This field is written by hardware and and indicates the 
current state of the state machine:

0: Machine is IDLE
1: Machine is RUNNING.

RO 0

L2SM_COP_TYPE 4:2 This field indicates the type of operation and is encoded 
as follows: 

0x0 : Index WB inv/Index Inv [Full cache Flush]  
0x1 : Index Store Tag [Full Cache Init - Fast - Only Tag 
RAM]  
0x2 : Index Store Tag [Full cache init - Norm - Tag and 
Data RAM]  
0x3 : Reserved 
0x4 : Hit Inv 
0x5 : Hit WB Inv
0x6 : Hit WB
0x7 : Fetch and Lock  This field can only be written when 
the COP SM is in IDLE mode

R/W 0

L2SM_COP_CMD 1:0 This field indicates the type of operation and is encoded 
as follows:

00 : NOP
01 : START   [START can only be issued in IDLE mode]
10: Reserved
11: ABORT   [ABORT can only be issued in RUNNING 
mode]  Note: It may take a few cycles for the state 
machine to become IDLE after an ABORT is issued

R/W 0

Figure 8.35 L2 Cache Op State Machine Tag Address Register Bit Assignments
63 48 47 32

L2SM_COP_NUM_LINES L2SM_COP_START_TAG_ADDR

Table 8.55 L2 Cache Op State Machine Control Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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8.14.4.31 Global CM3 Semaphore Register (GCR_SEM): Offset 0x0640
The register provides an uncached semaphore mechanism. A write to this register with write 
data bit 31=1 is inhibited if the SEM_LOCK bit is already 1. A write to this register proceeds 
normally if the write data has bit 31 = 0, or if the SEM_LOCK bit is currently 0.

To acquire the semaphore:

1) Write this register with bit 31 = 1 and the lower bits with the threads VPID.

2) Read the register.

3) If the value read in step #2 is the same as the value as written in step #1, then sema-
phore has been acquired, else go to step #1.

To release the semaphore:

1) Write the register with bit 31 = 0.   

31 6 5 0

L2SM_COP_START_TAG_ADDR RSVD

Table 8.56 L2 Cache Op State Machine Tag Address Register Bit Descriptions 

Name Bits Description R/W
Reset 
State

L2SM_COP_NUM_LINES 63:48 Number of lines (from starting address) to be operated for 
Requested burst COP.  
Max supported number is 65536 (2^16)  
This field can only be written when the COP SM is in IDLE 
mode.  
Not valid for index type cache ops.

R/W 0

L2SM_COP_START_
TAG_ADDR

47:6 Starting address (tag) of Burst COP.
This field can only be written when the COP SM is in IDLE 
mode. Not valid for index type cache ops.

R/W 0

RSVD 5:0 Reserved. RO 0

Figure 8.36 Global CM3 Semaphore Register Bit Assignments
63 32

RSVD

31 30 0

SEMLOCK SEMDATA

Table 8.57 Global CM3 Semaphore Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:32 Reserved. RO 0

SEMLOCK 31 Lock bit on semaphore. A value of 1 indicates that this 
register is locked. In which case, subsequent writes trying 
to set this bit to 1 will be inhibited, i.e., the SEMDATA field 
will not be updated.

RO 0

SEMDATA 30:0 Data value on the semaphore RO 0
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8.14.4.32 Global CM3 Timeout Timer Limit Register (GCR_TIMEOUT_TIMER_LIMIT): Offset 0x0650
Provides the time out limit for transaction time out timer in number of CM clocks. This regis-
ter is only available if MIPS_FUSA_TIMER is implemented. (FUSA CPU’s only).   

8.14.4.33 MMIO Request Limit Register (GCR_MMIO_REQ_LIMIT): Offset 0x06F8
Determines the number of MMIO requests that the CM3 will allow to be in flight.   

Figure 8.37 Global CM3 Timeout Timer Limit Register Bit Assignments
63 32

RSVD

31 20 19 0

RSVD TT_DELAY

Table 8.58 Global CM3 Timeout Timer Limit Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:20 Reserved. RO 0

TT_DELAY 19:0 Timeout limit for transaction timeout timer in number of 
CM clocks. 

R/W Config

Figure 8.38 MMIO Request Limit Register Bit Assignments
63 32

RSVD

31 24 23 16 15 8 7 0

RSVD MMIO_REQ_CNT RSVD MMIO_REQ_LIMIT

Table 8.59 MMIO Request Limit Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:24 Reserved. RO 0

MMIO_REQ_CNT 23:16 Provides current count of requests in flight to MMIO 
regions that have REQ_LIMIT request limitations 
enabled..

RO 0

RSVD 15:8 Reserved. RO 0

MMIO_REQ_LIMIT 7:0 Determines the number of requests to the regions with 
request limits enabled that the CM3 will allow to be in 
flight. Bit 0 corresponds to region 0, and bit 7 corresponds 
to region 7.

Setting a value of 1 allows one outstanding MMIO request 
to that region. Setting a value of 0 disables the MMIO lim-
iting feature.

R/W Config
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8.14.4.34 Lower Bound of MMIO [0-3] Registers (GCR_MMIO[0-3]_BOTTOM): See table below
There are 8 MMIO regions. Each region has two registers that define its upper and lower 
boundaries. This section defines the lower bound for the MMIO0 through MMIO7 regions. 
Each register described here reside at the following offset addresses. 

These register store the lower bound address of MMIO Region [0-7].

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than [0-7].   

Table 8.60 Lower Bound MMIO Register Map

Register Offset

GCR_MMIO0_BOTTOM 0x0700
GCR_MMIO1_BOTTOM 0x0710
GCR_MMIO2_BOTTOM 0x0720
GCR_MMIO3_BOTTOM 0x0730
GCR_MMIO4_BOTTOM 0x0740
GCR_MMIO5_BOTTOM 0x0750
GCR_MMIO6_BOTTOM 0x0760
GCR_MMIO7_BOTTOM 0x0770

Figure 8.39 Lower Bounds of MMIO Region [0-7] Register Bit Assignments
63 48 47 32

RSVD MMIO_BOTTOM_ADDR

31 16 15 10 9 8 7 6 5 2 1 0

MMIO_BOTTOM_ADDR RSVD MMIO_
CCA RSVD MMIO_FORCE_

NONCOH_REQ MMIO_PORT
MMIO_DISABLE_

REQ_LIMIT MMIO_EN

Table 8.61 Lower Bounds of MMIO Region [0-7] Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:48 Reserved. RO 0

MMIO_BOTTOM_ADDR 47:16 Provides current count of requests in flight to MMIO 
regions that have REQ_LIMIT request limitations 
enabled..

R/W Config

RSVD 15:10 Reserved. RO 0
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MMIO_CCA 9:8 Allows MMIO region hit to be qualified by CCA in addition 
to address. If this field is zero, then all CCA types may fall 
into this MMIO region. A MMIO region hit is determined 
based upon just address hit. If bits in MMIO_CCA are set, 
then MMIO qualification is based upon address and CCA.  
This field is encoded as follows:

MMIO_CCA = 2'b00: CCA is not considered as part of the 
match  
MMIO_CCA = 2'b01: This region will only match if the 
CCA is Uncached (UC)  
MMIO_CCA = 2'b10: This region will only match if the 
CCA is Uncached Accelerated (UCA)  
MMIO_CCA = 2'b11: This region will only match if the 
CCA is Uncached (UC) or Uncached Accelerated (UCA).

R/W Config

RSVD 7 Reserved. RO 0

MMIO_FORCE_
NONCOH_REQ

6 If a transaction that hits this region generates a request 
out to a coherent interconnect, force the request to be 
non-coherent.  The request will be externalized to ACE as 
ReadNoSnoop/WriteNoSnoop.

R/W Config

MMIO_PORT 5:2 Specify which port issues requests to. This field is 
encoded as follows:

0x0 - Main memory port; MEM
0x7-0x1: Reserved 
0x8: AUX0
0x9: AUX1
0xA: AUX2
0xB: AUX3
0xC - 0xF: Reserved 

Note that the number of available aux ports is provided in 
GCR_CONFIG.NUMAUX. MMIO_PORT should not be 
programmed to route requests to an AUX port that does 
not exist.

R/W Config

MMIO_DISABLE_
REQ_LIMIT

1 Determines whether CM3 will limit the number of out-
standing requests to this MMIO region.  This bit is 
encoded as follows:

0 - This MMIO region has request limits.  Set this field to 
zero if sending requests to an IO device that can deadlock 
if too many requests are received. If this field is set to 
zero, the CM will limit the number of outstanding requests 
to the value specified in MMIO_REG_LIMIT. Additionally, 
the CM will ensure that all requests sent to this MMIO 
region are UC. Coherent requests sent to this region will 
be turned around as a bus error.

1 - Set this field to disable request limits. The CM will not 
limit the number of requests outstanding. Also both coher-
ent and non-coherent requests can be issued. Incoming 
coherent requests can be turned into non-coherent 
requests to memory if MMIO_FORCE_NONCOH_REQ is 
set.

R/W Config

Table 8.61 Lower Bounds of MMIO Region [0-7] Bit Descriptions (continued)

Name Bits Description R/W Reset State
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8.14.4.35 Upper Bound of MMIO [0-7] Registers (GCR_MMIO[0-7]_TOP): See table below
There are 8 MMIO regions. Each region has two registers that define its upper and lower 
boundaries. This section defines the upper bound for the MMIO0 through MMIO7 regions. 
Each register described here resides at the following offset addresses. 

These register store the upper bound address of MMIO regions [0-7].

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than [0-7].   

8.14.4.36 CM3 Performance Counter Control Register (GCR_DB_PC_CTL): Offset 0x0900
Configuration register for performance counters of CM3 PDTrace. This register control the 
starting and stopping of the performance counters.   

MMIO_EN 0 MMIO enable bit for the corresponding region [0-7]. R/W Config

Table 8.62 Upper Bound MMIO Register Map 

Register Offset

GCR_MMIO0_TOP 0x0708
GCR_MMIO1_TOP 0x0718
GCR_MMIO2_TOP 0x0728
GCR_MMIO3_TOP 0x0738
GCR_MMIO4_TOP 0x0748
GCR_MMIO5_TOP 0x0758
GCR_MMIO6_TOP 0x0768
GCR_MMIO7_TOP 0x0778

Figure 8.40 Upper Bound of MMIO Region [0-7] Register Bit Assignments
63 48 47 32

RSVD MMIO_TOP_ADDR

31 16 15 0

MMIO_TOP_ADDR RSVD

Table 8.63 Lower Bounds of MMIO Region [0-7] Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:48 Reserved. RO 0

MMIO_TOP_ADDR 47:16 Upper limit of address bits 47:16 for MMIO region [0-7]. R/W Config

RSVD 15:10 Reserved. RO 0

Figure 8.41 CM3 Performance Counter Control Register Bit Assignments 
63 32

RSVD

Table 8.61 Lower Bounds of MMIO Region [0-7] Bit Descriptions (continued)

Name Bits Description R/W Reset State
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31 30 29 28 10 9 8 7 6 5 4 3 0

RSVD PERF_INT_EN
PER-

F_OVF)STO
P

RSVD P1_RST P1_
COUNTON P0_RST P0_

COUNTON
CYCL_

CNT_RST
CYCL_CNT
_COUNTON

PERF_NUM
_CNT

Table 8.64 CM3 Performance Counter Control Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:31 Reserved. RO 0

PERF_INT_EN 30 Enable Interrupts on counter overflow. If set to 1, a CM3 
performance counter interrupt is generated when any 
enabled CM3 performance counter overflows.

R/W 0

PERF_OVF_STOP 29 Stop Counting on overflow. If set to 1, all CM3 perfor-
mance counters stop counting when any enabled CM3 
performance counter overflows (i.e., the counter has 
reached 0xFFFF_FFFF).

R/W 0

RSVD 28:10 Reserved. RO 0

P1_RST 9 If P1_RST is written to 1 when P1_COUNTON is written 
to 1, then the CM3 performance counter 1 and the P1_OF 
bit is reset before counting is started. 

If P1_RST is written to 0 when P1_COUNTON is written 
to 1, then counting is resumed from previous value. This 
bit is automatically set to 0 when the counter is reset, so 
P1_RST is always read as 0.

R/W 0

P1_COUNTON 8 Start/Stop Counting. If this bit is set to 1 then the CM3 per-
formance counter 1 starts counting the specified event. 

If this bit is set to 0 then CM3 performance counter 1 is 
disabled.  This bit is automatically set to 0 if any counter 
overflows and PERF_OVF_STOP is set to 1.

R/W 0

P0_RST 7 If P0_RST is written to 1 when P0_COUNTON is written 
to 1, then the CM3 performance counter 0 and the P0_OF 
bit is reset before counting is started. 

If P0_RST is written to 0 when P0_COUNTON is written 
to 1, then counting is resumed from previous value. This 
bit is automatically set to 0 when the counter is reset, so 
P0_RST is always read as 0.

R/W 0

P0_COUNTON 6 Start/Stop Counting. If this bit is set to 1 then the CM3 per-
formance counter 0 starts counting the specified event. 

If this bit is set to 0 then CM3 performance counter 0 is 
disabled.  This bit is automatically set to 0 if any counter 
overflows and PERF_OVF_STOP is set to 1.

R/W 0
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8.14.4.37 CM3 Performance Overflow Status Register (GCR_DB_PC_OV): Offset 0x0920
Configuration register for performance counters of CM3 PDTrace. This register controls which 
performance counters have overflowed.   

CYCL_CNT_RST 5 If CYCL_CNT_RESET is written to 1 when 
CYCL_CNT_COUNTON is written to 1, then the CM3 
Cycle Counter and the CYCL_CNT_OF bit is reset before 
counting is started. 

If CYCL_CNT_RESET is written to 0 when 
CYCL_CNT_COUNTON is written to 1, then counting is 
resumed from previous value. This bit is automatically set 
to 0 when the counter is reset, so CYCL_CNT_RST is 
always read as 0.

R/W 0

CYCL_CNT_COUNTON 4 Start/Stop the cycle counter. If this bit is set to 1 then CM3 
Cycle Counter starts counting. If this bit is set to 0 then 
CM3 Cycle Counter is disabled. 

This bit is automatically set to 0 if any counter overflows 
and PERF_OVF_STOP is set to 1.

R/W 0

PERF_NUM_CNT 3:0 The number of performance counters implemented (not 
including the cycle counter). The CM3 has 2 performance 
counters.

RO 0x2

Figure 8.42 CM3 Performance Counter Overflow Status Register Bit Assignments 
63 32

RSVD

31 3 2 1 0

RSVD P1_OF P0_OF CYCL_CNT_OF

Table 8.65 CM3 Performance Counter Overflow Status Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:3 Reserved. RO 0

P1_OF 2 If this bit is set to 1, CM3 Performance Counter 1 has 
overflowed (i.e., the counter has reached 0xFFFF_FFFF).

R/W 0

P0_OF 1 If this bit is set to 1, CM3 Performance Counter 0 has 
overflowed (i.e., the counter has reached 0xFFFF_FFFF).

R/W 0

CYCL_CNT_OF 0 If this bit is set to 1, CM3 Cycle Counter 0 has overflowed 
(i.e., the counter has reached 0xFFFF_FFFF).

R/W 0

Table 8.64 CM3 Performance Counter Control Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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8.14.4.38 CM3 Performance Overflow Event Select Register (GCR_DB_PC_EVENT): Offset 0x0930
This register selects the event type for each performance counter.   

8.14.4.39 CM3 Performance Cycle Counter Register (GCR_DB_PC_CYCL): Offset 0x0980
This register contains the 32-bit cycle count for the performance counter.   

8.14.4.40 CM3 Performance P0 Qualifier Register (GCR_DB_PC_QUAL0): Offset 0x0990
This register contains the 64-bit P0 event qualifier.   

Figure 8.43 CM3 Performance Counter Overflow Status Register Bit Assignments 
63 32

RSVD

31 16 15 8 7 0

RSVD P1_EVENT P0_EVENT

Table 8.66 CM3 Performance Counter Overflow Status Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:16 Reserved. RO 0

P1_EVENT 15:8 Event selection for CM3 Performance Counter 1. Refer to 
Section 10.2 in Chapter 10 of this manual for more infor-
mation.

R/W 0

P0_EVENT 7:0 Event selection for CM3 Performance Counter 0. Refer to 
Section 10.2 in Chapter 10 of this manual for more infor-
mation.

R/W 0

Figure 8.44 CM3 Performance Cycle Counter Register Bit Assignments 
63 32

RSVD

31 0

CYCLE_CNT

Table 8.67 CM3 Performance Cycle Counter Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:16 Reserved. RO 0

CYCLE_CNT 31:0 32-bit count of CM3 clock cycles. R/W Config

Figure 8.45 CM3 Performance P0 Qualifier Register Bit Assignments 
63 32

P0_QUALIFIER
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8.14.4.41 CM3 Performance Counter P0 Register (GCR_DB_PC_CNT0): Offset 0x0998
This register contains the 32-bit P0 performance counter value.   

8.14.4.42 CM3 Performance P1 Qualifier Register (GCR_DB_PC_QUAL1): Offset 0x09A0
This register contains the 64-bit P1 event qualifier.   

31 0

P0_QUALIFIER

Table 8.68 CM3 Performance P0 Qualifier Register Bit Descriptions 

Name Bits Description R/W Reset State

P0_QUALIFIER 63:0 CM3 Performance Counter 0 Event Qualifier. The qualifier 
corresponds to the event configured through the Perfor-
mance Counter 0 Event Select Register.

R/W 0

Figure 8.46 CM3 Performance Counter P0 Register Bit Assignments 
63 32

RSVD

31 0

P0_COUNT

Table 8.69 CM3 Performance Counter P0 Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:32 Reserved RO 0

P0_QUALIFIER 63:0 CM3 Performance Counter 0 Event Qualifier. The qualifier 
corresponds to the event configured through the Perfor-
mance Counter 0 Event Select Register.

R/W 0

Figure 8.47 CM3 Performance P1 Qualifier Register Bit Assignments 
63 32

P1_QUALIFIER

31 0

P1_QUALIFIER

Table 8.70 CM3 Performance P1 Qualifier Register Bit Descriptions 

Name Bits Description R/W Reset State

P1_QUALIFIER 63:0 CM3 Performance Counter 1 Event Qualifier. The qualifier 
corresponds to the event configured through the Perfor-
mance Counter 1 Event Select Register.

R/W 0



203
mips.com

Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS I8500 Multiprocessing System Programmer’s Guide — Revision 1.00

8.14.4.43 CM3 Performance Counter P1 Register (GCR_DB_PC_CNT0): Offset 0x09A8
This register contains the 32-bit P1 performance counter value.   

8.14.5 GCR Core Registers
The register map for the GCR core registers is shown in Table 8.72. All of the offsets shown 
below are relative to the value stored in the GCR_BASE register. 

Figure 8.48 CM3 Performance Counter P1 Register Bit Assignments 
63 32

RSVD

31 0

P1_COUNT

Table 8.71 CM3 Performance Counter P1 Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:32 Reserved RO 0

P1_QUALIFIER 63:0 CM3 Performance Counter 1 Event Qualifier. The qualifier 
corresponds to the event configured through the Perfor-
mance Counter 1 Event Select Register.

R/W 0

Table 8.72 GCR Core Register Map

Offset from 
GCR_BASE   Register   Short Descriptions

  0x0_2000   GCR.Core[0-63].H0_RESET_BASE Core[0-63] Hart0 Reset PC
  0x0_2100

  ……….
  0x0_5F00
  0x0_2008   GCR.Core[0-63].H1_RESET_BASE Core[0-63] Hart1 Reset PC
  0x0_2108

  ……….
  0x0_5F08
  0x0_2010   GCR.Core[0-63].H2_RESET_BASE Core[0-63] Hart2 Reset PC
  0x0_2110
  ……….

  0x0_5F10
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  0x0_2018   GCR.Core[0-63].H3_RESET_BASE Core[0-63] Hart3 Reset PC
  0x0_2118
  ……….

  0x0_5F18
  0x0_2020   GCR.Core[0-63].H4_RESET_BASE Core[0-63] Hart4 Reset PC
  0x0_2120

  ……….
  0x0_5F20
  0x0_2028   GCR.Core[0-63].H5_RESET_BASE Core[0-63] Hart5 Reset PC
  0x0_2128

  ……….
  0x0_5F28
  0x0_2030   GCR.Core[0-63].H6_RESET_BASE Core[0-63] Hart6 Reset PC
  0x0_2130

  ……….
  0x0_5F30
  0x0_2038   GCR.Core[0-63].H7_RESET_BASE Core[0-63] Hart7 Reset PC
  0x0_2138

  ……….
  0x0_5F38
  0x0_2040   GCR.Core[0-63].H8_RESET_BASE Core[0-63] Hart8 Reset PC
  0x0_2140

  ……….
  0x0_5F40
  0x0_2048   GCR.Core[0-63].H9_RESET_BASE Core[0-63] Hart9 Reset PC
  0x0_2148

  ……….
  0x0_5F48
  0x0_2050   GCR.Core[0-63].H10_RESET_BASE Core[0-63] Hart10 Reset PC
  0x0_2150

  ……….
  0x0_5F50

Table 8.72 GCR Core Register Map

Offset from 
GCR_BASE   Register   Short Descriptions
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8.14.5.1 Reset Exception Base Registers (GCR_C[a]H[b]_RESET_BASE): Offset; see Table 8.72.
The C[a] in the register name indicates Core 0 through Core 63. The H[b] in the register 
name indicates hart 0 through hart 15.

This register is used to drive the core_exception_base[31:12] input to the local hart.   

  0x0_2058   GCR.Core[0-63].H11_RESET_BASE Core[0-63] Hart11 Reset PC
  0x0_2158

  ……….
  0x0_5F58
  0x0_2060   GCR.Core[0-63].H12_RESET_BASE Core[0-63] Hart12 Reset PC
  0x0_2160

  ……….
  0x0_5F60
  0x0_2068   GCR.Core[0-63].H13_RESET_BASE Core[0-63] Hart13 Reset PC
  0x0_2168

  ……….
  0x0_5F68
  0x0_2070   GCR.Core[0-63].H14_RESET_BASE Core[0-63] Hart14 Reset PC
  0x0_2170

  ……….
  0x0_5F70
  0x0_2078   GCR.Core[0-63].H15_RESET_BASE Core[0-63] Hart15 Reset PC
  0x0_2178

  ……….
  0x0_5F78
  0x0_20F8   GCR.Core[0-63].COH_EN Core[0-63] coherence enable
  0x0_21F8

  ……….
  0x0_5FF8

Figure 8.49 Reset Exception Base Register Bit Assignments 
63 48 47 32

RSVD RESET_BASE

31 12 11 2 1 0

RESET_BASE RSVD RESET_BASE
_MODE RSVD

Table 8.72 GCR Core Register Map

Offset from 
GCR_BASE   Register   Short Descriptions
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8.14.5.2 Core[a] Coherence Enable Registers (GCR_C[a]_COH_EN): Offset; see Table 8.72.
The C[a] in the register name indicates Core 0 through Core 63.

Setting this bit has two effects: 

1. The CPC will not transition power states for this core

2. The CM3 may send interventions to this core. Note that the software must follow the appropriate pro-
cedure when setting/clearing this bit as outlined in the System Programmer's Reference. This register 
is instantiated for each Core domain. 

  

Table 8.73 Reset Exception Base Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:48 Reserved RO 0

RESET_BASE 47:12 Bits [47:12] of the virtual address that the local core will 
use as the reset exception base.

If RESET_BASE_MODE is 0, then RESET_BASE[47:32] 
is ignored and RESET_BASE[31:29] should be set to 
3'b101 to locate the reset base in the kseg1 segment. 

R/W CONFIG

RSVD 11:2 Reserved RO 0

RESET_BASE_MODE 1 Legacy field, always 1 for MIPS implementations of RISC-
V cores.

RO 1

RSVD 0 Reserved RO 0

Figure 8.50 Core[a] Coherence Enable Register Bit Assignments 
63 32

RSVD

31 1 0

RSVD COH_EN

Table 8.74 Core[a] Coherence Enable Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:1 Reserved RO 0

COH_EN 0 Enables coherence for the corresponding core. R/W 1
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Power Management

Power management in the I8500 Multiprocessing System is handled by the Cluster Power 
Controller (CPC). The I8500 CPC uses the concept of domains to manage both power and 
clocking throughout the device. Using registers, the programmer can enable or disable these 
domains in order to reduce overall power consumption. 

The CPC implements two types of domains; power and clock. In each case, registers are 
instantiated on a per-domain basis so that the domain can be individually controlled by kernel 
software. This is true for each power domain and each clock domain.

• For the power domains, kernel software uses registers in the CPC to control the power to 
individual elements in the system such as cores, IOCU’s, and the Coherence Manager 
(CM). The various power domains that can be individually controlled are defined in the 
section entitled Power Domains.

• For the clock domains, kernel software uses registers in the CPC to control the clock fre-
quency to the individual elements in the system such as cores, IOCU’s, Coherence Man-
ager (CM), and memory. In addition to clock management for the various devices in the 
I8500 Multiprocessing System, the CPC also provides the ability to change the clock ratios 
in memory, and put the caches into a low-power state. The various clock domains that 
can be individually controlled are defined in the section entitled Clock Domains.

The CPC provides a flexible engine for managing clock, power, and reset for the entire cluster 
under a combination of software and hardware control. Software configures and controls the 
CPC via its global configuration register (GCR) interface. Hardware controls the CPC via dedi-
cated signals.

Individual CPU cores within the cluster may have their clock, power, or both gated off when 
not in use. The CM may also be powered down. 

The CPC manages the power shutdown and ramp-up of each core in the cluster as well as the 
CM itself. CPC sequences each core's reset and root-level clock gating and CM's own power 
and reset. It manages dependencies between core power states and the CM's power state. 

The CPC also manages clock ratios between CPU cores, IOCUs, memory interfaces, and the 
CM. CPC supports independent clock ratios for each component connected to CM. Both soft-
ware and hardware can trigger clock ratio changes dynamically at runtime. The CPC 
sequences the clock ratio transition to allow seamless changes in clock ratios with minimal 
disruption to the system.

The CPC sequences its actions based on a programmable power management policy.  
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This chapter provides an overview of how power is managed in the I8500 Multiprocessing 
System and identifies the various power and clock domains the programmer can use to man-
age power consumption in the device. Other programming principles include setting the 
device to coherent or non-coherent mode, requestor access of CPC registers, system power-
up policy, programming examples of a clock domain change and clock delay change, power-
ing up the CPC in standalone mode (no cores enabled), reset detection, hart run/suspend 
mechanism, local RAM shutdown and wakeup procedure, accessing registers in another 
power domain, and fine tuning internal and external signal delays to help the programmer 
easily integrate the device into a system environment.

9.1 Overview

This section provides an overview of the power and clock management schemes imple-
mented in the I8500 Multiprocessing System.

9.1.1 Power Domains
Figure 9.1 shows the various power domains in the I8500 Multiprocessing System. Registers 
are instantiated for each power domain to allow for individual control. Note that in this figure, 
core 1 through core n are optional blocks depending on the system configuration.
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Figure 9.1 Power Domains in the I8500 Multiprocessing System

9.1.2 Clock Domains
Figure 9.2 shows the various clock domains in the I8500 Multiprocessing System. Each clock 
domain shown can be individually controlled using the CPC register interface.  

Figure 9.2 Clock Domains in the I8500 Multiprocessing System

9.1.3 Core and IOCU Selection
Figure 9.2 shows the maximum possible number of cores and IOCUs that can be instantiated 
into the I8500 MPS. However, the total number of cores and IOCUs cannot exceed eight. So 
for example, if there are two cores, there cannot be more than six IOCUs. If there are four 
cores, there cannot be more than four IOCUs, etc. 

9.1.4 Overview of Power States
Each device in Figure 9.1, except the CM, contains its own set of Core-Local registers that 
can be used to independently place each device into one of the following four power states by 
programming the CMD field (bits 3:0) of the CPC Local Command Register. For more information 
on this register, refer to the I8500 Registers companion document included in the release.

Note that each command can only be executed in non-coherent mode. If a command is exe-
cuted in coherent mode, the command is queued, but not processed by the CPC until the 
device has transitioned from coherent mode to non-coherent mode. For more information, 
refer to the section entitled Enabling Coherent Mode.

The states are as follows:

Core 0

Core 0
Power Domain

Core 1

Core 1
Power Domain

Core n

Core 5
Power Domain

CM3

CM3
Power Domain

DBU

Debug Unit
Power Domain

Core 0

Core 0
Clock Domain

Core 1

Core 1
Clock Domain

Core 5

Core 5
Clock Domain

CM3.5

CM3.7
Clock Domain

IOCU0

IOCU0
Clock Domain

Memory

Memory
Clock Domain

IOCU7

IOCU7
Clock Domain

AUX0

AUX0
Clock Domain

AUX3

AUX3
Clock Domain
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• ClockOff - a power domain is brought into ClockOff state when a value of 0x1 is 
programmed into the 4-bit CMD field of the CPC_CL_CMD_REG register. If the domain 
was powered down before, the power-on sequence is applied according to 
CPC_CL_STAT_CONF_REG settings. If the domain was active before and was in non-
coherent operation, the power domain is brought into the ClockOff state. A domain in 
the ClockOff state can be sent into operation using the PwrUp command. 

A ClockOff command given to a domain in coherent operation remains inactive until 
the device has left the coherent mode of operation. Sending a ClkOff command to the 
CPC before a previous command has completed causes the CPC domain target to be 
redirected towards ClockOff. However, the previous steady state can be observed 
temporarily before the newly programmed state is reached. Refer to the section 
entitled Enabling Coherent Mode for more information on enabling and disabling 
coherence mode.

• PwrDown. A power domain is brought into PwrDown state when a value of 0x2 is 
programmed into the 4-bit CMD field of the CPC_CL_CMD_REG register. This command 
uses setup values in the CPC_CL_STAT_CONF_REG register. 

A PwrDown command given to a domain in coherent operation will remain inactive 
until the device has left the coherent mode of operation. Sending a PwrDown 
command to the CPC before a previous command has completed causes the CPC 
domain target to be redirected towards PwrDown.

• PwrUp - A power domain is brought into PwrUp state when a value of 0x3 is 
programmed into the 4-bit CMD field of the CPC_CL_CMD_REG register. This command 
uses setup values in the CPC_CL_STAT_CONF_REG register. The execution of this 
command depends on the previous domain power state. If the domain is in the 
powered-down state, a PwrUp command enables power for the domain, applies the 
clocks and reset, and brings the domain into an operational state. 

• Reset - A power domain is brought into Reset state when a value of 0x4 is 
programmed into the 4-bit CMD field of the CPC_CL_CMD_REG register. This command 
allows a domain in the non-coherent operation to be reset. It also can be sent to a 
domain in power-down or clock-off mode. The domain will then become active, and a 
reset sequence is executed which leads to an operational steady state of the domain.

9.2 Reset Control

The system reset input resets the Cluster Power Controller (CPC). Sideband signals qualify 
the reset as a cold or a warm reset. Configuration signals determine the CPC's actions when 
reset deasserts:

• Remain powered down

• Go to clock-off mode

• Power up and start execution

In response to cold reset, the CPC powers up the CPU cores as directed in the CPC cold start 
configuration. If the configuration directs the CPC to power up at least one CPU, the CPC also 
powers up the CM. If there are no cores in the cluster, then a signal ci_cm_pwr_up is used to 
power up the CM.

In response to warm reset, the CPC brings all power domains to their cold-start configura-
tion. The CPC resets powered-up domains that remains powered-up in the cold-start configu-
ration. For domains that CPC must power down, CPC enables isolation between power 
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domains before gating power off to ensure power integrity for all domains. For a zero-core 
config and warm reset, the CM honors ci_cm_pwr_up the same way it does for cold reset.

CM provides memory mapped GCRs that can override the default exception vector address in 
each hart of each attached CPU core. This allows software to specify a unique boot vector for 
each hart in the cluster if necessary. System level signals control which harts begin execution 
on each core after reset. CPC can bring a core out of reset with no harts running, letting the 
system determine when to start each hart. 

See the CPC documentation for additional details on clocking, reset, and power-down/power-
up.

9.3 Individual Clock Gating

The I8500 Multiprocessing System provides two levels of clock gating. In addition to the indi-
vidual clock gating of each device, global clock gating to all devices simultaneously can be 
performed by adjusting the ratio of the clock prescaler as shown in Figure 9.3. 

Figure 9.3 Individual and Global Clock Gating in the I8500 Multiprocessing System

The clock prescaler can be programmed to reduce the master input clock by a frequency 
range of 1:1 to 1:256. The output of the prescaler becomes the master clock input to all 
other devices in the system. 

9.4 Global Control Block Register Map

All registers in the Global Control Block are 64 bits wide and should only be accessed using 
aligned 64-bit uncached load/stores. Reads from unpopulated registers in the CPC address 
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space return 0x0, and writes to those locations are silently dropped without generating any 
exceptions.

Table 9.1 Global Control Block Register Map (Relative to Global Control Block Offset) 

Register Offset 
in Block Name Type Description

0x0008 CPC Global Sequence Delay Counter
(CPC_SEQDEL_REG)

R/W Time between microsteps of a CPC 
domain sequencer in CPC clock 
cycles.

0x0010 CPC Global Rail Delay Counter Register 
(CPC_RAIL_REG)

R/W Rail power-up timer to delay CPS 
sequencer progress until the gated 
rail has stabilized.

0x0018 CPC Global Reset Width Counter Register 
(CPC_RESETLEN_REG)

R/W Duration of any domain reset 
sequence. 

0x0020 CPC Global Revision Register 
(CPC_REVISION_REG)

R RTL Revision of CPC

0x0028 CPC Global Clock Control Register 
(CPC_CC_CTL_REG)

R CPC global clock change configura-
tion, control and status. Enables 
clock change for all clock change 
enable domains of the cluster.

0x0030 CPC Global CM Powerup Register 
(CPC_PWRUP_CTL_REG)

R Controls Power of CM even inde-
pendent of Cores' power states.

0x0038 CPC Reset Release Register 
(CPC_RES_REL_REG)

R Control Reset release and Clock 
Enable timing. 

0x0040 CPC Global Reset Occurred Register 
(CPC_ROCC_CTL_REG)

R Register to indicate which cores 
have been reset. 

0x0048 CPC Global Reset Occurred Register 
(CPC_PRESCALE_CC_CTL_REG)

R Controls Precale Clock changes.

0x0050 MTIME Register
(CPC_MTIME_REG)

R/W RISCV timer. Register can be writ-
ten to synchronize with other clus-
ter's time.

0x0058 Counter Control for MTIME and HRTIME
(CPC_TIMECTL_REG)

R/W Support for Software-assisted multi-
cluster time synchronization

0x0060 RESERVED Reserved.
0x0068 CPC Global Fault Supported Register 

(CPC_FAULT_SUPPORTED)
R/W

0x0070 CPC Global Fault Enable Register (CPC_-
FAULT_ENABLE)

R/W

0x0080, 
0x0088

R/W

0x0090 HRTIME Counter Register 
(CPC_HRTIME_REG)

R/W

0x0098 - 0x0134 CPC GLOBAL RESERVED R/W
0x0138 CPC Global Config Register (CPC_CON-

FIG)
R/W
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9.5 Local Control Blocks

All registers in the CPC Local Control Block are 64 bits wide and should only be accessed 
using aligned 64-bit uncached load/stores. Reads from unpopulated registers in the CPC 
address space return 0x0, and writes to those locations are silently dropped without generat-
ing any exceptions. A set of these registers exists for each core in the I8500 MPS. 

The register offsets shown are relative to the offsets listed in Table 9.2. 

0x0140 CPC System Configuration Register 
(CPC_SYS_CONFIG)

R/W

0x0200 - 0x03FF CPC_IOCU Clock Change Control Register ( 
CPC_IOCUx_CC_CTL_REG ) 

with x from 0 to 63)

R/W

0x0400 CPC_MEM_CC_CTL_REG R/W
0x0408 CPC_CM_MSTR_CC_CTL_REG R/W

0x0404 - 0x0408 CPC_AUXn_CC_CTL_REG , n = 0 3 R/W
0x4070 -
0x4078

CPC_IOMMU0_CC_CTL_REG CPC_IOM-
MU1_CC_CTL_REG

R/W

Table 9.2 Core-Local Block Register Map 

Register Offset 
in Block Name Type Description

0x000 CPC Core Local Command Register 
(CPC_CL_CMD_REG)

R/W Places a new CPC domain state 
command into this individual 
domain sequencer. 
This register is not available within 
the CM sequencer. Writes to the 
CM CMD register are ignored while 
reads will return zero.

0x008 CPC Core Local Status and 
Configuration register

(CPC_CL_STAT_CONF_REG)

R/W Individual domain power status and 
domain configuration register. 
Reflects domain micro-sequencer 
execution. Initiates micro-
sequencer after status register pro-
gramming. Reflects command exe-
cution status.

0x018 CPC Core Local Clock Change Control Register
(CPC_CL_CC_CTL_REG)

R/W Controls clock changes on corre-
sponding device

0x020 CPC Core Local Hart Stop Register
(CPC_CL_VP_STOP_REG)

R/W Stops execution of the hart.

0x028 CPC Core Local Hart Run Register
(CPC_CL_VP_RUN_REG)

R/W Starts execution of the hart.

Table 9.1 Global Control Block Register Map (Relative to Global Control Block Offset) (continued)

Register Offset 
in Block Name Type Description
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9.6 CPC Register Programming

This section describes some of the programming functions that can be performed via the CPC 
registers.

9.6.1 Cluster Power Controller Register Address Map
The CPC uses memory locations within the global and core-local address space. All address 
locations in this document are relative to a base address of 0x0000_8000. 

In Table 9.3, all registers are accessed using 32-bit aligned uncached load/stores. All address 
locations in this document are relative to the fixed offset CPC base address from GCR_BASE. 

9.6.2 Global Control Block Register Map
All registers in the Global Control Block are 64 bits wide and should only be accessed using 
aligned 64-bit uncached load/stores. Reads from unpopulated registers in the CPC address 
space return 0x0, and writes to those locations are silently dropped without generating any 
exceptions. 

9.6.3 Requestor Access to CPC Registers

9.6.3.1 Register Interface
The CPC allows up to eight requestor’s in a system. A requestor can be either a core or an 
IOCU. The requestor may not have unrestricted access to the CPC registers. During boot 
time, the programmer determines which requestor’s are provided access to the CPC registers 
by programming the Global Access Privilege register located at offset 0x120 in the CM register 
map. The 8-bit ACCESS_EN field (bits 7:0) of this register selects up to eight cores, and bits 
23:16 enable access for IOCU7 through IOCU0 respectively. 

0x030 CPC Core Local Hart Running Register
(CPC_CL_VP_RUNNING_REG)

R/W Indicates which hart’s are in the run 
state.

0x050 CPC Core Local RAM Sleep Register
(CPC_CL_RAM_SLEEP_REG)

R/W Controls the Deep Sleep and Shut 
Down power state of the RAMs.

Table 9.3 CPC Address Map

Block Offset Size (bytes) Description

0x0000 - 0x01FF 512B Global Control Block. Contains registers pertaining to the 
global system functionality. This address section contains a 
single set of registers that is visible to all CPUs.

0x0200 - 0x0408
0x04040 - 0x04078

 KB Clock Control Register for CPC_IOCU, CPC_MEM, CM 
MSTR, CPC_AUX, and CPC_IOMMU.

0x1000 - 0x5F90 8 KB CPC Core Local registers For CM, DBU and Core local 
(Core0 to Core63) 

0x5F94 - 0xDFFF Reserved.

Table 9.2 Core-Local Block Register Map (continued)

Register Offset 
in Block Name Type Description
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The MIPS default for ACCESS_EN field is 0xFF, meaning that all cores in the system have 
access to the CPC register set. In addition, bits 23:16 are set to allow IOCU7 through IOCU0 
access to the CPC register set. To disable access to the registers for a particular requestor, 
kernel software need only clear the bit corresponding to that core or IOCU, and all write 
requests to the CPC registers by that requestor will be ignored. 

9.6.4 Enabling Coherent Mode
The I8500 Multiprocessing System allows each power domain to be placed in either a coher-
ent or non-coherent mode. Because the I8500 implements a directory-based coherence pro-
tocol, MIPS recommends that each domain be placed in coherent mode during normal 
operation. The non-coherent mode should only be used during boot-up and power-down. 
Software should not execute any cacheable memory accesses (instruction fetch or load/
store) while coherence is disabled.

Register Interface
Coherency is enabled when gcr_cl_coh_en in bit 11 (COH_EN) of the Core-Local Status and 
Configuration register equals 0x1. This register resides in the CM local register block at offset 
address (0x20F8 + 0x100 x CoreNum). There is one of these registers per power domain. 

Note that if a power domain is in coherent mode and a change to the power state is initiated, 
the caches must be flushed prior to disabling coherence mode. 

Coherent Mode Enable Code Example
The base address for the location of the CM GCR registers is programmed into the CSR CMG-
CRBase register. As a reference, a value of 0x0000_1FB8_0000 is used (MIPS default) to 
indicate the base location of the CM global control registers. In this case, the base value is 
read from the CSR register and an offset is added to it to derive the exact register address 
where the Core Local Coherence Control register is located.

By default, coherence is disabled in the I8500 MPS.

9.6.5 Master Clock Prescaler
The clock prescaler is used to reduce the frequency of all devices in the system simultane-
ously.

The prescaler can be programmed as follows using the global CPC Prescale Clock Change Control 
register located at offset address 0x0048. 

1. Verify that the PRESCALE_CLK_RATIO_CHANGE_EN bit of this register (bit 8) is set. This 
bit must be set before the CLK_PRESCALE field can be changed.

2. Optionally, the programmer can read the PRESCALE_CLK_RATIO field in bits 26:23 of this 
register to determine the current clock prescaler ratio.

3. Program the CLK_PRESCALE field (bits 7:0) to set the clock ratio. A value of 0x00 indicates 
a 1:1 clock ratio (no difference between input and output frequency of the prescaler). A 
value of 0xFF indicates a 1:256 ratio between the master input clock and the output of 
the prescaler. 

The 8-bit CLK_PRESCALE field can be programmed as follows to select the prescaler ratio. 

Table 9.4 Encoding of the CLK_PRESCALE Field 

Encoding Description

0x00 No prescaling
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For an example of how to program these fields, refer to step 1 of the procedure in Section 
9.6.6.1, "Clock Domain Change Example — Register Programming Sequence". 

For more information on this register, refer to the CM Registers companion document 
included in the release.

By default, the clock prescaler is disabled in the I8500 MPS. The clock prescaler is enabled 
and the clock divide ratio is set to divide by 4. Note that the PRESCALE_CLK_RATIO field in 
bits 23:16 of this register is a read-only field that is updated by hardware and allows kernel 
software to quickly read this register to determine the current clock ratio.

9.6.6 Individual Device Clock Ratio Modification
Based on the input clock frequency to each individual device supplied by the clock prescaler, 
each device can further reduce the clock by a frequency range of 1:1 to 1:8, except for the 
CM, which has a fixed ratio of 1:1 relative to its input clock as shown in the figure. This is 
accomplished by programming the CLK_RATIO field (bits 2:0) of each CPC Local Clock Change 
Control register located at offset address 0x0018. For an example of how to program this field, 
refer to step 2 of the procedure in the section entitled Clock Domain Change Example — 
Register Programming Sequence. 

9.6.6.1 Clock Domain Change Example — Register Programming Sequence
The following example shows how to run core 0 at full speed, and core 2 at quarter-speed to 
save power. Assume the following:

• 2-core system 

• 1 hart per core

• si_ref_clk input frequency of 1 GHz

• Prescaler output of 1 GHz

• Core 0 input frequency of 1 GHz

• Core 1 input frequency of 250 MHz

In this example, the si_ref_clk input to the clock prescaler is 1 GHz. As shown above, the 
output frequency of the prescaler in this example is also 1 GHz. This ratio is accomplished by 
programming the global CPC Prescale Clock Change Control register located at offset address 
0x0048 as follows. Note that this register is global and is seen by all cores and all individual 
devices (clock domains) in the system. 

Register Interface

0x01 Divide input clock by 2
0x02 Divide input clock by 3
0x03 Divide input clock by 4
0x04 Divide input clock by 5
..... .....

0xFD Divide input clock by 254
0xFE Divide input clock by 255
0xFF Divide input clock by 256

Table 9.4 Encoding of the CLK_PRESCALE Field (continued)

Encoding Description
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To program the clock prescaler for this example:

1. Write a value of 0x100 to the global CPC Prescale Clock Change Control register located at offset address 
0x0048. This value sets the CLK_PRESCALE field to a value of 0x00, indicating a 1:1 relationship 
between the input clock and the output clock. This value also sets the PRESCALE_CLK_RA-
TIO_CHANGE_EN bit to indicate that the value in the CLK_PRESCALE field is valid. Refer to the 
I8500 Registers companion document for more information on this register.

2. In this example the core 0 is running at full speed. Core 1 is running at 1/4 speed. To set the ratio of the 
clock generators for core 0 so it operates at 1 GHz, and core 1 so it operates at 250 MHz, program the 
individual CPC Local Clock Change Control registers. This register is instantiated as one per clock 
domain, so in this case each core has its own register since each core is in its own domain. 

3. Set the SET_CLK_RATIO bit in the CPC Global Clock Change Control register located at offset 0x0028 to 
initiate a clock change for all clock domains participating in the clock change, which is cores 0 - 3 in 
this example. This bit is cleared by hardware once the clock change has completed. 

Table 9.5 shows the programming of the CLK_RATIO field (bits 2:0) of the corresponding CPC 
Local Clock Change Control register located at offset address 0x0018.

Poll the following registers to determine when the clock change has completed. 

• Read the CPC_CC_CTL_REG register to determine when bit 8 (SET_CLK_RATIO) is 0. 
If SET_CLK_RATIO is 1, the change request is still pending.

• Read the CPC_CC_CTL_REG to determine when bit 10 (CLK_CHANGE_ACTIVE) is 0. If 
CLK_CHANGE_ACTIVE = 1, the clock change is in progress. 

• When both of these bits are zero, the clock change has completed. At this point, 
another clock change could be requested.

Clock Ratio Change Code Example

/?P?o?r?m?t?e?C?C?C?_?C?C?L?r?g?s?e? ?L?C?_?A?I? ?i?l? ?o?0?(?:? ?a?i?)

l? ?2? ?x?0?0?0?0? ?/?e?a?l? ?l?c? ?h?n?e?a?d?s?t?r?t?o?t? ?:?

s? ?2? ?x?0?8?(?1? ?/?s?o?e?c?n?e?t? ?o?C?C?C?_?C?C?L?r?g?s?e? ?t?0?2?1?

 

/?C?r?1?C?_?T? ?e?i?t?r

s?n?

/?P?o?r?m?t?e?C?C?L?c?l?C?o?k?C?a?g? ?e?i?t?r?C?O?K?R?T?O?f?e?d?t? ? ?4?1?r?t?o?

l? ?2? ?x?0?0?0?0? ?/?e?a?l? ?l?c? ?h?n?e?a?d?s?t?r?t?o?t? ?:?

s? ?2? ?x?1?8?(?1? ?/?s?o?e?c?n?e?t? ?P?_?1?C?_?T? ?e?i?t?r?a? ?x?1?8

 

/? ?n?t?t? ?e?i?t?r?b?s?d?c?o?k?c?a?g? ? ?r?g?a? ?i? ? ?f?t?e?C?C?C?_?T?_?E?

/? ?e?i?t?r?a? ?f?s?t?0?0?2? ?r?m?C?C?a?e

Table 9.5 Programming the CLK_RATIO Field of the CPC Local Clock Change Registers 

Core CLK_RATIO Value Clock Ratio Core Clock Frequency

0 3’b000 1:1 1 GHz
1 3’b100 4:1 250 MHz
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9.6.6.2 Clock Change Delay 
The CPC_CC_CTL_REGCC_DELAY field in bits 29:20 of the CPC Global Clock Control register is used 
to optimize the amount of delay during a clock change. This can be done if all clock domain 
ratios are low. For example, if all current clock ratios are less than 1:4 the value of the delay 
could be reduced. The intent is that clock domain changes do not happen very often, so set-
ting the default of 80 clocks should not be a problem and leaving this value at its default 
delay is recommended. This register could also be used to extend the state delay period if 
desired. 

9.6.7 CM Standalone Powerup
Normally, the CM is automatically powered-up if any core is powered-up. Conversely, the CM 
is automatically powered-down if all cores are powered-down. The I8500 allows for the CM to 
be powered-up even if no core is powered-up. This is useful for system debug/setup via the 
DBU. 

9.6.7.1 Register Interface
This functionality is controlled by the CPC Global Power Up register (CPC_PWRUP_CTL_REG) 
located at offset address 0x0030. 

The DBU may execute a one-time power-up of the CM by writing a 1 to this register. If the 
CM is not operational at the time this bit is set by the DBU, it will transition from its current 
state to an operational state. If the CM is already operational, setting this bit has no meaning 
and the register write is ignored.

9.6.8 Reset Detection
The CM provides a series of read-only bits that allow the programmer to determine when a 
given device connected to the CM has been reset, including the CPC itself. Whenever a device 
is reset, the corresponding bit of the CPC Global Reset Occurred register (CPC_ROCC_CTL_REG) 
at offset 0x0040 is set. Refer to the I8500 Registers companion document included in the 
release for more information on this register.

In addition to the reset detection, this register also contains a 2-bit field (RESET_CAUSE) 
that indicates the type of reset for the CPC block. Reset options are cold reset, external warm 
reset, and watchdog timer reset. The functionality of this register is shown in Figure 9.4.
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Figure 9.4 Reset Detection in the I8500 Multiprocessing System

9.6.9 VP Run/Suspend
Three registers are used to control the power state of each hart in the system. The I8500 
Multiprocessing system supports up to four hart’s per core, and up to six cores per system. 
Each of these registers is instantiated per core. 

Three registers are used to control this functionality: 

• VP Run register (WO)

• VP Stop register (WO)

• VP Running register (RO)

Register Interface

The VP Run register is a Write-only register used to set each hart to the run state. The VP Run 
register contains a 2-bit field, where each bit is dedicated to a particular hart, up to two per 
core. Prior to setting one of these bits, kernel software must ensure that the hart in question 
is not already running by reading the corresponding bit in the VP Running register. If a given bit 
in the VP Running register is cleared, setting the corresponding bit in the Hart Run register 
places the hart in the run state. If a given bit in the VP Running register is already set, setting 
the corresponding bit in the VP Run register has no meaning. The value in this register is reset 
whenever the associated core is reset. The VP Run register can also be cleared by hardware, 
as well as the Debug unit.

The VP Stop register is a write-only register used to stop a hart. If a given bit in the Hart Running 
register is set, setting the corresponding bit in the VP Stop register places the hart in the sus-
pend state. Writing a 0 to any of the bits in the VP Stop register has no effect. 

The VP Running register is a read-only register that indicates the run state of each hart in a 
given core. These bits are set and cleared by hardware based on the programming of the VP 
Run and VP Stop registers by kernel software as described above. 

Note that for each of these registers, the two hart’s correspond to the register bits as follows:

• Bit 0 = Hart0

• Bit 1 = Hart1

012345161731 30 29

CPC Global Reset Occurred Register

63

CPC Reset
Cause of CPC Reset

DBU Reset
CM Reset

CORE5 Reset
CORE4 Reset
CORE3 Reset
CORE2 Reset
CORE1 Reset
CORE0 Reset
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For example, to set hart2 of a given core to the Run state, kernel software would do the fol-
lowing, 

1. Read bit 2 of the VP Running register. If this bit is already set, hart2 is already running and no action 
need be taken.

2. If bit 2 of the VP Running register is cleared, indicating that hart2 is in the Suspend state, kernel soft-
ware sets bit 2 of the Hart Run register to set hart2 to the Run state.

To set hart2 of a given core to the Suspend state, kernel software would do the following, 

1. Read bit 2 of the VP Running register. If this bit is already cleared, hart2 is already in the Suspend state 
and no action need be taken.

2. If bit 2 of the VP Running register is set, indicating that hart2 is in the Run state, kernel software sets bit 
2 of the VP Stop register to set hart2 to the Suspend state.

9.6.10 Local RAM Deep Sleep / Shutdown and Wakeup Delay
The CM allows the local RAM’s within a given power domain (cores, CM, IOCU, etc) to be 
placed into either Shutdown mode where the clocks are turned off, or Deep Sleep mode 
where the clocks are running at a fraction of their normal frequency. This functionality is con-
trolled through the CPC Local RAM Sleep Control register (CPC_CL_RAM_SLEEP) located at off-
set 0x1050 + 0x100 * CM/DBU/Core_num. 

This register is instantiated per power domain, so each domain has the ability to power cycle 
its own local RAM devices. 

9.6.10.1 RAM Deep Sleep Mode
When bit 31 (RAM_DEEP_SLEEP_DISABLE) of the CPC_CL_RAM_SLEEP is cleared (logic ‘0’), 
the RAM’s on the local device enter the Deep Sleep low power state when the CPC power 
state for the device reaches the ClockOff state. In this state the clocks to the local RAM’s 
within that power domain are running at a fraction of their normal frequency.

The CPC also provides a way to delay the transition from the deep sleep state to the run state 
using bits 23:16 RAM_DEEP_SLEEP_WAKEUP_DELAY) of the CPC_CL_RAM_SLEEP register. 
Once awoken, the CPC delays the transition to the run state by the value programmed into 
this field in order to provide sufficient time for the RAMs to wake up from Deep Sleep. The 
delay can range from 1 to 255 (0xFF) clocks.

9.6.10.2 RAM Shut Down Mode
When bit 15 (RAM_SHUT_DOWN_DISABLE) of the CPC_CL_RAM_SLEEP is cleared (logic ‘0’), 
the RAM’s on the local device enter the Shutdown low power state when the CPC power state 
for the device reaches the PwrDwn state. In this state the clocks to the local RAM’s within 
that power domain are off. The RAM’s remain in the Shutdown low power state even if the 
CPC power state changes to ClkOff without transitioning to the operational state.

The CPC also provides a way to delay the transition from the shutdown state to the run state 
using bits 7:0 RAM_SHUT_DOWN_WAKEUP_DELAY) of the CPC_CL_RAM_SLEEP register. Once 
awoken, the CPC delays the transition to the run state by the value programmed into this 
field in order to provide sufficient time for the RAMs to wake up from the Shut Down state. 
The delay can range from 1 to 255 (0xFF) clocks.
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9.6.11 Accessing the CPC Registers in Another Power Domain
Each power domain shown in Figure 9.1 contains its own set of CPC Core-Local and Core-
Other registers. This allows master devices such as a core or IOCU to access these registers 
to modify the power parameters for a given domain. This is accomplished by writing to regis-
ters within the CM address space using the Core number and the hart number of the device 
to be accessed.

For more information on accessing the CPC registers of another core or hart, refer to the sec-
tion on Core-Local and Core-Other Register usage in the CM Programming chapter of this 
manual.

9.6.12 Fine Tuning Internal and External Signal Delays
This section describes those register fields that can be used to delay the assertion of external 
signals relative to one another, as well as the internal domain sequencer state machine. 
These registers are used to help accommodate a wide variety of timing constraints in the 
system. Signals can be lengthened or shortened accordingly in order to meet system timing.

9.6.12.1 Global Sequence Delay Count
The Sequence Delay register (CPC_SEQDEL_REG) located at offset 0x0008 in the CPC Global 
Control Block, contains a 10-bit MICROSTEP field that describes the number of clock cycles 
each domain sequencer state machine will take to advance to the next state. 

The 10-bit MICROSTEP field contains a default value of 0x002, indicating a 2-cycle delay. 
However, should additional delay be required based on the system implementation, this reg-
ister provides the programmer with the ability to increase the sequence delay as necessary.

Domain sequencing begins once the RAILDELAY field has counted down to zero. Refer to the 
section entitled Rail Delay for more information.

The 10-bit MICROSTEP field is encoded as follows: 

9.6.12.2 Rail Delay
The Rail Delay register (CPC_RAIL_REG) located at offset 0x010 in the CPC Global Register 
Block contains a 10-bit counter field (RAILDELAY) used to schedule delayed start of power 
domain sequencing after the RailEnable1 signal has been activated by the CPC. This allows the 
CPC to compensate for slew rates at the gated rail.

Table 9.6 Encoding of MICROSTEP Field

Encoding Description

0x000 1-cycle delay
0x001 2-cycle delay
0x002 3-cycle delay
0x003 4-cycle delay
0x004 5-cycle delay

..... .....
0x3FD 1022-cycle delay
0x3FE 1023-cycle delay
0x3FF 1024-cycle delay
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The 10-bit counter value (RAILDELAY) delays the power-up sequence per domain. The power-
up sequence starts after RAILDELAY has been loaded into the internal counter and a count-
down to zero has concluded. At IP configuration time, the contents of the CPC_RAIL_REG reg-
ister are preset. However, for fine tuning, the register can be written at run time. 

The 10-bit RAILDELAY field is encoded as follows: 

The default value for this register has been determined by MIPS as the value that should 
work in the majority of system implementations. As such, this value should not need to be 
changed. However, should a problem arise where additional delay is required in order to 
meet system timing, this register provides the programmer with the ability to increase the 
delay as necessary.

For more information on how this counter is used, refer to the Global Sequence Delay Count 
section in the System Integration chapter of the I8500 Integrator’s Guide for more informa-
tion. 

9.6.12.3 Reset Delay
During the power-up sequence, reset is applied. Typically, reset is active until the domain 
responds by asserting the internal Reset_Hold signal. However, the Global Reset Width Counter 
register (CPC_RESETLEN_REG) at offset 0x0018 allows reset to be extended beyond the asser-
tion of Reset_Hold. A series of down-counters are used to delay various reset pins used to boot 
the CM as described in the following subsections. 

The default value for this register has been determined by MIPS as the value that should 
work in the majority of system implementations. As such, this value should not need to be 
changed. However, should a problem arise where additional delay is required in order to 
meet system timing, this register provides the programmer with the ability to increase the 
delay as necessary. 

For more information on these counters and the corresponding hardware signals that can be 
delayed, refer to the Reset Delay section in the I8500 Integrator’s Guide for more informa-
tion. 

1. This signal is shown only for illustration purposes. Refer to the I8500 Integrator’s Guide for the exact name and usage of this 
signal.

Table 9.7 Encoding of RAILDELAY Field 

Encoding Description

0x000 1-cycle delay
0x001 2-cycle delay
0x002 3-cycle delay
0x003 4-cycle delay
0x004 5-cycle delay

..... .....
0x3FD 1022-cycle delay
0x3FE 1023-cycle delay
0x3FF 1024-cycle delay
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Programming the Global Reset Width Counter Register (RESETLEN)

The RESETLEN down counter is used to extend the various reset signals using bits 9:0 of the 
CPC Global Reset Width Counter Register (CPC_RESETLEN_REG) at offset 0x0018. This register 
field is programmed with a delay value between 1 and 1024 clock cycles as shown in Table 
9.8. 

Programming the Global Reset Release Register — Core Reset Release (RESREL1)

The output of the RESETLEN counter described above is used to load a secondary internal 
counter with the value programmed into the RES_REL_LEN field of the CPC Global Reset 
Release Register (CPC_RES_REL_REG) located at offset 0x0038. This register is used to deter-
mine the amount of delay between the time the configuration signals are stable at the 
respective core(s), and the time that the core reset is released.

Bits 9:0 of this register (RES_REL_LEN) are programmed with a delay value between 1 and 
1024 clock cycles. The encoding of this field is identical to the RESETLEN field shown in Table 
9.8. Once this counter reaches 0, the Domain_Reset_n2 signal is deasserted to the core(s), 
allowing them to come out of reset.

Programming the Global Reset Release Register — Domain Ready (RESREL2)

The output of the RESREL1 counter is used to load a third internal counter (RESREL2) with 
the value programmed into the RES_REL_LEN field of the CPC Global Reset Release Register 
(CPC_RES_REL_REG) located at offset 0x0038. This register is used to determine the amount 
of delay between the time the Domain_Reset_n signal is deasserted, and the deassertion of the 
Domain_Ready signal, indicating that the core is ready to begin execution. Note that the same 
register field (RES_REL_LEN) of the CPC_RES_REL_REG register is used to load both the RES-
REL1 and RESREL2 counters. 

The third internal counter (RESREL2) requires that the RESREL1 counter has reached zero 
before counting can begin. Once the RESREL2 counter reaches 0, the Domain_Ready signal is 
asserted to the core(s), allowing the core to begin execution.

Table 9.8 Encoding of the RESETLEN Field 

Encoding Description

0x000 1-cycle delay
0x001 2-cycle delay
0x002 3-cycle delay
0x003 4-cycle delay
0x004 5-cycle delay

..... .....
0x3FD 1022-cycle delay
0x3FE 1023-cycle delay
0x3FF 1024-cycle delay

2. This signal is shown only for illustration purposes. Refer to the Global Sequence Delay Count section of the I8500 Integra-
tor’s Guide for more information on the usage of this signal.
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For more information on how these counters are loaded and the signals affected once the 
counts reach zero, refer to the Global Sequence Delay Count section in the System Integra-
tion chapter of the I8500 Integrator’s Guide.
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Interrupt Controller

The Interrupt Controller processes internal and external interrupts in the I8500 Multiprocess-
ing System and is part of the Coherency Manager (CM3.7). It supports up to 511 external 
interrupts (configurable in multiples of 8), which are prioritized and routed to the selected 
hart for servicing. 

The interrupt priority and routing are programmed via memory-mapped registers. The inter-
rupt controller also implements per-hart timer and software interrupts, non-maskable inter-
rupt routing and watchdog timers. The Interrupt Controller is compatible with the RISC-V 
Advanced Interrupt Architecture (AIA) specification.

10.1 Features

• AIA.w (Wired interrupt portion) of Advanced Platform Level Interrupt controller (APLIC)
– Configurable - can add binary multiples up to 512 (i.e., 8/16/32/64/128/256/512)
– Two privilege domains - Machine and Supervisor
– MIPS Custom - Non Maskable Interrupt

• Advanced Core Level Interrupt Controller (ACLINT)
– Machine-domain Software interrupt (IPI feature)
– Supervisor-domain Software Interrupt (IPI feature)
– Machine Timer (MTIME)

• Watch Dog Timer
– RISC-V compliant
– Interrupt, NMI or Reset
– MIPS Custom - Periodic Interrupt
– MIPS Custom - Pulse signal

• Custom
– Custom implemented NMI
– Custom implementation of Watch Dog Timer interrupts
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10.2 Overview

The MIPS Interrupt Controller implements the following components defined by the RISC-V 
architecture:

• Advanced Platform-Level Interrupt Controller (APLIC)

• Advanced Core Local Interrupt (ACLINT) Machine-level Timer

• ACLINT Machine-level Software Interrupt (MSWI)

• ACLINT Supervisor-level Software Interrupt (SSWI)

• Watchdog Timer (WDT)

The APLIC implementation also contains various custom features, including non-maskable 
interrupt (NMI) generation from Machine-domain interrupt sources. The APLIC portion of the 
MIPS Interrupt Controller implements the wired interrupts portion of the RISC-V AIA APLIC. 
This version of the MIPS Interrupt Controller does NOT support Message Signaled Interrupts 
(MSI). 

The ACLINT implements three major functions: Machine Timers (MTIMER), Machine-Level 
Software Interrupts (MSWI), and Supervisor Level Software Interrupts (SSWI).

The WDT is the third component of the Interrupt Controller and provides generation of 
watchdog timer interrupts based upon the RISC-V watchdog timer specification. The MIPS 
WDT has also implemented custom "periodic interrupt" and "pulse signal" generation func-
tionalities.

In addition to the standard components, the Interrupt Controller implements custom exten-
sions to support Non-Maskable Interrupt (NMI) routing, timer synchronization, and Watchdog 
Timer (WDT) configuration.

Note that interrupt events defined as "local" by the RISC-V ISA (such as Local Count Over-
flow Interrupts and Bus Error Interrupts) are handled internally by the CPU core, and do not 
involve the Interrupt Controller.

The Interrupt Controller does not implement the RISC-V IMSIC component or the CPU/hart 
CSRs defined by the RISC-V AIA extension. Consequently, hardware virtualization of inter-
rupts is not supported and delivery of interrupts to virtual guests requires software interven-
tion.

Each of these block is described in more detail in the following sections.

10.2.1 Block Diagram
Each cluster in the P8700 Multiprocessing System instantiates an Interrupt Controller block, 
as shown in Figure 10.1.  It is generally preferable that SoC designs connect the same set of 
interrupt sources to the APLIC interrupt inputs of all clusters in parallel to give software a 
uniform view of the hardware state across all clusters. However, it is also possible for the SoC 
design to statically partition the hardware interrupt sources between clusters to suit a spe-
cific application.

The memory-mapped registers in the Interrupt Controller are accessible to all clusters in the 
MPS.  This enables software to program a software interrupt as an inter-processor interrupt 
(IPI) on a remote cluster by writing to the ACLINT registers of the target cluster.
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Figure 10.1 Interrupt Controller Block Diagram

This chapter describes how to program the various elements of the interrupt controller using 
both register examples and code examples. Some of these elements include register layout 
and distribution, determining the number of external interrupts, configuring individual inter-
rupt sources, scheduling timer interrupts and signaling inter-processor interrupts.

10.2.2 Interrupt Controller Domains
External Interrupt handling can be divided into multiple domains, where each domain has its 
own memory mapped control registers. The MIPS AIA has two domains;

• Machine mode

• Supervisor mode

Hierarchically, the interrupts are sent to a receiving domain, referred to as the root domain. 
The root domain determines whether the interrupt should be handled by the root domain 
itself, or whether it should be delegated to a child domain. In the MIPS AIA, the root domain 
is always the Machine domain, and the Supervisor domain is the only child domain in the 
design.   

A Non-Maskable Interrupt (NMI) output generation has been implemented as a custom fea-
ture in the MIPS AIA. This interrupt drives the NMI pin which is exclusive to the Machine 
domain. The Supervisor domain does not handle NMIs.

10.2.3 Interrupt Priority Rules
The following rules determine interrupt priority among competing sources:

• The minimum priority number for an active interrupt source is 1. Zero is not a legal prior-
ity number for an interrupt source.

• A smaller priority number indicates higher priority. For example, if two interrupts for a 
given hart have priority numbers 3 and 4 respectively, then the interrupt with priority 
number 3 has higher priority than the interrupt with priority number 4.
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• When multiple interrupts have the same priority number, then the interrupt with the low-
est identity number automatically gets higher priority.

10.2.4 Interrupt Pending and Clearing Rules
This section details the interrupt pending set and clear rules for each of the interrupt source 
modes.

• If Source Mode is Detached:
– Pending bit is set to 1 by a relevant write to a setip or setipnum register
– Pending bit is cleared when the interrupt is claimed at the APLIC, or by a relevant write 

to a in_clrip or clripnum register

• If Source Mode is Edge0/Edge1:
– Pending bit is set to 1 by low-to-high transition in the rectified interrupt value, or by a 

relevant write to a setip or setipnum register
– Pending bit is cleared when the interrupt is claimed at the APLIC, or by a relevant write 

to a in_clrip or clripnum register

• If Source Mode is Level0/Level1 and interrupt domain in Direct Delivery Mode 
(domaincf.DM=0):
– Pending bit is set to 1 whenever the rectified interrupt input value is high. Pending bit 

cannot be set by a write to a setip or setipnum register.
– Pending bit is cleared whenever the rectified interrupt input value is low. Pending bit 

cannot be cleared by a write to a in_clrip or clripnum register, and it is not cleared by a 
claimi of the interrupt at the APLIC.

• If Source Mode is Level0/Level1 and interrupt domain in MSI Mode (domaincf.DM=1):
– MSI mode handling is currently NOT implemented in the MIPS AIA.

10.3 Advanced Platform Level Interrupt Controller (APLIC)

The APLIC is responsible for detecting hardware interrupt events from the SoC, prioritizing 
them and routing them to the assigned hart for servicing.  It supports up to 512 interrupt 
inputs (configurable in increments of 8), although 3 interrupt inputs are reserved for inter-
rupt events originating within the cluster and are not available for external use.  Interrupt 
inputs can be individually programmed to support rising-edge-sensitive, falling-edge-sensi-
tive, high-level-sensitive or low-level-sensitive interrupt signaling. Each of these interrupt 
sources is configured and prioritized, and filtering is performed such that the interrupt source 
with the highest priority is sent to the HART.

10.3.1 Slice-based Design
The actual number of interrupt sources that a given configuration of the MIPS APLIC will han-
dle can be set, on a per-instance basis, in multiples of 8. This is achieved by using a "slice" 
based design, where each slice can handle 8 interrupt sources. The number of "slices" instan-
tiated is defined as a parameter, with the design supporting any number of "slices" between 
[1, 64]. 

Depending on configuration, APLIC interrupts can be "internally generated" by software 
writes, even if an external interrupt number corresponding to a non-triggered input is 
assigned to it. This behavior is described in the setip register description later in this docu-
ment.
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The APLIC is automatically configured to the number of harts in the cluster, and the APLIC 
hart index is given by the concatenation of the CORENUM and HARTNUM fields of the mhartid 
CSR.

10.3.2 Interrupt Controller APLIC Domains
The APLIC supports two interrupt domains; a Machine-level domain and a Supervisor-level 
domain. Both domains are associated with all harts in the cluster, allowing interrupts to be 
signaled as either Machine External Interrupts (MEI) or Supervisor External Interrupts (SEI).  
Interrupts are signaled to a hart in "direct delivery mode".

Generation of non-maskable interrupts (NMI) is a custom feature implemented in the MIPS 
APLIC. Any pending machine-domain interrupt can be optionally sent as an NMI. The super-
visor-domain does not contain support for the NMI feature. The generation of NMIs from 
interrupt sources is controlled by custom registers within the APLIC. NMI generation is not a 
part of the RISC-V AIA standard specification.

Mapping of interrupts to harts is accomplished by use of the following custom memory-
mapped registers:  snmie, setnmienum, clrnmie and clrnmienum (analogous to the standard 
setie, setienum, clrie and clrienum registers, respectively). If nmie[k] is 1 and interrupt 
enable bit k (from the setie/clrie registers) is zero, interrupt source k will be treated as an 
NMI.  

In this case, when interrupt source k is asserted, an NMI will be signaled to the hart selected 
by target[k].HartIndex, and target[k].IPRIO will be ignored. This is only applicable to inter-
rupts at the root (M-Mode) APLIC domain; interrupts delegated to a child (S-Mode) APLIC 
domain are not available for use as NMI.

10.4 Advanced Platform Level Interrupt Controller (ACLINT)

The Advanced Core-Level Interrupt Controller (ACLINT) provides inter-processor interrupts 
(IPIs) and timer functionalities to each HART. The ACLINT is divided into three component 
devices: the Machine-level Timer (MTIMER), Machine-level Software Interrupter (MSWI), and 
the Supervisor-level Software Interrupter (SSWI) that provide timer interrupts and software/
inter-processor interrupts to the harts in the cluster. Each of these functionalities is described 
in the corresponding section below:

10.4.1 mtime and mtimecmp
The MTIMER device implements the mtime and mtimecmp memory-mapped registers and 
associated Machine Timer Interrupt (MTI) functionality defined by the RISC-V Privileged 
Architecture. A single mtime register serves the entire cluster, while each hart has its own 
dedicated mtimecmp register.

Although it is conceptually part of the ACLINT, the mtime register is physically located in the 
the always-on power domain of the CPC block to avoid the need to resynchronize the timer 
with other clusters when a cluster is powered up while the overall system is running. The 
mtime register is located in the CPC section of the cluster register map.

The mtime register is driven by a dedicated reference clock (si_mtime_clk); the recom-
mended frequency is 100 MHz.

A machine-level timer interrupt is considered pending whenever the value of mtime is equal 
to or greater than the value of mtimecmp for the corresponding HART. A machine-level timer 
interrupt is considered cleared whenever the value of mtime is less than the value of 
mtimecmp for the corresponding HART.
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In addition to the standard MTIMER functionality, the P8700-F APLIC implements a custom 
control register (MTIMECTL) that allows the timer to be stopped and synchronizing the mtime 
counters in multiple clusters more precisely than a pure software synchronization algorithm.

10.4.2 mtime Synchronization
The mtime synchronization procedure is as follows:

1. Software should write 1 to the MTIMECTL.STOP register bit in all clusters to be synchro-
nized.

2. Software should write the desired starting count value (e.g. zero) to the mtime register of 
all clusters to be synchronized.

3. SoC logic outside of the MPS (presumably under software control) should simultaneously 
assert the cpc_mtime_start signal to all clusters to be synchronized.  This will clear the 
STOP bit and restart all the counters at the same time.

10.4.3 Machine Level Software Interrupts (MSWI)
The MSWI device provides machine-level inter-processor interrupt (IPI) functionality for a set 
of HARTs on a RISC-V platform  . A RISC-V platform can have multiple MSWI devices when 
the MSWI devices provide functionality for disjoint sets of HARTs. In the Shogun implementa-
tion, there is a single MSWI device which provides IPI functionality to all HARTs.

A 32-bit WARL register known as msip is provided for each HART connected to the MSWI 
device, where the upper 31 bits are wired to 0. A machine-level software interrupt is trig-
gered or cleared by writing 1 or 0 to the corresponding msip register. 

10.4.4 Supervisor Level Software Interrupts (SWSI)
The SSWI device provides supervisor-level IPI functionality for a set of HARTs on a RISC-V 
platform.   In the Shogun implementation, there is a single SSWI device which provides IPI 
functionality to all HARTs.

A 32-bit WARL register known as setssip is provided for each HART connected to the SWSI 
device, where the upper 31 bits are wired to 0. A read to the setssip register always returns 
0. Writing 1 to the setssip register will trigger an edge-sensitive interrupt signal to the corre-
sponding HART. Writing 0 to the setssip register has no effect.

10.5 Watchdog Timer

The MIPS Watchdog Timer (WDT) provides a two-stage timer controller for a set of HARTs in 
a cluster. The function of the watchdog timer is to wait for a specific period of time, controlled 
in software by the wtocnt field of the wdcsr register corresponding to a particular HART. The 
expectation is that system software will reset or re-initialize the timer value for this HART, by 
writing to the corresponding wdcsr register again, before the specific period of time set from 
the initial write elapses. If the timer countdown elapses without software intervention occur-
ring, a watchdog timer interrupt event is produced for that HART.

10.5.1 Features
The watchdog timer has the following features:

• Two-stage counter
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• Output for each timeout event can be configured separately as follows:
– Interrupt
– NMI
– Reset
– SoC output

• Periodic timer interrupt capability

• Clocked from cm_clock, but count gets updated on mtime value

10.5.2 Watchdog Time Stages
The MIPS WDT has two stages. After the first WDT timer countdown completion event, a 
"first-stage watchdog timeout" event output is generated, with a corresponding bit field 
s1wto being set in the wdcsr register. If the WDT timer is then able to complete a second 
timer countdown, then a "second-stage watchdog timeout" event output is generated, with a 
corresponding bit field s2wto being set in the wdcsr register.

10.5.3 Watchdog Timer Register Interface
The WDT consists of two registers; the WDCSR register (as defined in the RISC-V watchdog 
timer specification) and a custom configuration register (WDTCFG). The WDTCFG register 
controls the count-down frequency and selects the event to be triggered on Stage-1 and 
Stage-2 timeouts. These registers are instantiated on a per-hart basis, with a maximum of 
1024 harts currently supported.

10.5.4 NMI Support
The MIPS WDT has custom support for controlling the watchdog timer frequency by allowing 
the selection of the mtime counter bit to reference when counting. The MIPS WDT also sup-
ports the generation of a non-maskable interrupt (NMI) output by allowing the selection of 
different event actions for each WDT stage timeout. As an additional custom feature, the 
MIPS WDT interrupt can be configured to produce an "interval timer" using the "first-stage 
watchdog timeout" under a special mode. These custom features are controlled by the MIPS-
custom wdcfg register.

10.5.5 Timeout Events
The available timeout events are:

1. Signal an interrupt to the associated hart

2. Signal an NMI to the associated hart

3. Assert a per-cluster signal to the external SoC logic. This signal could be routed to SoC-
level monitoring logic or to an interrupt input of another cluster.

4. Reset the cluster
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10.6 Interrupt Controller Register Address Map

Table 10.1 shows a typical address mapping with respect to GCR_BASE register. 

10.7 ACLINT Memory Mapped Registers

10.7.1 ACLINT Machine Mode Memory Map
The ACLINT machine mode memory mapped registers start at offset 0x50000 from 
GCR_BASE, and use the register definitions specified in the RISC-V Advanced Core Local 
Interruptor Specification. Registers for the RISC-V Watchdog Timer Specification are also 
included in the ACLINT machine mode region.

The ACLINT machine mode region contains the following registers, which are described in 
detail in the subsequent per-register description pages: 

Table 10.1: Interrupt Controller Register Map 

Address Offset from 
GCR_BASE Block

Block 
Size (K) SubBlock

Subblock 
Size (K)

Privilege 
(typ) Note

0004_0000 0005_FFFF AIA.M 128 APLIC.M 48 M

APLIC.Custom 4 M Custom NMI control

Reserved 12 M

ACLINT.M 48 M

ACLINT.Custom 8 M WatchDog Timer

0006_0000 0006_FFFF AIA.S 64 APLIC.S 48 S

ACLINT.S 16 S

Table 10.2:  ACLINT Machine Mode Memory Mapped Registers

Offset from 
GCR_BASE Register Block Name Description

0x50000
0x50004

.......
0x53FF8

ACLINT.MSIP[0-4094] Per-hart machine software interrupt pending

0x54000
0x54008

.......
0x5BFF0

ACLINT.MTIMECMP[0-4094] Per-hart mtime compare

0x5C000
0x5C004

.......
0x5CFFC

ACLINT.WDCFG[0-1023] MIPS Technologies custom per-hart watchdog configu-
ration

0x5D000
0x5D004

.......
0x5DFFC

ACLINT.WDCSR[0-1023] Per-hart watchdog configuration and status
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10.7.1.1 ACLINT Machine Software Interrupt Pending (MSIP[0-4094]) Register (offset = see below)
This register is a machine software interrupt pending register. A machine software interrupt 
is asserted on hart mhartid when MSIP[mhartid[11:0]] is set to 1.

The MSIP register for hart mhartid is accessed at GCR_BASE + 0x50000 + 4 * mhar-
tid[11:0].

Each MSIP register resets to 0, and the upper 31 bits are readonly, zero. MSIP registers for 
which there is no corresponding hart in the cluster are readonly, zero.

Offset: GCR_BASE + 0x50000, 0x50004, ... 0x53FF8  

10.7.1.2 ACLINT Machine Time Compare (MTIMECMP[0-4094]) Register (offset = see below)
This register is a machine time compare register. A machine timer interrupt is asserted on 
hart mhartid when CPC.Global.MTIME_REG > = ACLINT.MTIMECMP[mhartid[11:0]].

The MTIMECMP register for hart mhartid is accessed at GCR_BASE + 0x54000 + 4 * mhar-
tid[11:0].

The architectural reset value of MTIMECMP is undefined. On MIPS Technologies implementa-
tions we reset it to all 1’s.

Offset: GCR_BASE + 0x54000, 0x54008, ... 0x5BFF0  

10.7.1.3 ACLINT WatchDog ConFiG (WDCFG[0-1023]) Register (offset = see below)
The WDCFG register for hart mhartid is accessed at GCR_BASE + 0x5c000 + 4 * mhar-
tid[11:0]. WDCFG registers for which there is no corresponding hart in the cluster are 
readonly, zero.

When the watchdog timer is configured to signal an interrupt, it will be signaled to the hart 
on bit 25 of the mip CSR.

Figure 10.2 Machine Software Interrupt Pending Register Bit Assignments
31 1 0

0 MSIP

Table 10.3:  Machine Software Interrupt Pending Register Bit Descriptions 

Name Bits Description R/W Reset State

0 31:1 Reserved. R 0

MSIP 0 Machine software interrupt pending register. R 0

Figure 10.3 Machine Time Compare Register Bit Assignments
63 0

MTIMECMP

Table 10.4:  Machine Time Compare Register Bit Descriptions 

Name Bits Description R/W Reset State

MTIMECMP 63:0 Machine time compare register. R 0
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Offset: GCR_BASE + 0x5c000, 0x5c004, ... 0x5CFFC  

Figure 10.4 WatchDog ConFiG Register Bit Assignments
31 10 9 8 7 4 3 0

0 WDFRQ S2Event S1Event

Table 10.5:  WatchDog ConFiG Register Bit Descriptions 

Name Bits Description R/W Reset State

0 31:10 Reserved R 0

WDFRQ 9:8 WDT count-down frequency: counter decrements when 
bit 8 * (WDFRQ + 1) of CPC.Global.MTIME_REG transi-
tions from 0 to 1.

R/W 0

S2Event 7:4 Event to trigger on Stage-2 timeout
Encoding 0: Alias = Interrupt, Meaning assert interrupt via 
APLIC
Encoding 1: Alias = NMI, Meaning assert NMI
Encoding 2: Alias = Reset, Meaning assert Reset
Encoding 3: Alias = TopLevel, Meaning assert top-level 
pin to SoC logic

R/W 0

S1Event 3:0 Event to trigger on Stage-1 timeout.
When S1Event is set to 4, the WDT will behave as an 
interval timer. When the counter reaches zero, an inter-
rupt will be signaled and the counter will be reinitialized to 
WDCSR.WTOCNT but the WDCSR.S1WTO bit will not 
be set. In this mode, the WDT will periodically signal the 
stage-1 interrupt at a fixed interval, and never signal the 
stage-2 event.

Encoding 0: Alias = Interrupt, Meaning assert interrupt via 
APLIC
Encoding 1: Alias = NMI , Meaning assert NMI
Encoding 2: Alias = Reset , Meaning reset
Encoding 3: Alias = TopLevel, Meaning top-level pin to 
SoC logic 
Encoding 4: Alias = IntervalTimer, Meaning Interrupt Inter-
val Timer

R/W 0
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10.7.1.4 ACLINT WatchDog Control and Status (WDCSR[0-1023]) Register (offset = see below)
The WDCSR register for hart mhartid is accessed at GCR_BASE + 0x5d000 + 4 * mhar-
tid[11:0]. WDCSR registers for which there is no corresponding hart in the cluster are 
readonly, zero. 

Offset: GCR_BASE + 0x5D000, 0x5D004, ... 0x5DFFC  

Figure 10.5 WatchDog Control and Status Register Bit Assignments
31 14 13 4 3 2 1 0

0 WTOCNT S2WTO S1WTO 0 Enable

Table 10.6:  WatchDog Control and Status Register Bit Descriptions 

Name Bits Description R/W Reset State

0 31:14 Reserved R 0

WTOCNT 13:4 Watchdog timer out count. Writes to WDCSR and stage-1 
timeouts cause a timeout counter to be initialized to 
WTOCNT.

R/W Undefined

S2WTO 3 Stage-2 watchdog timeout has occurred. Set when time-
out counter is zero and S1WTO = 1 (unless 
WDCFG.S1Event = 4)

R/W Undefined

S1WTO 2 Stage-1 watchdog timeout has occurred. Set when time-
out counter is zero.

R/W Undefined

0 1 Reserved R 0

Enable 0 Enable watchdog timer. R/W 0
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10.7.2 ACLINT Supervisor Mode Memory Map
The ACLINT supervisor mode memory mapped registers start at offset 0x6C000 from 
GCR_BASE, and use the register definitions specified in the RISC-V Advanced Core Local 
Interruptor Specification.

The ACLINT supervisor mode region contains the following registers, which are described in 
detail in the subsequent per-register description pages:

Table 10.7:  ACLINT Supervisor Mode Memory Mapped Registers

Offset from GCR_BASE Register Block Name Description

0x6C000
0x6C004

.......
0x6FFF8

ACLINT.SETSSIP[0-4094] Per-hart set supervisor software interrupt pending
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10.7.2.1 ACLINT SET Supervisor Software Interrupt Pending (SETSSIP[0-4094]) Register (offset = see 
below)

This register set supervisor software interrupt pending register. A supervisor software inter-
rupt is asserted on hart mhartid when SETSSIP[mhartid[11:0]] is written to 1. The SETSSIP 
register ignores writes of zero and always reads as zero.

The SETSSIP register for hart mhartid is accessed at GCR_BASE + 0x6c000 + 4 * mhar-
tid[11:0]. SETSSIP registers for which there is no corresponding hart in the cluster are 
readonly, zero.

Offset: GCR_BASE + 0x6C000, 0x6C004, ... 0x6FFF8

Figure 10.6 SET Supervisor Software Interrupt Pending Register Bit Assignments
31 1 0

0 SETSSIP

Table 10.8:  SET Supervisor Software Interrupt Pending Register Bit Descriptions 

Name Bits Description R/W Reset State

0 31:1 Reserved R 0

SETSSIP 0 Set supervisor software interrupt pending register R 0
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10.8 APLIC Memory Mapped Registers

10.8.1 APLIC Machine Domain Memory Map
The APLIC machine domain starts at offset 0x40000 from GCR_BASE, and uses the register 
definitions and address offsets for an APLIC domain as specified in the RISC-V Advanced 
Interrupt Architecture. The offsets and registers within the domain are identical to those for 
the APLIC supervisor domain.

The APLIC machine domain contains the following registers, which are described in detail in 
the subsequent per-register descriptions: 

Table 10.9:  APLIC Machine Domain Memory Mapped Registers

Offset from 
GCR_BASE Register Block Name Description

0x40000 APLIC.M.domaincfg Machine domain configuration

0x40004
0x40008

.......
0x40FFC

APLIC.M.sourcecfg[1-1023] Machine source configuration

0x41C00
0x41C04

.......
0x41C7C

APLIC.M.setip[0-31] Set machine interrupt pending by mask

0x41CDC APLIC.M.setipnum Set machine interrupt pending by number

0x41D00
0x41D04

.......
0x41D7C

APLIC.M.in_clrip[0-31] Read machine source input or clear machine interrupt 
pending by mask

0x41DDC APLIC.M.clripnum Clear machine interrupt pending by number

0x41E00
0x41E04

.......
0x41E7C

APLIC.M.setie[0-31] Set machine interrupt enable by mask

0x41EDC APLIC.M.setienum Set machine interrupt enable by number

0x41F00
0x41F04

.......
0x41F7C

APLIC.M.clrie[0-31] Clear machine interrupt enable by mask

0x41FDC APLIC.M.clrienum Clear machine interrupt enable by number

0x42000 APLIC.M.setipnum_le Set supervisor interrupt pending by number, Little-
endian

0x42004 APLIC.M.setipnum_be Set supervisor interrupt pending by number, Big-
endian

0x43004
0x43008

.......
0x43FFC

APLIC.M.target[1-1023] Specify target hart and priority for machine interrupt 
source
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0x44000
0x44020

.......
0x4BFE0

APLIC.M.Hart[0-1023].idelivery Enable machine interrupt delivery for hart

0x44004
0x44024

.......
0x4BFE4

APLIC.M.Hart[0-1023].iforce Force machine interrupt for hart

0x44008
0x44028

.......
0x4BFE8

APLIC.M.Hart[0-1023].ithreshold Specify machine interrupt priority threshold for hart

0x44018
0x44038

.......
0x4BFF8

APLIC.M.Hart[0-1023].topi Read top priority pending machine interrupt for hart

0x4401C
0x4403C

.......
0x4BFFC

APLIC.M.Hart[0-1023].claimi Claim top priority pending machine interrupt for hart

Table 10.9:  APLIC Machine Domain Memory Mapped Registers(continued)

Offset from 
GCR_BASE Register Block Name Description
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10.8.2 APLIC Supervisor Domain Memory Map
The APLIC supervisor domain starts at offset 0x60000 from GCR_BASE, and uses the register 
definitions and address offsets for an APLIC domain as specified in the RISC-V Advanced 
Interrupt Architecture. The offsets and registers within the domain are identical to those for 
the APLIC machine domain.

The APLIC supervisor domain contains the following registers, which are described in detail in 
the subsequent per-register descriptions

Table 10.10:  APLIC Supervisor Domain Memory Mapped Registers 

Offset from 
GCR_BASE Register Block Name Description

0x60000 APLIC.S.domaincfg Supervisor domain configuration

0x60004
0x60008

.......
0x60FFC

APLIC.S.sourcecfg[1-1023] Supervisor source configuration

0x61C00
0x61C04

.......
0x61C7C

APLIC.S.setip[0-31] Set supervisor interrupt pending by mask

0x61CDC APLIC.S.setipnum Set supervisor interrupt pending by number

0x61D00
0x61D04

.......
0x61D7C

APLIC.S.in_clrip[0-31] Read supervisor source input or clear supervisor inter-
rupt pending by mask

0x61DDC APLIC.S.clripnum Clear supervisor interrupt pending by number

0x61E00
0x61E04

.......
0x61E7C

APLIC.S.setie[0-31] Set supervisor interrupt enable by mask

0x61EDC APLIC.S.setienum Set supervisor interrupt enable by number

0x61F00
0x61F04

.......
0x61F7C

APLIC.S.clrie[0-31] Clear supervisor interrupt enable by mask

0x61FDC APLIC.S.clrienum Clear supervisor interrupt enable by number

0x62000 APLIC.S.setipnum_le Set supervisor interrupt pending by number, Little-
endian

0x62004 APLIC.S.setipnum_be Set supervisor interrupt pending by number, Big-
endian

0x63004
0x63008

.......
0x63FFC

APLIC.S.target[1-1023] Specify target hart and priority for supervisor interrupt 
source

0x64000
0x64020

.......
0x6BFE0

APLIC.S.Hart[0-1023].idelivery Enable supervisor interrupt delivery for hart



241
mips.com

Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS I8500 Multiprocessing System Programmer’s Guide — Revision 1.00

0x64004
0x64024

.......
0x6BFE4

APLIC.S.Hart[0-1023].iforce Force supervisor interrupt for hart

0x64008
0x64028

.......
0x6BFE8

APLIC.S.Hart[0-1023].ithreshold Specify supervisor interrupt priority threshold for hart

0x64018
0x64038

.......
0x6BFF8

APLIC.S.Hart[0-1023].topi Read top priority pending supervisor interrupt for hart

0x6401C
0x6403C

.......
0x6BFFC

APLIC.S.Hart[0-1023].claimi Claim top priority pending supervisor interrupt for hart

Table 10.10:  APLIC Supervisor Domain Memory Mapped Registers (continued)

Offset from 
GCR_BASE Register Block Name Description
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10.8.3 APLIC Custom Memory Map
The APLIC custom region starts at offset 0x4c000 from GCR base, and contains the following 
registers, which are described in more detail in the subsequent per-register descriptions

Table 10.11:  APLIC Custom Memory Mapped Registers

Offset from GCR_BASE Register Block Name Description

0x4C000
0x4C004

.......
0x4C07C

APLIC.setnmie[0-31] Set NMI enabled bit by mask

0x4C0DC APLIC.setnmienum Set NMI enabled bit by number

0x4C100
0x4C104

.......
0x4C17C

APLIC.clrnmie[0-31] Clear NMI enabled bit by mask

0x4C1DC APLIC.clrnmienum Clear NMI enabled bit by number
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10.8.3.1 APLIC Domain Configuration (DOMAINCFG) Register (offset = see below)
This register domain configuration register. per-domain register containing the APLIC 
domain’s

configuration status.

Offset: APLIC + 0x00000

GCR_BASE + 0x40000 # APLIC.M

GCR_BASE + 0x60000 # APLIC.S

 

Figure 10.7 Domain Configuration Register Bit Assignments
31 30 9 8 7 3 2 1 0

1 0 IE 0 DM 0 BE

Table 10.12:  Domain Configuration Register Bit Descriptions 

Name Bits Description R/W Reset State

1 31 Allows current endianness to be identified by reading 
domaincfg.

R 1

0 30:9 Reserved R 0

IE 8 Interrupts Enabled for this domain? R/W 0

0 7:3 Reserved R 0

DM 2 Read only-0 when IMSIC not supported.
Delivery Mode
Encoding 0: Alias = Direct, Meaning Direct delivery mode
Encoding 1: Alias = MSI, Meaning MSI delivery mode

R 0

0 1 Reserved R 0

BE 0 R/W if bi-endian support present, R otherwise.
When 1, writes to APLIC memory mapped registers are 
interpreted in big endian byte order.

R/W 0 if little-endian 
supported, 1 

otherwise
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10.8.3.2 APLIC Source Configuration (SOURCECFG[1-1023]) Register (offset = see below)
This register source configuration register. Per domain, per-interrupt source read/write regis-
ters containing configuration status for each interrupt source in the APLIC domain.

The sourcecfg[i] register for source i is accessed at the APLIC domain base address + 4 * i.

Offset: APLIC + 0x00004, 0x00008, ... 0x00ffc

GCR_BASE + 0x40004, 0x40008, ... 0x40ffc # APLIC.M

GCR_BASE + 0x60004, 0x60008, ... 0x60ffc # APLIC.S

Figure 10.8 Source Configuration Register Bit Assignments
31 11 10 9 3 2 0

0 D CHILD_INDEX

0 SM

Table 10.13:  Source Configuration Register Bit Descriptions 

Name Bits Description R/W Reset State

0 31:11 Reserved R 0

D 10 Read/write in Machine domain, readonly 0 in Supervisor 
domain.
Is the Machine domain interrupt source delegated to the 
Supervisor domain?

R/W 0

CHILD_INDEX 9:0 Target domain for delegated interrupts. Only one target 
domain (Supervisor, CHILD_INDEX = 0) is currently sup-
ported by MIPS Technologies implementations. These 
bits are only used as CHILD_INDEX when sourcecfg.D = 
1. When sourcecfg.D = 0, bits 2:0 are used as the SM 
(source mode) bitfield.

R 0

SM 2:0 Source Mode. These bits are only used as SM when 
sourcecfg.D=0. When sourcecfg.D=1, bits 9:0 are used 
as the CHILD_INDEX bitfield.
Encoding 0: Alias = Inactive, Meaning Inactive in this 
domain (and not delegated)
Encoding 1: Alias = Detached, Meaning Active, detached 
from the source wire
Encoding 4: Alias = Edge1, Meaning Active, edge-sensi-
tive, asserted on rising edge
Encoding 5: Alias = Edge0, Meaning Active, edge-sensi-
tive, asserted on falling edge
Encoding 6: Alias = Level1, Meaning Active, level-sensi-
tive, asserted when high
Encoding 7: Alias = Level0, Meaning Active, level-sensi-
tive, asserted when low

R/W 0
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10.8.3.3 APLIC SET Interrupt Pending (SETIP[0-31]) Register (offset = see below)
This register set interrupt pending register. A write to the per-domain setip[i] register sets 
the interrupt pending bit 32 * i + j for every bit position j which is 1 in the written value. A 
read of setip[i] register returns a bitmask of those interrupt sources in the range [32i + 
31:32i] for which the interrupt is pending.

Only interrupt sources which are active in the targeted APLIC domain can be read or written.

When the sourcecfg.SM field for the interrupt source is configured to be in Level0 or Level1 
mode, the interrupt source is tied directly to the external interrupt input signal, and writes to 
setip are ignored, while reads of setip return the rectified value of the external interrupt sig-
nal.

Offset: APLIC + 0x01c00, 0x01c04, ... 0x01c7c

GCR_BASE + 0x41c00, 0x41c04, ... 0x41c7c # APLIC.M

GCR_BASE + 0x61c00, 0x61c04, ... 0x61c7c # APLIC.S

 

Figure 10.9 SET Interrupt Pending Register Bit Assignments
31 0

SETIP

Table 10.14:  SET Interrupt Pending Register Bit Descriptions 

Name Bits Description R/W Reset State

SETIP 31:0 Set interrupt pending register. R/W 0
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10.8.3.4 APLIC Input/Clear Interrupt Pending (IN_CLRIP[0-31]) Register (offset = see below)
This register input/clear interrupt pending register. A write to the per-domain in_crlip[i] reg-
ister clears the interrupt pending bit 32 * i + j for every bit position j which is 1 in the written 
value.

Only interrupt sources which are active in the targeted APLIC domain can be written. When 
the sourcecfg.SM field for the interrupt source is configured to be in Level0 or Level1 mode, 
the interrupt source is tied directly to the external interrupt input signal and writes to in_clrip 
are ignored.

A read of in_clrip[i] register returns a bitmask of the rectified input value for interrupt 
sources in the range [32i + 31:32i], where the rectified input value is the input source value 
if the interrupt is in Edge1 or Level1 mode, the inverted input source value if the interrupt is 
in Edge0 or Level0 mode, or zero otherwise.

Offset: APLIC + 0x01d00, 0x01d04, ... 0x01d7c

GCR_BASE + 0x41d00, 0x41d04, ... 0x41d7c # APLIC.M

GCR_BASE + 0x61d00, 0x61d04, ... 0x61d7c # APLIC.S

 

Figure 10.10 Input/Clear Interrupt Pending Register Bit Assignments
31 0

IN_CLRIP

Table 10.15:  Input/Clear Interrupt Pending Register Bit Descriptions 

Name Bits Description R/W Reset State

IN_CLRIP 31:0 INput/CLeaR Interrupt Pending Register. R/W 0
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10.8.3.5 APLIC Set Interrupt-Pending Number (SETIPNUM) Register (offset = see below)
This register set interrupt-pending number register. On writes, set interrupt pending bit for 
the num-bered interrupt source to 1. Only interrupt sources which are active in the targeted 
APLIC domain and not configured as level sensitive can be written. Reads return zero.

Offset: APLIC + 0x01cdc

GCR_BASE + 0x41cdc # APLIC.M

GCR_BASE + 0x61cdc # APLIC.S

 

Figure 10.11 Set Interrupt-Pending Number Register Bit Assignments
31 0

SETIPNUM

Table 10.16:  Set Interrupt-Pending Number Register Bit Descriptions 

Name Bits Description R/W Reset State

SETIPNUM 31:0 Set interrupt-pending number register. R 0
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10.8.3.6 APLIC Clear IP Number (CLRIPNUM) Register (offset = see below)
This register clear IP number register. On writes, clear interrupt pending bit for the numbered 
interrupt source. Only interrupt sources which are active in the targeted APLIC domain and 
not configured as level sensitive can be written. Reads return zero.

Offset: APLIC + 0x01ddc

GCR_BASE + 0x41ddc # APLIC.M

GCR_BASE + 0x61ddc # APLIC.S

Figure 10.12 Clear IP Number Register Bit Assignments
31 0

CLRIPNUM

Table 10.17:  Clear IP Number Register Bit Descriptions 

Name Bits Description R/W Reset State

CLRIPNUM 31:0 Clear IP number register. R 0
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10.8.3.7 APLIC Set Interrupt Enable (SETIE[0-31]) Register (offset = see below)
This register set interrupt enable register. A write to the per-domain setie[i] register sets the 
interrupt enable bit 32 * i + j for every bit position j which is one in the written value. Only 
interrupt sources which are active in the targeted APLIC domain can be written.

A read of the SETIE[i] register returns a bit-mask of those interrupt sources in the range [32i 
+ 31:32i] for which the interrupt is enabled.

Offset: APLIC + 0x01e00, 0x01e04, ... 0x01e7c

GCR_BASE + 0x41e00, 0x41e04, ... 0x41e7c # APLIC.M

GCR_BASE + 0x61e00, 0x61e04, ... 0x61e7c # APLIC.S

Figure 10.13 Set Interrupt Enable Register Bit Assignments
31 0

SETIE

Table 10.18:  Set Interrupt Enable Register Bit Descriptions 

Name Bits Description R/W Reset State

SETIE 31:0 Set interrupt enable register. R/W 0
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10.8.3.8 APLIC Clear Interrupt Enable (CLRIE[0-31]) Register (offset = see below)
This register clear interrupt enable register. A write to the per-domain CLRIE[i] register clears 
the interrupt enable bit 32 * i + j for every bit position j which is one in the written value. 
Only interrupt sources which are active in the targeted APLIC domain can be written.

Offset: APLIC + 0x01f00, 0x01f04, ... 0x01f7c

GCR_BASE + 0x41f00, 0x41f04, ... 0x41f7c # APLIC.M

GCR_BASE + 0x61f00, 0x61f04, ... 0x61f7c # APLIC.S

 

Figure 10.14 Clear Interrupt Enable Register Bit Assignments
31 0

CLRIE

Table 10.19:  Clear Interrupt Enable Register Bit Descriptions 

Name Bits Description R/W Reset State

CLRIE 31:0 Clear interrupt enable register. R 0
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10.8.3.9 APLIC Set Interrupt Enable Number (SETIENUM) Register (offset = see below)
This register set interrupt enable number register. On writes, set interrupt enable bit for the 
numbered interrupt source to 1. Only interrupt sources which are active in the targeted 
APLIC domain can be written.

Offset: APLIC + 0x01edc

GCR_BASE + 0x41edc # APLIC.M

GCR_BASE + 0x61edc # APLIC.S

 

Figure 10.15 Set Interrupt Enable Number Register Bit Assignments
31 0

SETIENUM

Table 10.20:  Set Interrupt Enable Number Register Bit Descriptions 

Name Bits Description R/W Reset State

SETIENUM 31:0 Set interrupt enable number register. R 0
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10.8.3.10 APLIC Clear Interrupt Enable Number (CLRIENUM) Register (offset = see below)
This register clear interrupt enable number register. On writes, clear interrupt enable bit for 
the numbered interrupt source. Only interrupt sources which are active in the targeted APLIC 
domain and not configured as level sensitive can be written.

Offset: APLIC + 0x01fdc

GCR_BASE + 0x41fdc # APLIC.M

GCR_BASE + 0x61fdc # APLIC.S

Figure 10.16 Clear Interrupt Enable Number Register Bit Assignments
31 0

CLRIENUM

Table 10.21:  Clear Interrupt Enable Number Register Bit Descriptions 

Name Bits Description R/W Reset State

CLRIENUM 31:0 Clear interrupt enable number register. R 0
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10.8.3.11 APLIC Set Interrupt-Pending Number (SETIPNUM_LE) Register (offset = see below)
This register set interrupt-pending number (Little Endian) register. On writes, set interrupt 
pending bit for the numbered interrupt source to 1. Only interrupt sources which are active in 
the targeted APLIC domain and not configured as level sensitive can be written.

Offset: APLIC + 0x02000

GCR_BASE + 0x42000 # APLIC.M

GCR_BASE + 0x62000 # APLIC.S

Figure 10.17 Set Interrupt-Pending Number Register Bit Assignments
31 0

SETIPNUM_LE

Table 10.22:  Set Interrupt-Pending Number Register Bit Descriptions 

Name Bits Description R/W Reset State

SETIPNUM_LE 31:0 Set interrupt-pending number (Little Endian) register. R 0
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10.8.3.12 APLIC Set Interrupt-Pending Number (SETIPNUM_BE) Register (offset = see below)
This register set interrupt-pending number (Big Endian) register. On writes, set interrupt 
pending bit for the numbered interrupt source to 1. Only interrupt sources which are active in 
the targeted APLIC domain and not configured as level sensitive can be written.

Offset: APLIC + 0x02004

GCR_BASE + 0x42004 # APLIC.M

GCR_BASE + 0x62004 # APLIC.S

Figure 10.18 Set Interrupt-Pending Number Register Bit Assignments
31 24 23 16 15 8 7 0

SETIPNUM_BE

Table 10.23:  Set Interrupt-Pending Number Register Bit Descriptions 

Name Bits Description R/W Reset State

SETIPNUM_BE 31:0 Set interrupt-pending number (Big Endian) register. R 0
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10.8.3.13 APLIC Target (TARGET[1-1023]) Register (offset = see below)
This register is target register. Per domain, per-interrupt source registers for configuring the 
target hart number and priority for each interrupt source in the APLIC domain.

The target[i] register for source i is accessed at the APLIC domain base address + 0x3004 + 
4 * i.

Offset: APLIC + 0x03004, 0x03008, ... 0x03ffc

GCR_BASE + 0x43004, 0x43008, ... 0x43ffc # APLIC.M

GCR_BASE + 0x63004, 0x63008, ... 0x63ffc # APLIC.S

Figure 10.19 Target Register Bit Assignments
31 18 17 8 7 0

HARTINDEX 0 IPRIO

Table 10.24:  Target Register Bit Descriptions 

Name Bits Description R/W Reset State

HARTINDEX 31:18 Index of hart to be targeted by this interrupt source. For 
MIPS Technologies implementations, the index is mhar-
tid[11:0].

R/W 0

0 17:8 Reserved. R 0

IPRIO 7:0 Priority of this interrupt source. Values in the range 
(1<<APLIC.ipriolen) - 1:1 are supported, with 1 being the 
highest priority.

R/W 1
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10.8.3.14 APLIC Interrupt Delivery (HART[0-1023].IDELIVERY) Register (offset = see below)
This register interrupt delivery register. Per-domain, per-hart registers for configuring 
whether deliv-ery of each interrupt source is enabled.

The idelivery register for hart mhartid is accessed at the APLIC domain base address + 
0x4000 + 0x20 * mhartid[11:0].

Offset: APLIC + 0x04000, 0x04020, ... 0x0bfe0

GCR_BASE + 0x44000, 0x44020, ... 0x4bfe0 # APLIC.M

GCR_BASE + 0x64000, 0x64020, ... 0x6bfe0 # APLIC.S

 

Figure 10.20 Interrupt Delivery Register Bit Assignments
31 1 0

0 ENABLED

Table 10.25:  Interrupt Delivery Register Bit Descriptions 

Name Bits Description R/W Reset State

0 31:1 Reserved R 0

ENABLED 0 Interrupt delivery register. R 0
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10.8.3.15 APLIC Interrupt Force (HART[0-1023].IFORCE) Register (offset = see below)
This register interrupt force register. Per-domain, per-hart registers for specifying whether a 
interrupt in the APLIC domain is forced for each hart in the domain.

The iforce register for hart mhartid is accessed at the APLIC domain base address + 0x4004 
+ 0x20 * mhartid[11:0].

Offset: APLIC + 0x04004, 0x04024, ... 0x0bfe4

GCR_BASE + 0x44004, 0x44024, ... 0x4bfe4 # APLIC.M

GCR_BASE + 0x64004, 0x64024, ... 0x6bfe4 # APLIC.S

 

Figure 10.21 Interrupt Force Register Bit Assignments
31 1 0

0 IFORCE

Table 10.26:  Interrupt Force Register Bit Descriptions 

Name Bits Description R/W Reset State

0 31:1 Reserved R 0

IFORCE 0 Interrupt force register. R 0
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10.8.3.16 APLIC Interrupt Threshold (HART[0-1023].ITHRESHOLD) Register (offset = see below)
This register interrupt threshold register. Per-domain, per-hart registers specifying the inter-
rupt priority threshold for each hart in the domain. A value of zero means no threshold is 
applied. A non zero value means that interrupts with priority value greater than or equal to 
the threshold will be ignored.

The ithreshold register for hart mhartid is accessed at the domain APLIC base address + 
0x4008 + 0x20 * mhartid[11:0].

Offset: APLIC + 0x04008, 0x04028, ... 0x0bfe8

GCR_BASE + 0x44008, 0x44028, ... 0x4bfe8 # APLIC.M

GCR_BASE + 0x64008, 0x64028, ... 0x64fe8 # APLIC.S

Figure 10.22 Interrupt Threshold Register Bit Assignments
31 0

ITHRESHOLD

Table 10.27:  Interrupt Threshold Register Bit Descriptions 

Name Bits Description R/W Reset State

ITHRESHOLD 31:0 Interrupt threshold register. R 0
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10.8.3.17 APLIC Top Interrupt (HART[0-1023].TOPI) Register (offset = see below)
This register top interrupt register. Registers specifying the top priority pending interrupt for 
each hart in the domain.

The topi register for hart mhartid is accessed at the domain APLIC base address + 0x4018 + 
0x20 * mhartid[11:0].

Offset: APLIC + 0x04018, 0x04038, ... 0x0bff8

GCR_BASE + 0x44018, 0x44038, ... 0x4bff8 # APLIC.M

GCR_BASE + 0x64018, 0x64038, ... 0x6bff8 # APLIC.S

Figure 10.23 Top Interrupt Register Bit Assignments
31 26 25 16 15 8 7 0

0 ID 0 PRIORITY

Table 10.28:  Top Interrupt Register Bit Descriptions 

Name Bits Description R/W Reset State

0 31:26 Reserved R 0

ID 25:16 ID register. R 0

0 15:8 Reserved R 0

PRIORITY 7:0 Priority pending interrupt for each hart in the domain. R 0
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10.8.3.18 APLIC Claim Interrupt (HART[0-1023].CLAIMI) Register (offset = see below)
This register claim interrupt register. Per-domain, per-hart register for claiming and deassert-
ing the harts top priority interrupt in the domain.

Reading the claimi register returns the current value of the topi register for this hart, i.e. the 
highest priority pending interrupt source number and the corresponding IPRIO value. In 
addition, the interrupt pending signal for that interrupt source is cleared, unless the interrupt 
is in level-sensitive mode, in which case the interrupt pending signal is directly tied to the 
external interrupt signal and can only be cleared by change in the external interrupt signal 
value.

If no interrupt is currently pending for the hart, i.e. topi equals 0, then the forcei register for 
the hart is cleared by a read of claimi.

Writes to the claimi register are ignored.

The claimi register for hart mhartid is accessed at the domain APLIC base address + 0x401c 
+ 0x20 * mhartid[11:0].

Offset: APLIC + 0x0401c, 0x0403c, ... 0x0bffc

GCR_BASE + 0x4401c, 0x4403c, ... 0x4bffc # APLIC.M

GCR_BASE + 0x6401c, 0x6403c, ... 0x6bffc # APLIC.S

 

Figure 10.24 Claim Interrupt Register Bit Assignments
31 26 25 16 15 8 7 0

0 ID 0 PRIORITY

Table 10.29:  Claim Interrupt Register Bit Descriptions 

Name Bits Description R/W Reset State

0 31:26 Reserved R 0

ID 25:16 ID register. R 0

0 15:8 Reserved R 0

PRIORITY 7:0 Per-hart register for claiming and deasserting the harts 
top priority interrupt in the domain.

R 0



261
mips.com

Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS I8500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.19 APLIC Set NMI Enable (SETNMIE[0-31]) Register (offset = see below)
This register set NMI enable register. A write to setnmie[i] register sets the NMI enable bit 32 
* i + j for every bit position j which is 1 in the written value. A read of setnmie[i] register 
returns a bitmask of those interrupt sources in the range [32i + 31:32i] for which the NMI 
enabled bit is currently set.

When interrupt source i is pending in the machine domain and not enabled (i.e. 
APLIC.sourcecfg.D=0, APLIC.ip[i] is set and APLIC.ie[i] is clear) and NMIs are enabled for the 
source (i.e. APLIC.nmie[i] is set) then the interrupt is delivered to the target hart as an NMI.

Offset: GCR_BASE + 0x4c000, 0x4c004, ... 0x4c078

Figure 10.25 Set NMI Enable Register Bit Assignments
31 24 23 16 15 8 7 0

SETNMIE

Table 10.30:  Set NMI Enable Register Bit Descriptions 

Name Bits Description R/W Reset State

SETNMIE 31:0 Set NMI enable register. R 0
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10.8.3.20 APLIC Set NMI Number (SETNMIENUM) Register (offset = 0x4C0DC)
This register set NMI number register. On writes, set the NMI enable bit for the numbered 
interrupt source to 1. Reads return zero.

When interrupt source i is pending in the machine domain and not enabled (i.e. 
APLIC.sourcecfg.D=0, APLIC.ip[i] is set and APLIC.ie[i] is clear) and NMIs are enabled for the 
source (i.e. APLIC.nmie[i] is set) then the interrupt is delivered to the target hart as an NMI.

 

Figure 10.26 Set NMI Number Register Bit Assignments
31 0

SETNMIENUM

Table 10.31:  Set NMI Number Register Bit Descriptions 

Name Bits Description R/W Reset State

SETNMIENUM 31:0 Set NMI number register. R 0
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10.8.3.21 APLIC Clear NMI Enable (CLRNMIE[0-31]) Register (offset = see below)
This register clear NMI enable register. A write to clrnmie[i] register clears the NMI enable bit 
32 * i + j for every bit position j which is 1 in the written value.

When interrupt source i is pending in the machine domain and not enabled (i.e. 
APLIC.sourcecfg.D=0, APLIC.ip[i] is set and APLIC.ie[i] is clear) and NMIs are enabled for the 
source (i.e. APLIC.nmie[i] is set) then the interrupt is delivered to the target hart as an NMI.

Offset: GCR_BASE + 0x4c100, 0x4c104, ... 0x4c178

 

Figure 10.27 Clear NMI Enable Register Bit Assignments
31 0

CLRNMIE

Table 10.32:  Clear NMI Enable Register Bit Descriptions 

Name Bits Description R/W Reset State

CLRNMIE 31:0 Clear NMI enable register. R 0
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10.8.3.22 APLIC Clear NMI Number (CLRNMIENUM) Register (offset = 0x4C1DC)
This register clear NMI number register. On writes, clear the NMI enable bit for the numbered 
interrupt source. Reads return zero.

When interrupt source i is pending in the machine domain and not enabled (i.e. 
APLIC.sourcecfg.D=0, APLIC.ip[i] is set and APLIC.ie[i] is clear) and NMIs are enabled for the 
source (i.e. APLIC.nmie[i] is set) then the interrupt is delivered to the target hart as an NMI.

 

Figure 10.28 Clear NMI Number Register Bit Assignments
31 0

CLRNMIENUM

Table 10.33:  Clear NMI Number Register Bit Descriptions 

Name Bits Description R/W Reset State

CLRNMIENUM 31:0 Clear NMI number register. R 0
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Debug Unit

This chapter describes the DBU functionality implemented in the I8500. It is compliant with 
the RISC-V Debug Specification, v1.0.

The DBU serves as the interface between a probe or other debug agent and the system under 
debug. It includes a JTAG TAP, APB slave interface, Debug Transport Module (DTM), and 
Debug Module. Internally, the Register Ring Bus (RRB) serves as the communication mecha-
nism between the DBU and cores. 

11.1 RISC-V Debug Specification Compatibility

The debug implementation on the I8500 Multiprocessing System is as follows:
• The MIPS Debug IP is fully compatible with the ratified RISV-V Debug Specification, v1.0.
• Each cluster contains one RISC-V Debug Module (DM), providing access to all cores and 

harts in the cluster.
• The RISC-V Debug Modules in different clusters must be daisy-chained via the JTAG inter-

face.
• The RISC-V Debug Module implements a hart and resume group, so a simultaneous halt 

and resume of several or all harts is possible (including multi-cluster via trigger in/out 
capability).

• The RISC-V Debug Module supports System Bus Access (SBA), allowing access to system 
memory and RISC-V trace components without stopping any harts or cores.

• The RISC-V Debug Module may be configured at build time to provided Advanced Periph-
eral Bus (APB) access to the DM registers.

• The ratified Sdtrig extension (see Chapter 5 in the RISC-V Debug Specification) is sup-
ported.

– The pool of debug triggers is shared between different harts in the same core.
– Used trigger (set by one hart) is visible to all other harts (on that core) as a custom 

trigger, what will prevent conflicts.

11.2 Halt Groups and External Triggers

The DBU supports the synchronous halt/go feature which enables the debugger to request a 
group of harts to be halted or resumed together.

The dmcs2 register, described in Section 9.8.2.8 “Debug Module Control and Status 2 
Register (dmcs2): Offset 0x32”, is used to define which harts belong to the halt-group and 
which harts belong to the resume-group. When any member of the halt-group enters halt 
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mode, then all members of the halt-group must also enter halt mode. Conversely, when any 
member of the resume group exits debug mode, then all members of the resume-group 
must also exit debug mode.

The synchronous halt/go operation is extended beyond a cluster with the external trigger sig-
nals. The DBU module has a trigger input and a trigger output and connected in a daisy chain 
fashion as shown in Figure 7. 

In this figure, the IN and OUT indicators correspond to the EXT_DBG_TRIG_IN and EXT_DB-
G_TRIG_OUT pins respectively.

Figure 11.1 External Trigger Connection in SoC
When the Trigger Input in the figure above transitions from LOW to HI, the DBU initiates a 
halt-request to all harts in the halt-group and drives the Trigger Output. The trigger output 
propagates the halt-request to the next cluster.

When the Trigger Input transitions from HI to LOW, the DBU initiates a resume-request to all 
harts in the resume-group and drives the Trigger Output LOW. The Trigger Output will propa-
gate the resume-request to the next cluster.

11.2.1 Halt Request
Within a cluster, halt-request may be initiated by any one of the following conditions:

1. The debugger writes to the dmcontrol register to start a halt-request to the hart selected 
in the hartsel field. If the selected hart is a member of the halt-group, then halt-request 
will be extended to all members of the halt-group and the Trigger-Output is driven HIGH. 

2. When the hart is halted due to internal debug events such as breakpoint or single-step-
ping. The signal cpc_dbu_debug_m is asserted and if the affected hart is a member of the 
halt-group, then halt-request is initiated for all harts in the halt-group and the Trigger-
Output signal is driven HIGH.

3. When the Trigger-Input signal transitions from LOW to HIGH. DBU initiates halt-request 
to all the harts in the halt-group and drives the Trigger-Output signal HIGH.

11.2.2 Resume Request
Within a cluster, a resume-request may be initiated when any of the following conditions 
occurs:

1. The debugger writes to the dmcontrol register to start resume-request to the hart 
selected in the hartsel field. If the selected hart is a member of the resume-group, then 
the resume-request will be extended to all members of the resume-group and the Trig-
ger-Output is driven LOW.

DBU
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2. When the Trigger-Input signal transitions from HIGH to LOW, the DBU initiates resume-
requests to all harts in the resume-group and drives the Trigger-Output signal LOW.

Within each cluster, DBU ensures all harts in the resume-group resume execution together by 
using the handshake described in Section 5.1 and illustrated in Figure 5. 

11.3 DBU Reset

The DBU logic crosses different reset domains and can be initiated by any of the following 
reset conditions: 

1. The DBU logic that runs on JTAG clock is reset by the active low assertion of the JTAG 
reset pin (ej_trst_n).

2. The DBU logic that runs on the main CM clock, which constitutes most of DBU, is reset by 
either a Cluster Cold Reset (dbu_cold_reset) OR when dmcontrol.DMACTIVE = 1'b0 
(DMACTIVE is de-asserted).

The overall DBU reset strategy, as well as reset of other logic (within the DBU) is summarized 
below.

• The DMACTIVE bit must be set to 1 before using any of the DBU features. Since the 
FDC logic and TRF register accesses are controlled by DBU (in the Shogun 
implementation), DMACTIVE must also be set to 1 before using these features.

• The Cluster Warm Reset (dbu_reset_n) will not reset the DBU.

• The dmcontrol.ndmreset bit, when set, will reset the entire cluster except the DBU.

• The JTAG DTMCS.dmihardreset when asserted, will reset the DTM along with any 
transactions in progress.

• The MBIST logic in the DBU SRAM wrapper is reset by COLD reset only 
(dbu_cold_reset).

• The RRB interface logic (in the RRB master and slave) is reset by Cluster Warm Reset 
(dbu_reset_n). 

• The DBU monitors Cluster WARM reset and abort any pending RRB transaction if reset 
is detected and log the transaction as error (abstractcs.cmderr or sbcs.sberror).

11.4 Debug Module Interface Registers

The DBU is a slave to both the Debug Module Interface (DMI) bus and to the Register Ring 
Bus (RRB) through which the harts in a cluster interact with the DBU. Several registers are 
accessible through the DMI to control and monitor a debug session. 

11.4.1 DMI Register Map
Table 11.1 shows the DMI register map. 

Table 11.1 DMI Register Map 

Word Address Byte Address Register Name

0x04 - 0x0f 0x010 - 0x03c data0 to data11

0x10 0x040 dmcontrol

0x11 0x044 dmstatus
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For more information on these registers, refer to the DMI section of the RISC-V Debug Spec-
ification.

0x16 0x058 abstractcs

0x17 0x05c command

0x18 0x060 abstractauto

0x20 - 0x2f 0x080 - 0x0bc progbuf0 to progbuf15

0x38 0x0e0 sbcs

0x39 - 0x3a 0x0e4 - 0xe8 sbaddress0 to sbaddress1

0x3c - 0x3d 0x0f0 - 0xf4 sbdata0 to sbdata1

0x40 0x100 haltsum0

0x70 0x1c0 custom0 = FDC0

0x71 0x1c4 custom1 = FDC1

0x72 0x1c8 custom2 = DBG_OUT

0x73 - Reserved for internal use (FDC Full transfer)

-- 0xfc8-0xffc APB Block ID ROM Table

Table 11.1 DMI Register Map (continued)

Word Address Byte Address Register Name
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Trace Unit

The I8500 Trace Unit (TRU) observes execution of a program and generates trace messages 
by encoding:

• Program flow change information (caused by Branch, Exceptions and Interrupts)

• Execution timing information 

The I8500 TRU is fully compatible with the ratified RISC-V Trace Control 1.0 and RISC-V N-
Trace 1.0 specifications.

12.1 Summary of Features

• Trace Encoder supports HTM (History Trace Mode) which provides good trace compres-
sion.

– Context trace (allowing trace of processes in an OS/RTOS) is supported.
– Stall mode is supported, so overflow errors can be prevented.
– The timestamp is 48-bits wide and works in Internal Core (core cycles) mode.

• The Trace Funnel (inside of each cluster) aggregates trace from all harts and cores in a 
cluster.

• Trace RAM Sink allows both SRAM (trace to dedicated static RAM buffer) and SMEM (trace 
to System Memory) modes.

– Always present SRAM buffer can be built in 16KB, 32KB or 64KB size.
– SMEM mode is optional and must be enabled at IP build-time.

• Optional Trace PIB Sink allows tracing via 8 or 16 off-chip pins.
– MIPI compliant Mictor-38 trace connector as defined in ratified RISC-V Trace 

Connectors 1.0 specification shall be used.
– Trace calibration patterns are supported.
– SRAM buffer is internally used to mitigate intense trace bursts.

• Trace components are connected to an internal RRB (Ring Register Bus) and can be pro-
grammed using RISC-V DM SBA (System Bus Access) or from a code by using 32-bit 
accesses.
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12.2 Trace Component Base Addresses

The base addresses of trace components are listed in Table 12.1. 

Table 12.1 Trace Component Base Addresses

Trace Component
Base Address via 
RISC-V DM SBA

Base Address
(from Code) Notes

Trace Encoder 
(different for each hart)

0x4000_0000_0000_3000+
<ci>*0x1000+<hi>*0x400

TBD The <ci> is a core index in a cluster (0..5). The 
<hi> is a hart index (0..3) in that core.

Trace Funnel 
(always present)

0x4000_0900_0000_0000 TBD

Trace RAM Sink 
(always present)

0x4000_0900_0000_2000 TBD SRAM mode is always enabled. SMEM mode 
most must be enabled at IP build-time.

Trace PIB Sink 
(optional)

0x4000_0900_0000_1000 TBD Must be enabled at build-time.
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Floating-Point Unit (FPU)

This chapter describes the optional MIPS RV64-compliant Floating-Point Unit (FPU).

13.1 Features Overview

The I8500 core features an optional IEEE 754 compliant 3rd generation Floating Point Unit 
(FPU3).

The FPU contains thirty-two, 64-bit vector registers used by FPU instructions. Single precision 
floating point instructions use the lower 32 bits of the 64 bit register. Double precision float-
ing point instructions use the entire 64-bit register. 

The FPU is fully synthesizable and operates at the same clock speed as the CPU. The I8500 
core can issue up to two instructions per cycle to the FPU.

The FPU contains two execution pipelines. These pipelines operate in parallel with the integer 
core and do not stall when the integer pipeline stalls. This allows long-running FPU operations 
such as divide or square root, to be partially masked by system stall and/or other integer unit 
instructions.

A scheduler in the ISU block issues instructions to the two FPU functional units. The exception 
model is ‘precise’ at all times. 

The FPU supports fused multiply-adds as defined by the IEEE Standard for Floating-Point 
Arithmetic 754TM-2008. All floating point denormalized input operands and results are fully 
supported in hardware. 

The FPU supports scalar FPU instructions.

13.2 FPU Execution Units

The I8500 FPU contains two execution units, one for short operations (EXS) and one for long 
operations (EXL).

13.2.1 Short Operations
The short data path contains an integer add unit, logical unit, and div unit. The integer add 
unit and the logical unit each have 2-cycle latency outputs. One divide instruction can be 
issued to the div unit at a time. That divide will be worked on iteratively. Until the divide is 
done no other divide instructions can be issued. 

The short execution unit (EXES) executes the following instructions:

• All instructions that are sent back to the integer unit, including stores, move-from, and 
branches
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• Most 2-source logical operands

• Floating point compares

– fmin/fmax
– fclass
– Sign injection: FSGNJ.S, FSGNJN.S, FSGNJX.S
– feq/fle/flt

Results are written to the Working Register File (WRF).

13.2.2 Long Operations
The long execution unit (EXEL) implements the following operations:

• FP adds, converts, multiplies, and divide-square roots

• Logical operations with 3 sources

Results are written to the Working Register File (WRF).

13.3 Data Formats

The FPU provides both floating-point and fixed-point data types, which are described below:

• The single- and double-precision floating-point data types are those specified by IEEE 
Standard 754.

• The signed integers provided by the CPU architecture.

13.3.1 Floating-Point Formats
The FPU provides the following two floating-point formats:

• A 32-bit single-precision floating point (type S)

• A 64-bit double-precision floating point (type D)

The floating-point data types represent numeric values as well as the following special enti-
ties:

• Two infinities,  and 

• Signaling non-numbers (SNaNs)

• Quiet non-numbers (QNaNs)

• Numbers of the form: (-1)s 2E b0.b1 b2..bp-1, where:

– s = 0 or 1
– E = any integer between E_min and E_max, inclusive
– bi = 0 or 1 (the high bit, b0, is to the left of the binary point)
– p is the signed-magnitude precision

The single and double floating-point data types are composed of three fields—sign, expo-
nent, fraction—whose sizes are listed in Table 13.1. 

Table 13.1 Parameters of Floating-Point Data Types 

Parameter Single Double

Bits of mantissa precision, p 24 53
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Layouts of these three fields are shown in Figures 13.1 and 13.2 below. The fields are:

• 1-bit sign, s

• Biased exponent, e = E + bias

• Binary fraction, f=.b1 b2..bp-1 (the b0 bit is hidden; it is not recorded)

Figure 13.1 Single-Precision Floating-Point Format (S) 

Figure 13.2 Double-Precision Floating-Point Format (D) 

Values are encoded in the specified format using the unbiased exponent, fraction, and sign 
values listed in Table 13.2. The high-order bit of the Fraction field, identified as b1, is also 
important for NaNs.

Maximum exponent, E_max +127 +1023

Minimum exponent, E_min -126 -1022

Exponent bias +127 +1023

Bits in exponent field, e 8 11

Representation of b0 integer bit hidden hidden

Bits in fraction field, f 23 52

Total format width in bits 32 64

Magnitude of largest representable number 3.4028234664e+38 1.7976931349e+308

Magnitude of smallest normalized representable num-
ber

1.1754943508e-38 2.2250738585e-308

31 30 23 22 0

S Exponent Fraction
1 8 23

63 62 52 51 0

S Exponent Fraction
1 11 52

Table 13.2 Value of Single or Double Floating-Point Data Type Encoding 

Unbiased E f s b1 Value V Type of Value
Typical Single 

Bit Pattern1
Typical Double

Bit Pattern1

E_max + 1  0 1 SNaN Signaling NaN
(FCSR  = 0)

0x7fffffff 0x7fffffff ffffffff

0 QNaN Quiet NaN
(FCSR  = 0)

0x7fbfffff 0x7ff7ffff ffffffff

Table 13.1 Parameters of Floating-Point Data Types (continued)

Parameter Single Double
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13.3.1.1 Normalized and Denormalized Numbers
For single and double data types, each representable nonzero numerical value has just one 
encoding; numbers are kept in normalized form. The high-order bit of the p-bit mantissa, 
which lies to the left of the binary point, is “hidden,” and not recorded in the Fraction field. 
The encoding rules permit the value of this bit to be determined by looking at the value of the 
exponent. When the unbiased exponent is in the range E_min to E_max, inclusive, the num-
ber is normalized and the hidden bit must be 1. If the numeric value cannot be normalized 
because the exponent would be less than E_min, then the representation is denormalized, 
the encoded number has an exponent of E_min – 1, and the hidden bit has the value 0. Plus 
and minus zero are special cases that are not regarded as denormalized values.

13.3.1.2 Reserved Operand Values—Infinity and NaN
A floating-point operation can signal IEEE exception conditions, such as those caused by 
uninitialized variables, violations of mathematical rules, or results that cannot be repre-
sented. If a program does not trap IEEE exception conditions, a computation that encounters 
any of these conditions proceeds without trapping but generates a result indicating that an 
exceptional condition arose during the computation. To permit this case, each floating-point 
format defines representations (listed in the table above) for plus infinity (), minus infinity 
(), quiet non-numbers (QNaN), and signaling non-numbers (SNaN).

13.3.1.3 Infinity and Beyond
Infinity represents a number with magnitude too large to be represented in the given format; 
it represents a magnitude overflow during a computation. A correctly signed  is generated 
as the default result in division by zero operations and some cases of overflow.

E_max + 1  0 0 SNaN Signaling NaN
(FCSR  = 1)

0x7fbfffff 0x7ff7ffff ffffffff

1 QNaN Quiet NaN
(FCSR  = 1)

0x7fffffff 0x7fffffff ffffffff

E_max +1 0 1  Minus infinity 0xff800000 0xfff00000 00000000

0  Plus infinity 0x7f800000 0x7ff00000 00000000

E_max
    to 

E_min

1 - (2E)(1.f) Negative normalized number 0x80800000

 through
0xff7fffff

0x80100000 00000000

through
0xffefffff ffffffff

0 + (2E)(1.f) Positive normalized number 0x00800000

 through
0x7f7fffff

0x00100000 00000000

       through
0x7fefffff ffffffff

E_min -1  0 1 - (2E_min)(0.f) Negative denormalized num-
ber

0x807fffff 0x800fffff ffffffff

0 + (2E_min)(0.f) Positive denormalized num-
ber

0x007fffff 0x000fffff ffffffff

E_min -1 0 1 - 0 Negative zero 0x80000000 0x80000000 00000000

0 + 0 Positive zero 0x00000000 0x00000000 00000000

1. The “Typical” nature of the bit patterns for the NaN and denormalized values reflects the fact that the sign might have either value 
(NaN) and that the fraction field might have any non-zero value (both). As such, the bit patterns shown are one value in a class of poten-
tial values that represent these special values.

Table 13.2 Value of Single or Double Floating-Point Data Type Encoding (continued)

Unbiased E f s b1 Value V Type of Value
Typical Single 

Bit Pattern1
Typical Double

Bit Pattern1
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Once created as a default result,  can become an operand in a subsequent operation. The 
infinities are interpreted such that - < (every finite number) < +. Arithmetic with  is the 
limiting case of real arithmetic with operands of arbitrarily large magnitude, when such limits 
exist. In these cases, arithmetic on  is regarded as exact, and exception conditions do not 
arise. The out-of-range indication represented by  is propagated through subsequent com-
putations. For some cases, there is no meaningful limiting case in real arithmetic for oper-
ands of .

13.3.1.4 Signalling Non-Number (SNaN)
SNaN operands cause an Invalid Operation exception for arithmetic operations. SNaNs are 
useful values to put in uninitialized variables. An SNaN is never produced as a result value.

IEEE Standard 754 states that “Whether copying a signaling NaN without a change of format 
signals the Invalid Operation exception is the implementor’s option.” The RISC-V sign injec-
tion instructions are non-arithmetic; they do not signal IEEE 754 exceptions.

13.3.1.5 Quiet Non-Number (QNaN)
QNaNs provide retrospective diagnostic information inherited from invalid or unavailable data 
and results.

QNaN operands do not cause arithmetic operations to signal an exception. When a floating-
point result is to be delivered, a QNaN operand causes an arithmetic operation to supply a 
QNaN result. QNaNs do have effects similar to SNaNs on operations that do not deliver a 
floating-point result—specifically, comparisons. For more information, see the detailed 
description of the floating-point compare instruction, fcmp.

When certain invalid operations not involving QNaN operands are performed but do not trap 
(because the trap is not enabled), a new QNaN value is created. Table 13.3 shows the QNaN 
value generated. The values listed for the fixed-point formats are the values supplied to sat-
isfy IEEE Standard 754 when a QNaN or infinite floating-point value is converted to fixed 
point. There is no other feature of the architecture that detects or makes use of these “inte-
ger QNaN” values. 

13.3.2 Signed Integer Formats
The FPU instruction set provides the following signed integer data types:

Table 13.3 Value Supplied When a New Quiet NaN is Created

Format
QNaN value
(FCSR = 1)

Single floating point 0x7FC0_0000

Double floating point 0x7FF8_0000_0000_0000

Word fixed point 0x7FFF_FFFF (value when converting any FP number too big to 
represent as a 32-bit positive integer)
0x0000_0000 (value when converting any FP NaN)
0x8000_0000 (value when converting any FP number too small to 
represent as a 32-bit negative integer)

Longword fixed point 0x7FFF_FFFF_FFFF_FFFF (value when converting any FP number too 
big to represent as a 64-bit positive integer)
0x0000_0000 (value when converting any FP NaN)
0x8000_0000 (value when converting any FP number too small to 
represent as a 64-bit negative integer)
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• A 32-bit Word fixed point (type W), shown in Figure 13.3.

• A 64-bit Longword fixed point (type L), shown in Figure 13.4.

The fixed-point values are held in 2’s complement format, which is used for signed integers in 
the CPU. Unsigned fixed-point data types are not provided by the architecture; application 
software can synthesize computations for unsigned integers from the existing instructions 
and data types.

Figure 13.3 Word Fixed-Point Format (W)

Figure 13.4 Longword Fixed-Point Format (L) 

13.4 Floating-Point General Registers

This section describes the organization and use of the Floating-Point general Registers 
(FPRs). There are thirty-two 64-bit FPU registers.

13.4.1 FPRs and Formatted Operand Layout
FPU instructions that operate on formatted operand values specify the Floating-Point Register 
(FPR) that holds the value. Operands that are only 32 bits wide (W and S formats) use only 
half the space in an FPR.

Figures 13.5 and 13.6 show the FPR organization and the way that operand data is stored in 
them.

Figure 13.5 Single Floating-Point or Word Fixed-Point Operand in an FPR 

Figure 13.6 Double Floating-Point or Longword Fixed-Point Operand in an FPR 

31 0

Integer

63 0

Integer

63 32 31 0

Reg 0 Undefined/Unused Data Word

63 0

Reg 0 Data Doubleword/Longword
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Performance Counters

This section describes the performance counters for the core and CM3 blocks in the I8500 
Multiprocessing System.

• Section 14.1 “Core Performance Counters”

• Section 14.2 “CM3 Performance Counters”

14.1 Core Performance Counters

The I8500 core contains four performance counters. Each counter has a Control register 
(mhpmevent) and an associated Count (mhpmcounter) register. Therefore, there are four 
Control registers an four Count registers per hart. These registers are located at the following 
CSR locations. 

Each register is instantiated per-hart. Therefore in a 2-hart core, there are eight total 
mhpmevent registers and eight total mhpmcounter registers. 

14.1.1 Performance Event Masking
The four mhpmevent registers allows for the masking of event counting for the following 
modes:

• M-mode (Machine)

• S-mode (Supervisor)

• U-mode (User)

Table 14.1 Core Performance Counter Registers

Register Name Register Acronym
CSR Register 

Index

Performance Counter Control 3 mhpmevent3 0x323

Performance Counter Control 4 mhpmevent4 0x324

Performance Counter Control 5 mhpmevent5 0x325

Performance Counter Control 6 mhpmevent6 0x326

Performance Counter Count 3 mhpmcounter3 0xB03

Performance Counter Count 4 mhpmcounter4 0xB04

Performance Counter Count 5 mhpmcounter5 0xB05

Performance Counter Count 6 mhpmcounter6 0xB06
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• VS-mode (Virtual Supervisor)

• VU-mode (Virtual User)

When the corresponding bit is set as defined in Table 14.2, that mode is prohibited from 
counting events.

14.1.2 Core Performance Event Control Register (mhpmevent[6:3])
The four performance counter control registers (instantiated per hart) at the locations shown 
in Table 14.1 above each have identical bit assignments. Therefore, only one register is 
shown below. 

Figure 14.1 Performance Counter Control Register Format
63 62 61 60 59 58 57 56 55 54 8 7 0

OF MINH SINH UINH VSINH VUINH 00 PCTD 0 EVENT

Table 14.2 Performance Counter Control Register Bit Descriptions 

Bits Name Reset Val
Read/ 
Write Description

63 OF Undefined R/W OverFlow. Set when counter overflows. When overflow occurs with OF 
set, interrupt generation is disabled.

62 MINH Undefined R/W Machine Inhibit. Inhibit counting of events in M-mode.
61 SINH Undefined R/W Supervisor Inhibit. Inhibit counting of events in S-mode.
60 UINH Undefined R/W User Inhibit. Inhibit counting of events in U-mode.
59 VSINH Undefined R/W Virtual Supervisor Inhibit. Inhibit counting of events in VS-mode.
58 VUINH Undefined R/W Virtual User Inhibit. Inhibit counting of events in VU-mode.

57:56 0 Undefined R/W Write as zero.
55 PCTD Undefined R/W Performance Counter Trace Disable.

54:8 0 Undefined R/W Write as zero
7:0 EVENT Undefined WARL Encoding of event to be monitored by the specified hardware perfor-

mance monitor, with 0 meaning no event. The encoding for this field is 
shown in Table 14.4.
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14.1.3 Core Performance Counter Count Register (mhpmcounter[6:3])
Each Performance Counter Control register described above has an associated Count register 
that counts the number of events as indicated by the EVENT field of the Control register. 
Refer to Table 14.1 for a listing and location of these registers. The Performance Counter 
Count registers are instantiated per-hart.  

 

14.1.4 Core Performance Counter Events
The table below shows the encoding of the EVENT field in bits 7:0 of each Performance 
Counter Control register.

In the following table:

• All events are local to the hart running except #128.

• All events are available to all performance counters.

• Event counting is edge counting; that is, an event occurs when the signal goes from not 
TRUE to TRUE. 

Figure 14.2 Performance Counter Count Register Format
63 0

mhpmcounter[63:0]

Table 14.3 Core Performance Counter Count Register

Name Bits Reset Val
Read/ 
Write Description

mhpmcounter 63:0 Undefined RW Increments once for each event that is enabled by the correspond-
ing Control Register. For example, if bit 62 (MINH) of the mhpmev-
ent[3] register is cleared, then the value in the mhpmcounter[3] 
register will increment each time there is an M-mode event in Con-
trol register 3. 

Table 14.4 Core Performance Counter Events 

Event ID Event Name Description

Execution Units
1 num_grad Number of graduated instructions

2 one_grad Number of cycles in which one instruction graduated

3 two_grad Number of cycles in which two instruction graduated

4 no_grad Number of cycles in which no instruction graduated

5 alu_grad Number of ALU instructions graduated

6 lsu_grad Number of LSU instructions graduated

7 cti_grad Number of CTI instructions graduated

8 mdu_grad Number of MDU instructions graduated

9 fpu_grad Number of FPU instructions graduated

10 Reserved Reserved

11 load_grad Number of LOAD instructions graduated
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12 store_grad Number of STORE instructions graduated

13 no_isu Number of cycle in which no instructions issued

14 one_isu Number of cycle in which one instructions issued

15 two_isu Number of cycle in which two instructions issued

16 isu_block Number of times the Issue unit got stalled

17 dec_stall Number of times the Decoder unit got stalled

18 dmap_stall Number of times the Dependency Mapper stalled

19 ibfr_empty Cycles in which instruction buffer is empty

20 itrkr_num_replay Replays initiated by the scoreboard

21 br_grad Conditional branches graduated

22 br_miss_grad Mispredicted conditional branches graduated

23 jr_ret_grad Returns (JR $31) graduated

24 jr_ret_miss_grad Mispredicted Returns (JR $31) graduated

25 jr_grad JR graduated

26 jr_miss_grad Mispredicted JR graduated

27 br_t_grad Taken conditional branches graduated

28 br_nt_grad Not taken conditional branches graduated

29 redirect Total redirects

30 num_exceptions Total number of exceptions

31 ica_miss_stall Number of cycles where an Icache miss is solely responsible for stalling 
the pipe

32 load_blocked Number of cycles graduation was blocked of a load waiting to complete

33 sync_blocked Number of cycles graduation was blocked of sync waiting to complete

64 dtlb_lookup Number of DTLB lookups

65 dtlb_miss_new Number of DTLB misses

66 dtlb_miss_merge Number of DTLB misses (merged with existing)

67 bond_load Bonded Load

68 bond_store Bonded Store

69 total_dcache_lookups Total number of cache lookups

70 loads_dcache_lookup Number of Load-type instns

71 stores_dcache_lookup Number of Store-type instns

72 total_dcache_misses Misses cache lookup

73 load_dcache_misses Loads miss cache lookup

74 store_dcache_misses Stores miss cache lookup

75 smb_full Number of cycles SDB graduation was blocked due to SMB full

128 utb_glob_vc_stalled All harts currently stalled (for any reason)

129 utb_access Number of harts that accessed the uTLB

130 utb_stall Number of harts stalled waiting for MMU response to uTLB

131 utb_miss Number of harts where an access to the uTLB caused a uTLB miss

Table 14.4 Core Performance Counter Events (continued)

Event ID Event Name Description



281
mips.com

Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS I8500 Multiprocessing System Programmer’s Guide — Revision 1.00

14.2 CM3 Performance Counters

14.2.1 Overview and Features
Performance characteristics of the CM3 can be measured via the CM3 performance counters. 
Two sets of identical programmable 32-bit performance counters in addition to a 32-bit cycle 
counter are implemented. The counters are controlled and accessed via GCR registers 
described in Chapter 8, “Coherency Manager”. This section describes the operation of those 
registers.

Features of the CM3 performance counters include:

• Performance event counters. These counters are used for different events in the CM 
and have the ability to filter out certain events from the qualifier CSRs.

• Histogram performance counter. This feature keeps track of latency of transactions. 
The counters enable the ability to build a histogram for performance analysis.

14.2.2 Register Interface
The counters are started by writing a 1 to the P0_CountOn, P1_CountOn and 
Cycl_Cnt_CountOn bits in the CM3 Performance Counter Control Register (GCR_DB_PC_CTL 
Offset 0x0100). Each counter can be reset to 0, and the corresponding overflow bit (P0_OF, 
P1_OF, Cyc_Cnt_OF) is reset to 0 prior to the start of counting by writing a 1 to the P0_Re-
set, P1_Reset and Cycl_Cnt_Reset bits in the same access that sets the corresponding start 
bits. This functionality allows all three counters to be reset and started with a single GCR 
write. 

The CM3 Performance Counter Control Register also controls how a counter overflow is han-
dled. If the Perf_Ovf_Stop bit is set to 1, then all CM Performance counters will stop when 
one of the counters (including the Cycle Counter) reaches its maximum value of 0xFFFFFFFF. 
If instead the Perf_Ovf_Stop bit is set to 0, when a counter overflows, it rolls over and con-
tinues counting from 0.

If the Perf_Int_En bit is set to 1, an interrupt is generated when one of the counters (includ-
ing the cycle counter) reaches its maximum value of 0xFFFFFFFF. The CM3 asserts the 
so_cm_perf_cnt_int signal which generates an interrupt only if the System Integrator has con-
nected the so_cm_perf_cnt_int signal to one bit of si_cm_int.

When a performance counter overflows, the corresponding bit is automatically set in the CM3 
Performance Counter Overflow Status Register (GCR_DB_PC_OV). A status bit is cleared by 
writing a 1 to it.

132 ifu_ica_access Number of harts accessing the ICache

133 ifu_ica_miss Number of harts accesses that resulted an ICache miss

134 ifu_ibuff_cred_stall Instruction fetch stalled due to lack of IBUF credit

135 ifu_pcbuf_cred_stall Number of times the hart stalled waiting for PCBuffer credit.

136 ifu_overall_stall Number of times the hart stalled for any reason

255 clock_cycles Total number of clock cycles

Table 14.4 Core Performance Counter Events (continued)

Event ID Event Name Description
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The event to be counted by each performance counter is designated by the event number set 
in the P0_Event and P1_Event fields of the CM3 Performance Counter Event Select Register 
(GCR_DB_PC_EVENT). The events corresponding to the event numbers are listed and 
described in Table 14.6, “CM3 Performance Counter Event Types,” on page 286. 

Each event is further specified by the CM3 Performance Counter Qualifier Register (GCR_D-
B_PC_QUALn). The meaning of this register is different for each event. The column labeled 
“Qualifier” in Table 14.6 shows the qualifiers that can be specified for each event. For exam-
ple, the qualifiers for the Coherence Manager Request Event (event 1) are the request port, 
thread, cmd, CCA, size, etc. 

The qualifiers for some events are composed of several groups. A performance counter will 
increment if the specified event occurs and the qualifier criteria is matched in all groups. For 
example, assume the P0_Event field in the CM3 Performance Counter Event Select Register 
is set to 1 (Coherence Manager Request). This event occurs when the CM3 serializes a 
request. However, the performance counter for this event will only count if the request meets 
the criteria programmed in all 12 groups in the Request Qualifier (see Table 14.6):

The port that issued the request has the corresponding Port qualifier bit set to 1.
AND
The thread that issued the request has the corresponding Thread qualifier bit set
to 1.
AND
The target of the request has the corresponding bit of the Target qualifier set to
1.
AND
The request command type has the corresponding Request Command qualifier bit set to
1.
AND
The Cachebility attribute (CCA) for the request has the corresponding CCA qualifier
bit set to 1.
AND
The size of the request has the corresponding Size qualifier bit set to 1.
AND
The L1 State of the request has the corresponding L1 State qualifier bit set to 1.
AND
The L2 state of the request has the corresponding L2 State qualifier bit set to 1.
AND
The L2 Locked state of the request has the corresponding L2 Locked qualifier bit
set to 1.
AND
The resulting eviction due to the request has the Eviction qualifier bit set to 1.
AND
The bank of the request has the Bank qualifier bit set to 1.
AND
The scheduler used for the request has the Scheduler qualifier bit set to 1.

Multiple bits within a qualification group may be set. In this case, the OR of all bits set within 
the group. For example, by setting the request port qualifier for Port 0 and Port 1, then a 
request will be counted if it originated from Port 0 or Port 1.

A qualifier group can be set to “don’t care” by setting all bits within the group to 1. For exam-
ple, to have performance counter 0 count all requests from port 1, program the CM Performance 
Counter Event Select Register and CM Performance Counter Qualifier 0 Register as follows:

Set P0_Event to 1(Coherence Manager Request)
Set Request Port Qualifer bit to 1 for Port 1
Set Request Port Qualifier bits to 0 for all other Ports
Set all other qualifer bits to 1 (causing the Thread, Target, Command, CCA, etc to
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be ignored)

The two counters can be programmed to count a different event or the same event with dif-
ferent qualifiers. For example, to measure the ratio of requests from Port 1 vs. all Ports, set 
program Counter 0 to count requests from Port 1 (see previous example) and program 
Counter 1 to count all request from all Ports by setting P1_Event to 1 (Coherence Manager 
Request) and set all bits in the CM Performance Counter Qualifier 1 Register to 1.

The cycle counter can be used to calculate the average rates of specified events. Continuing 
the above example, assuming the cycle counter is reset, started, and stopped simultaneously 
with the two performance counters, then the rate of requests from port 1 and all ports can be 
easily computed (value of each performance counter / value in cycle counter).

14.2.3 CM3 Performance Counter Usage Models
There are several models for using the CM3 performance counters. This sections discusses 3 
possible models:

• Periodic Sampling - take many measurement samples of specific duration

• Stop and Interrupt when counter overflows - counters run until one overflows, then inter-
rupt CPU

• Large count capability - enables unrestricted sample periods

14.2.3.1 Periodic Sampling
One model for making performance measurements is for the software to set up and gather 
samples for a set period of time. The code sequence could follow the following steps:

start:
Write CM Event and Qualifier Registers for particular event of interest
Write CM Performance Counter Control Register to reset and start counters
Perf_Int_En = 0 (no interrupt on overflow)
Perf_Ovf_Stop = 0(no stop on overflow).
P1_Reset = 1, P1_CountOn = 1
P0_Reset = 1, P0_CountOn = 1
Cycl_Cnt_Reset = 1, Cycl_Cnt_CountOn = 1
Wait for some relatively small period of time (i.e., 2 seconds)
Write CM Performance Counter Control Register to stop counters
P1_Counton = 0, P0_CountOn=0, Cycl_Cnt_CountOn = 0
Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers
If more events, go to start (or if measuring same counter go to step 2 instead)

14.2.3.2 Stop and Interrupt on Overflow
A second CM3 performance counter usage model involves setting up the counters to stop and 
interrupt on overflow. This runs the counters until one of the counters (usually the cycle 
counter) reaches the 32-bit limit. An example of such a code sequence is:

start:
Write CM Event and Qualifier Registers for particular event of interest
Write CM Performance Counter Control Register to reset and start counters
Perf_Int_En = 1 (interrupt on overflow)
Perf_Ovf_Stop = 1(stop on overflow).
P1_Reset = 1, P1_CountOn = 1
P0_Reset = 1, P0_CountOn = 1
Cycl_Cnt_Reset = 1, Cycl_Cnt_CountOn = 1
When interrupt occurs:
Read CM Performance Counter Status Register
Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers
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Write CM Performance Counter Control Register to reset counters
(clears status register and interrupt)
P0_Reset = 1, P1_Reset = 1, Cycl_Cnt_Reset = 1
If more events, go to start (or if measuring same counter go to step 2 instead)

14.2.3.3 Large Count Capability
If larger counts than can fit into the 32-bit counters are required, the counters can be set up 
to interrupt, but not stop, on overflow. Memory variables can then count the number of over-
flows, as shown below:

start:
Write CM Event and Qualifier Registers for particular event of interest
Write CM Performance Counter Control Register to reset and start counters
Perf_Int_En = 1 (interrupt on overflow)
Perf_Ovf_Stop = 0 (do not stop on overflow).
P1_Reset = 1, P1_CountOn = 1
P0_Reset = 1, P0_CountOn = 1
Cycl_Cnt_Reset = 1, Cycl_Cnt_CountOn = 1
When interrupt occurs:
<status>=Read CM Performance Counter Status Register
Increment <overflow_count>[counter] for each counter with <status> = 1
Write <status> to CM Performance Counter Status Register to clear interrupt

When run limit is reached then :
Write CM Performance Counter Control Register to stop counters
P1_Counton = 0, P0_CountOn=0, Cycl_Cnt_CountOn = 0
Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers
Write CM Performance Counter Control Register to reset counters
(clears status register and interrupt)
P0_Reset = 1, P1_Reset = 1, Cycl_Cnt_Reset = 1
If more events, go to start (or if measuring same counter go to step 2 instead)

In the above model, the final counts are calculated for each counter by multiplying 
<overflow_count>[counter] by 4G and adding the final values in the Performance Counter 
register described below.
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14.2.4 CM3 Performance Counter Control Register, GCR_DB_PC_CTL (offset = 
0x0800) 

Table 14.5 CM3 Performance Counter Control Register Bit Assignments 

Name Bits Reset R/W Description

RESERVED 63 :31 0 R Reads as 0x0. Must be written with a value of 0x0.

PERF_INT_EN 30 0 R/W Enable Interrupt on counter overflow. If set to 1, a CM3 perfor-
mance counter interrupt is generated when any enabled CM3 
performance counter overflows.

PERF_OVR_STOP 29 0 R/W Stop Counting on overflow. If set to 1, all CM3 Performance 
counters stop counting when any enabled CM3 performance 
counter overflows i.e., the counter has reached 0xFFFF_FFFF.

RESERVED 28:10 0 R Reads as 0x0. Must be written with a value of 0x0.

P1_RESET 9 0 RW If P1_RESET is written to 1 when P1_COUNTON is written to 
1, then CM3 Performance Counter 1 and the P1_OF bit is reset 
before counting is started. If P1_RESET is written to 0 when 
P1_COUNTON is written to 1, then counting is resumed from 
previous value. This bit is automatically set to 0 when the 
counter is reset, so P1_RESET is always read as 0.

P1_COUNTON 8 0 RW Start/Stop Counting. If this bit is set to 1 then CM3 Perfor-
mance Counter 1 starts counting the specified event. If this bit 
is set to 0 then CM3 Performance Counter 1 is disabled. This 
bit is automatically set to 0 if any counter overflows and Per-
f_Ovf_Stop is set to 1.

P0_RESET 7 0 RW If P0_RESET is written to 1 when P0_COUNTON is written to 
1, then CM3 Performance Counter 0 and the P0_OF bit is reset 
before counting is started. If P0_RESET is written to 0 when 
P0_COUNTON is written to 1, then counting is resumed from 
previous value. This bit is automatically set to 0 when the 
counter is reset, so P0_RESET is always read as 0.

P0_COUNTON 6 0 RW Start/Stop Counting. If this bit is set to 1 then CM3 Perfor-
mance Counter 0 starts counting the specified event. If this bit 
is set to 0 then CM3 Performance Counter 0 is disabled. This 
bit is automatically set to 0 if any counter overflows and Per-
f_Ovf_Stop is set to 1.

CYCL_CNT_RESET 5 0 RW If CYCL_CNT_RESET is written to 1 when 
CYCL_CNT_COUNTON is written to 1, then CM3 Cycle 
Counter and the Cycl_Cnt_OF bit is reset before counting is 
started. If CYCL_CNT_RESET is written to 0 when 
CYCL_CNT_COUNTON is written to 1, then counting is 
resumed from previous value. This bit is automatically set to 0 
when the counter is reset, so CYCL_CNT_RESET is always 
read as 0.

CYCL_CNT_COUNTON 4 9 RW Start/Stop the Cycle Counter. If this bit is set to 1 then CM3 
Cycle Counter starts counting. If this bit is set to 0 then CM3 
Cycle Counter is disabled. This bit is automatically set to 0 if 
any Counter Overflows and Perf_Ovf_Stop is set to 1.

PERF_NUM_CNT 3:0 0x2 R The number of performance counters implemented (not includ-
ing the cycle counter). The CM3 has 2 performance counters.
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Table 14.6 CM3 Performance Counter Event Types 

Event # Related Events Qualifiers Description/Comments

0 None No events are 
enabled for counting. 
This is the lowest 
power mode. 

1 Coherence Manager 
Requests

Port
Thread
Target
Cmd
Prefetch
CCA
Size
L1 State
L2 State
L2 Locked
Eviction
Bank
Scheduler

Can be used in conjunction with a cycle count to 
determine the number of requests received in a given 
period of time.

Refer to Table 14.7 for more information. 

2 I/O Traffic Requests Which IOCU
Direction/Cacheability
Size
Length
Prefetch
Device ID
Transaction ID

Counts the requests received by the IOCU.  

Refer to Table 14.8 for more information. 

3 Memory Interface Requests Direction
Size
Length
Cacheability
Source
Thread
Code/data
Prefetch

Counts the number of Memory requests issued. 

Refer to Table 14.9 for more information. 

4 - 6 Reserved

7 MEM AXI Bus Utilization channel
ready
valid

Measure Utilization of main memory AXI/ACE bus
Refer to Table 14.10 for more information.

8 IOCU0 AXI Bus Utilization channel
ready
valid

Measure Utilization of corresponding IOCU bus
Refer to Table 14.10 for more information.

9 IOCU1 AXI Bus Utilization

10 IOCU2 AXI Bus Utilization

11 IOCU3 AXI Bus Utilization

12 IOCU4 AXI Bus Utilization

13 IOCU5 AXI Bus Utilization

14 IOCU6 AXI Bus Utilization

15 IOCU7 AXI Bus Utilization
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17 CM N-trace Dropped Mes-
sages

responses
requests
port enables

Count number of messages dropped by CM Trace 
due to overflow.
Refer to Table 14.11 for more information.

18 CM N-trace overflow cycle 
length

None Counts the number of clock cycles for which CM 
N-trace overflow took to finish.

Table 14.6 CM3 Performance Counter Event Types (continued)

Event # Related Events Qualifiers Description/Comments
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Table 14.7 Coherence Manager Request Qualification 

Bit Qualifier Group Qualifier Value Description/Comments

63 2 Reserved unused Reserved for future use. Set all bits to 1.

62 1

61 0

60 1 Scheduler Scheduler 1 Request processed by CM scheduler 1.

59 0 Scheduler 0 Request processed by CM scheduler 0.

58 1 Bank Bank 1 Request sent to L2 bank 1.

57 0 Bank 0 Request sent to L2 bank 0.

56 2 Eviction L2 eviction no L1  eviction Request causes an L2 eviction but not and L1 
eviction. This covers all cases where the evicted 
line is either NOT in the L1 cache, or in the L1 
cache, but not in the Modified or Exclusive state.

55 1 L2 eviction with L1 eviction Request causes both an L2 and L1 eviction. This 
covers the case where the evicted line is in the L1 
cache, and is in either the Modified or Exclusive 
state.

54 0 no L2 eviction Request does not cause an eviction.

53 1 L2 Locked Locked L2 line is valid and locked. 

52 0 Not locked L2 line is  not locked (or the line is invalid).

51 3 L2 State Modified L2 line is in state modified.

50 2 Exclusive L2 line is in state exclusive.

49 1 Shared L2 line is in state shared.

48 0 Invalid L2 line is invalid.

47 2 L1 State Exclusive/Modified Line is Exclusive or Modifed in one of the cores.

46 1 Shared Line is Shared in at least one of the cores. 

45 0 Invalid Line is not valid in any of the core L1s. 

44 1 Size line Request for 1 cache line of data.

Note: This counts the burst length as seen by the 
Coherent Manager. Requests form the I/O Sub-
system may be longer, but the IOCU may break 
these into multiple smaller requests.

43 0 Less than a line Request for less than a cache line. 
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42 2 CCA Other Request hasa cacheability attribute other than UC/
UCA.

41 1 UCA Request has an accelerated un-cached cacheabil-
ity attribute.

40 0 UC Request has an un-cached cacheability attribute.

39 23 Request 
command

Other command

38 22 L3 Cache all L3 cacheop including FetchNLock.

37 21 L2 Cache

36 20 L1D Cache

35 19 L1I Cache

34 18 Sync

33 17 RegWrite

32 16 RegRead

31 15 Tag_Err

30 14 GetToOwn

29 13 Prefetch Write Invalidate 

28 12 Prefetch Share

27 11 Prefetch Own

26 10 CohReadDiscardAllocate

25 9 CohWriteInvalidate

24 8 CohWriteBack

23 7 CohUpgradeSC

22 6 CohUpgrade

21 5 CohEvict

20 4 CohReadDiscard

19 3 CohReadShare

18 2 CohReadOwn

17 1 Legacy Write Request is a legacy write command. This is used 
for all non-coherent writes. 

Note: When a processor is in coherent mode, L1 
cache writebacks are always considered coherent, 
so the result is a CohWriteBack command, not a 
Legacy Write command. 

16 0 Legacy Read Request is a legacy read command. This is used 
for all non-coherent reads, including code fetches. 

Table 14.7 Coherence Manager Request Qualification (continued)

Bit Qualifier Group Qualifier Value Description/Comments
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15 1 Target Register bus target Request targets a device on the register bus such 
as GCR, APLIC, CPC, DBU, etc.

14 0 Memory Request targets memory (coherent or non-coher-
ent).

13 3 Thread Thread 3 Request originated from thread 3.

12 2 Thread 2 Request originated from thread 2.

11 1 Thread 1 Request originated from thread 1.

10 0 Thread 0 Request originated from thread 0.

9 9 Port Intervention Request originated from an intervention.

8 8 Prefetch Request originated from the prefetcher.

7 7 Port 7 Request originated from Input Port x, x is assigned 
Cores before IOCU. For example, for a 4 core, 2 
IOCU configuration, the ports are assigned as fol-
lows:
Port 5 : IOCU 1
Port 4: IOCU 0
Port 3: Core 3
Port 2: Core 2
Port 1: Core 1
Port 0: Core 0

6 6 Port 6

5 5 Port 5

4 4 Port 4

3 3 Port 3

2 2 Port 2

1 1 Port 1

0 0 Port 0

Table 14.8 I/O Traffic Qualification 

Bit Qualifier Group Qualifier Value Description/Comments

41:37 4:0 transaction ID Specific transaction ID Match specific transaction ID. This field is used 
only when All transaction ID is 0.

36 0 All transaction ID If set, any transaction ID matches, transaction ID 
group ignored.

35:30 5:0 device ID Specific device ID Match specific device ID. This field is used only 
when All device ID is 0.

29 0 All device ID If set, any device ID matches, device ID group 
ignored

28 1 Prefetch prefetch IOCU request is a prefetch

27 0 not prefetch IOCU request is not a prefetch

26 1 Aligned Misaligned IOCU request address is not aligned

25 0 Aligned address IOCU request address is aligned

Table 14.7 Coherence Manager Request Qualification (continued)

Bit Qualifier Group Qualifier Value Description/Comments
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24 8 Length 129-256 Number of transfers in a burst.

23 7 65-128

22 6 33-64

21 5 17-32

20 4 9-16

19 3 5-8

18 2 3-4

17 1 2

16 0 1

15 7 Size 128 Indicates the number of bytes in each transfer in 
the burst. 

14 6 64

13 5 32

12 4 16

11 3 8

10 2 4

9 1 2

8 0 1

7 2 Direction/
cacheability

Write - coherent Coherent write request.

6 1 Write - UC Uncached write request.

5 0 Read - coherent no allocate Coherent read request without allocate.

4 1 Read - coherent with allocate Coherent read request with allocate.

3 0 Read - UC Uncached read request.

2:0 2:0 IOCU Number 0-7 Encoded value of which IOCU requests to count

Table 14.9 Memory Interface Request Qualification

Bit Qualifier Group Qualifier Value Description/Comments

45:41 4:0 Guest ID Specific Guest ID Match specific guest ID. This field is only used 
when All Guest ID is 0.

40 0 All Guest ID All Guest ID If set, any guest ID matches, Guest ID group 
ignored.

39 1 Prefetch Prefetch Prefetch memory request.

38 0 Not prefetch Not a prefetch memory request.

Table 14.8 I/O Traffic Qualification (continued)

Bit Qualifier Group Qualifier Value Description/Comments
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37 1  Code/data Code Request indicated it was accessing code.

36 0 Data Request indicated it was accessing data.

35 3 Thread Thread 3 Request originated from thread 3.

34 2 Thread 2 Request originated from thread 2.

33 1 Thread 1 Request originated from thread 1.

32 0 Thread 0 Request originated from thread 0.

31 Reserved

30

29 7 Source Input Port 7 Request originated from Input Port x, x is assigned 
Cores before IOCU. For example, for a 4 core, 2 
IOCU configuration, the ports are assigned as fol-
lows:
Port 5 : IOCU 1
Port 4: IOCU 0
Port 3: Core 3
Port 2: Core 2
Port 1: Core 1
Port 0: Core 0

28 6 Input Port 6

27 5 Input Port 5

26 4 Input Port 4

25 3 Input Port 3

24 2 Input Port 2

23 1 Input Port 1

22 0 Input Port 0

21 3 Cacheability Cacheable not read discard Any coherent access that is not a read discard. 

20 2 Cacheable read discard Coherent read discard. 

19 1 UCA Uncached Accelerate access.

18 0 UC Uncached access.

17 7 Length 7 Number of transfers in a burst.

16 6 6

15 5 5

14 4 4

13 3 3

12 2 2

11 1 1

10 0 0

Table 14.9 Memory Interface Request Qualification

Bit Qualifier Group Qualifier Value Description/Comments
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9 7 Size 128 Indicates the number of bytes in each transfer in 
the burst. 

8 6 64

7 5 32

6 4 16

5 3 8

4 2 4

3 1 2

2 0 1

1 1 Direction Write Write

0 0 Read Read

Table 14.10 AXI Bus Utilization Qualification 

Bit Qualifier Group Qualifier Value Description/Comments

6:4 2:0 channel 0: AR
1: AW
2: W
3: R
4: B

count transactions on the specified channel

3 1 ready ready count when xREADY signal is asserted

2 0 not_ready count when xREADY signal is not asserted

1 1 valid valid count when xVALID is asserted

0 0 not_valid count when xVALID is not asserted

Table 14.11 CM N-trace Dropped Message Qualification 

Bit Qualifier Group Qualifier Value Description/Comments

7 0 trace_type response trace responses. only used for tmh1_mulp, tmh1, 
tmh0_mulp, tmh0, and ubrh

6 0 request trace requests. only used for tmh1, tmh0

Table 14.9 Memory Interface Request Qualification

Bit Qualifier Group Qualifier Value Description/Comments



294
mips.com

Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS I8500 Multiprocessing System Programmer’s Guide — Revision 1.00

14.3 Histogram Performance Counter

The Histogram Performance Counter has three main purposes.

• Keep track of latencies for all requests going through CM main pipe.

• Provide ability to control granularity of the counter in order to save number of 
program counters.

• Provide ability to rebuild the latency histogram for performance analysis, especially to 
detect outlier transactions.

The performance monitor histogram function can be used to count the latencies of different 
accesses to the L2 cache in a single execution run.  The latencies are counted from the time 
the request is received by the CM logic on a REQ port from a Core or IOCU to the time the 
response is ready to be placed on the RIN bus connected to the same Core or IOCU.  There 
are a few build parameters that are used to control if this function is instantiated in the hard-
ware; how many count registers should be instantiated; and the size of the internal (HW 
access only) counter. 

The user can program the number of count registers used to capture the latency data in a 
histogram format.  Each count register corresponds to a bucket with a range of latency val-
ues.  The range of latency values for a bucket is programmable.  The value in each count reg-
ister corresponds to a single vertical bar in a typical histogram chart.  The number of count 
registers used can be from 2 to 64 registers, inclusive - although the maximum number of 
count registers that can be used is limited by the number of count registers specified at build 
time.

The performance monitor histogram function monitors up to 8 input REQ ports (any combi-
nation of COREs or IOCUs).  This is limited by the value of CM3_NUM_CORES plus the value 
of CM3_NUM_IOCUS which are specified at build time. Filtering is provided via the perfor-
mance monitor event qualification registers to control what type of operations are counted.

Event counting by the histogram related logic works a bit differently that the normal event 
counting by the performance monitor.  The histogram function starts the count of cycles to 
calculate the latency as an op is received from the REQ bus associated with a Core or IOCU. 
The latency value is captured as the operation result is sent to the RIN bus back to the 
appropriate Core or IOCU.  This permits the latency values to include the number of cycles 
the incoming ops spend in the input queues before being sent to the L2 cache. This means 
that there are few of the performance monitoring filtering settings that do not work with the 

5 5 trace_port tmh1_mulp Count dropped messages due to multiple-
responses for main pipeline #1

4 4 tmh1 Count dropped from main pipeline #1 

3 3 tmh0_mulp Count dropped messages due to multiple-
responses for main pipeline #0

2 2 tmh0 Count dropped from main pipeline #0 

1 1 prsh Count messages dropped at perf counter tracing 
port 

0 0 ubrh Count messages dropped from uncached 
responses

Table 14.11 CM N-trace Dropped Message Qualification (continued)

Bit Qualifier Group Qualifier Value Description/Comments
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histogram function; but most of them are supported by the histogram function. The details of 
the filtering support are provided in the section on filtering.

14.3.1 Histogram Register Map
Table 14.12 lists the histogram register map.

Table 14.12 Histogram Register Map 

Offset Acronym Description

0x1000 GCR_DB_PC_HIST_CTL CM PC Histogram Control Register 

0x1008 GCR_DB_PC_HIST_GRAN CM PC Histogram Granularity Register 

0x1010 GCR_DB_PC_HIST_CNT[0] CM PC Histogram Counter Register 0

0x1018 GCR_DB_PC_HIST_CNT[1] CM PC Histogram Counter Register 1

0x1020 GCR_DB_PC_HIST_CNT[2] CM PC Histogram Counter Register 2

0x1028 GCR_DB_PC_HIST_CNT[3] CM PC Histogram Counter Register 3

0x1030 GCR_DB_PC_HIST_CNT[4] CM PC Histogram Counter Register 4

0x1038 GCR_DB_PC_HIST_CNT[5] CM PC Histogram Counter Register 5

0x1040 GCR_DB_PC_HIST_CNT[6] CM PC Histogram Counter Register 6

0x1048 GCR_DB_PC_HIST_CNT[7] CM PC Histogram Counter Register 7

0x1050 GCR_DB_PC_HIST_CNT[8] CM PC Histogram Counter Register 8

0x1058 GCR_DB_PC_HIST_CNT[9] CM PC Histogram Counter Register 9

0x1060 GCR_DB_PC_HIST_CNT[10] CM PC Histogram Counter Register 10

0x1068 GCR_DB_PC_HIST_CNT[11] CM PC Histogram Counter Register 11

0x1070 GCR_DB_PC_HIST_CNT[12] CM PC Histogram Counter Register 12

0x1078 GCR_DB_PC_HIST_CNT[13] CM PC Histogram Counter Register 13

0x1080 GCR_DB_PC_HIST_CNT[14] CM PC Histogram Counter Register 14

0x1088 GCR_DB_PC_HIST_CNT[15] CM PC Histogram Counter Register 15

0x1090 GCR_DB_PC_HIST_CNT[16] CM PC Histogram Counter Register 16

0x1098 GCR_DB_PC_HIST_CNT[17] CM PC Histogram Counter Register 17

0x10A0 GCR_DB_PC_HIST_CNT[18] CM PC Histogram Counter Register 18

0x10A8 GCR_DB_PC_HIST_CNT[19] CM PC Histogram Counter Register 19

0x10B0 GCR_DB_PC_HIST_CNT[20] CM PC Histogram Counter Register 20

0x10B8 GCR_DB_PC_HIST_CNT[21] CM PC Histogram Counter Register 21

0x10C0 GCR_DB_PC_HIST_CNT[22] CM PC Histogram Counter Register 22

0x10C8 GCR_DB_PC_HIST_CNT[23] CM PC Histogram Counter Register 23

0x10D0 GCR_DB_PC_HIST_CNT[24] CM PC Histogram Counter Register 24

0x10D8 GCR_DB_PC_HIST_CNT[25] CM PC Histogram Counter Register 25

0x10E0 GCR_DB_PC_HIST_CNT[26] CM PC Histogram Counter Register 26

0x10E8 GCR_DB_PC_HIST_CNT[27] CM PC Histogram Counter Register 27

0x10F0 GCR_DB_PC_HIST_CNT[28] CM PC Histogram Counter Register 28

0x10F8 GCR_DB_PC_HIST_CNT[29] CM PC Histogram Counter Register 29

0x1100 GCR_DB_PC_HIST_CNT[30] CM PC Histogram Counter Register 30
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0x1108 GCR_DB_PC_HIST_CNT[31] CM PC Histogram Counter Register 31

0x1110 GCR_DB_PC_HIST_CNT[32] CM PC Histogram Counter Register 32

0x1118 GCR_DB_PC_HIST_CNT[33] CM PC Histogram Counter Register 33

0x1120 GCR_DB_PC_HIST_CNT[34] CM PC Histogram Counter Register 34

0x1128 GCR_DB_PC_HIST_CNT[35] CM PC Histogram Counter Register 35

0x1130 GCR_DB_PC_HIST_CNT[36] CM PC Histogram Counter Register 36

0x1138 GCR_DB_PC_HIST_CNT[37] CM PC Histogram Counter Register 37

0x1140 GCR_DB_PC_HIST_CNT[38] CM PC Histogram Counter Register 38

0x1148 GCR_DB_PC_HIST_CNT[39] CM PC Histogram Counter Register 39

0x1150 GCR_DB_PC_HIST_CNT[40] CM PC Histogram Counter Register 40

0x1158 GCR_DB_PC_HIST_CNT[41] CM PC Histogram Counter Register 41

0x1160 GCR_DB_PC_HIST_CNT[42] CM PC Histogram Counter Register 42

0x1168 GCR_DB_PC_HIST_CNT[43] CM PC Histogram Counter Register 43

0x1170 GCR_DB_PC_HIST_CNT[44] CM PC Histogram Counter Register 44

0x1178 GCR_DB_PC_HIST_CNT[45] CM PC Histogram Counter Register 45

0x1180 GCR_DB_PC_HIST_CNT[46] CM PC Histogram Counter Register 46

0x1188 GCR_DB_PC_HIST_CNT[47] CM PC Histogram Counter Register 47

0x1190 GCR_DB_PC_HIST_CNT[48] CM PC Histogram Counter Register 48

0x1198 GCR_DB_PC_HIST_CNT[49] CM PC Histogram Counter Register 49

0x11A0 GCR_DB_PC_HIST_CNT[50] CM PC Histogram Counter Register 50

0x11A8 GCR_DB_PC_HIST_CNT[51] CM PC Histogram Counter Register 51

0x11B0 GCR_DB_PC_HIST_CNT[52] CM PC Histogram Counter Register 52

0x11B8 GCR_DB_PC_HIST_CNT[53] CM PC Histogram Counter Register 53

0x11C0 GCR_DB_PC_HIST_CNT[54] CM PC Histogram Counter Register 54

0x11C8 GCR_DB_PC_HIST_CNT[55] CM PC Histogram Counter Register 55

0x11D0 GCR_DB_PC_HIST_CNT[56] CM PC Histogram Counter Register 56

0x11D8 GCR_DB_PC_HIST_CNT[57] CM PC Histogram Counter Register 57

0x11E0 GCR_DB_PC_HIST_CNT[58] CM PC Histogram Counter Register 58

0x11E8 GCR_DB_PC_HIST_CNT[59] CM PC Histogram Counter Register 59

0x11F0 GCR_DB_PC_HIST_CNT[60] CM PC Histogram Counter Register 60

0x11F8 GCR_DB_PC_HIST_CNT[61] CM PC Histogram Counter Register 61

0x1200 GCR_DB_PC_HIST_CNT[62] CM PC Histogram Counter Register 62

0x1208 GCR_DB_PC_HIST_CNT[63] CM PC Histogram Counter Register 63

Table 14.12 Histogram Register Map (continued)

Offset Acronym Description
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14.3.2 Histogram Register Descriptions

14.3.2.1 CM PC Histogram Control Register (GCR_DB_PC_HIST_CTL) Offset: 0x1000 
This register is used to indicate how many count registers (one for each histogram bucket) 
should be used when the histogram function is enabled.  

• If the user desires to run with 2 buckets, then two enables should be set to 1'b1:  bits 
[0] and [1] - while bits [63:2] are set to 1'b0.

• If the user desires to run with 16 histogram buckets, then the register should be 
written (single atomic write) as 64h'0000_0000_0000_FFFF.  

The act of writing bit [0] starts the counter. The enable bits in the GCR_DB_PC_HIST_CTL 
register are allocated by the hardware to the instantiated count registers starting with bit [0] 
and continuing to bit [63]. 

The CM3_DB_PC_HIST_NUM_CNTRS define controls how many count registers are created at 
build time.  Software must not set more enable bits to 1'b1 than the number of instantiated 
count registers.  Software may choose to set fewer enable bits than there are count regis-
ters; this means that the hardware will not use some of the existing count registers. The 
enable bits set to 1'b1 MUST be contiguous. Hardware looks for the first 1'b0 enable bit 
(starting from bit 0) to determine how many count registers to use.  

14.3.2.2 CM PC Histogram Granularity Register (GCR_DB_PC_HIST_GRAN) Offset: 0x1008
This register holds the size of the range of latencies counted in each count register (bucket 
size).  The range/granularity can be set to any value from 1 to 1024 inclusive. 

For example, setting the granularity to 4 will allocate the latencies to the count registers as 
follows:  

• cnt0 - 0 to 3

• cnt1 - 4 to 7

• cnt2 - 8 to 11, etc.  

Setting the register GCR_DB_PC_HIST_GRAN[63:0] to a granulatiry of 8 
(64'h0000_0000_0000_0008) will allocate the latencies to the count registers as follows: 

• cnt0 - 0 to 7

• cnt1 - 8 to 15

• cnt2 - 16 to 23, etc.  

The hardware histogram function only uses bits [10:0] because the maximum bucket size is 
1024.  However, all 64 bits of the register are implemented and accessible by software via 
reads or writes.

Figure 14.3 CM PC Histogram Control Register Bit Assignments
63 0

COUNTER_ENABLE[63:0]

Table 14.13 CM PC Histogram Control Register Bit Descriptions 

Name Bits Description R/W Reset State

COUNTER_ENABLE 63:0 This register is used to enable each of the histogram 
counters. Each bit enables corresponding histogram per-
formance counter. Bit 0 enables counter 0, while bits 63 
enables counter 63. 

R/W 0
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14.3.2.3 CM PC Histogram Counter Registers (GCR_DB_PC_HIST_CNT[0-63]) Offset: 0x1010-0x1208
These are the 64 histogram count registers. The number of count registers instantiated at 
build time is specified by the defined constant, CM3_DB_PC_HIST_NUM_CNTRS. The number 
of registers used at run time is given by the number of enable bits set to 1'b1 in the GCR_D-
B_PC_HIST_CTL register described above. 

The full 64 bits of the count registers are used for the histogram count, although as a practi-
cal matter, the count will never reach the max value representable by 64 bits. Software can 
read/write GCR_DB_PC_HIST_CNT0 register at address 20'h1010. For the offset location for 
each Counter register, refer to Table 14.12.  

Figure 14.4 CM PC Histogram Granularity Register Bit Assignments
63 11 10 0

RESERVED GRANULARITY

Table 14.14 CM PC Histogram Granularity Register Bit Descriptions 

Name Bits Description R/W Reset State

RESERVED 63:11 Reserved WARL 0

GRANULARITY 10:0 This register is used to set the granularity of the counters.  
This is used to sort latencies into buckets. Using this field, 
the range can be set to a value of 1 to 1024 inclusive.

R/W 0

Figure 14.5 CM PC Histogram Counter Register Bit Assignments
31 0

PC_HIST_COUNTER[0-63]

Table 14.15 CM PC Histogram Counter Register Bit Descriptions 

Name Bits Description R/W Reset State

PC_HIST_COUNTER 31:0 There are up to 64 Histogram Counter register, with each 
registers containing a 32-bit histogram count. The number 
of count registers is a build time configuration setting.  
There can be anywhere from 8 to 64 count registers 
instantiated.

R/W 0
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Data Scratch Pad RAM

The optional Data Scratch Pad RAM (DSPRAM) block provides a general scratch pad RAM used for tem-
porary storage of data. The DSPRAM provides a connection to on-chip memory or memory-mapped regis-
ters, which are accessed in parallel with the L1 data cache to minimize access latency. 

The DSPRAM interface connects the CPU to an external customer designed DSPRAM module (a refer-
ence design is provided with the I8500 CPU). All the threads in the same CPU share the DSPRAM. For a 
system with multiple CPUs there is one DSPRAM per CPU.

The default RAM size is 64 KB when implemented, but can be set to any power of 2 (such as 128 KB, 256 
KB, etc.) The base address of the DSPRAM in memory is set using a new CSR register. 

Figure 1: DSPRAM Interface

15.1 Overview
The DSPRAM module has the following features:

• 16 Byte wide data path for both read and write operations.

• Data can be protected (parity/ECC/none on 32-bit granularity).
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• One or multi-cycle latency for read/write in byte invariant format.

• Multi-threaded design, so the blocking of one thread may not block other thread.

• Root physical address (RPA) is checked against base and range to validate access. 

15.1.1 New CSR Register

A new CSR register has been added to facilitate access to the DSPRAM as shown in Table 15.1 . 

The bit assignments for this register is shown below.

15.1.1.1 MIPS DSPRAM Base Address Register — mipsdsprambase  

 

Table 15.1 CSR Register Used for Accessing the DSPRAM Module 

Register 
Offset Register Name Description

0x7CC mipsdsprambase Per-core register containing the base address of the DSPRAM region, 
as well as additional configuration bits.

Figure 15.1 MIPS DSPRAM Base Register Bit Assignments 
63 62 61 44 43 32

SO SLF 0 ADDR[31:20]

31 12 11 6 5 1 0

ADDR[19:0] 0 SIZE EN

Table 15.2 MIPS DSPRAM Base Register Bit Descriptions 

Name Bits Description R/W Reset State

SO 63 Strict Ordering. By default the DSPRAM interface allows for specu-
lative loads to bypass ahead of DSPRAM stores. 

When this bit is set, the core asserts and additional signal (sdb_d-
sp_empty) to notify the DSPRAM logic that there are no stores of 
the same thread pending in the store data buffer. This information 
can then be used to prevent a DSPRAM load from being performed 
until older DSPRAM stores from the same thread have been com-
pleted. 

To prevent deadlock, when this bit is set, younger stores will not be 
issued to the LSU till all older loads (DSPRAM or non-DSPRAM) of 
the same thread have graduated.

R/W 0

SLF 62 Store-to-Load Forwarding. By default, a pending DSPRAM store in 
the store buffer cannot forward its data to a younger DSPRAM load 
with uncached CCA attributes. When this bit is set, the existing 
DSPRAM-specific check is disabled, allowing for forwarding and 
cancelling of the DSPRAM read.

R/W 0

0 61:44 Reserved. Set to 0. R/W 0
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15.1.2 Changes to Existing CSR Registers — Error Reporting

To accommodate error reporting by the DSPRAM, the following CSR register has been modified as shown 
below.

15.1.2.1 Cache Error — mipscacheerr (offset = 0x7C5)

In the I8500 mipscacheerr register, the following fields have changed as defined below. If not defined, the 
field(s) behave the same as in previous generation cores.

• Bits 29:26 are used to indicate the array where the error was detected. Encoding 0x8 of this field was 
added to indicate a DSPRAM error.

• Bits 21:20 are used to indicate the way where the error occurred. However, since the DSPRAM is a 1-
way set associative memory, this field is not used. 

15.2 DSPRAM Software Interface
The DSPRAM is accessed by Load and Store instructions. Read requests for load instructions can be 
issued to the DSPRAM module speculatively. Write requests for store instructions are non-speculative. 
The read/write access to the DSPRAM is 16 Bytes (128 bits) wide for data.

ADDR 43:12 Base address. This field stores the base physical address of the 
DSPRAM in memory. Note that the DSPRAM base address must be 
aligned with respect to the size of the DSPRAM. 

To compute the value for the ADDR field, shift the desired DSPRAM 
base address right by 16 bits. Conversely, to reconstruct the 
DSPRAM base address from the ADDR field, take the ADDR field's 
value and shift it left 16 bits. For example, a DSPRAM base address 
of 0x12340000 would be represented by an ADDR field value of 
0x1234.

For example, for a 64KB DSPRAM, the ADDR field does not need 
any lower bits to be cleared, as the ADDR field is shifted left 16 bits 
to represent the base address, and will result in a 64KB-aligned 
base address. For a 1MB DSPRAM, the lower 20 bits of the base 
address must be zero, therefore the lower 4 bits of the ADDR field 
must be zero to ensure proper 1MB alignment of the DSPRAM base 
address.

R/W 0

0 11:6 Reserved. Set to 0. R/W 0

SIZE 5:1 This field indicates the size of the DSPRAM device and is encoded 
as 2SIZE bytes. WIth a default value of 0x10 (decimal = 16), this 
yields a size of 216 bytes, which is 65,536 bytes, or 64 KBytes.
The actual size can be less than 64 KBytes, but the minimum size 
of the address window must be 64 KBytes. For example, if a mem-
ory slice occupies only 16 KBytes, then the upper 48 KBytes of the 
address window is unused.

R/W 0x10

EN 0 This bit must be set to allow DSPRAM accesses. A read of this reg-
ister gives the current state of this bit. 

R/W 0

Table 15.2 MIPS DSPRAM Base Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
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The CACHE, LL/SC variants, GINV variants, and PREF instructions are not supported on the address 
space of the DSPRAM. The address of the load/store instruction to the DSPRAM must be aligned to the 
size of access (i.e. 4 bytes, 8 bytes, or 16 bytes). Any violation of the address alignment can cause an 
address error exception (i.e. unaligned loads/stores to DSPRAM are not supported). The SYNC instruction 
will enforce ordering of DSPRAM loads and stores.

15.3 Accessing the DSPRAM
As mentioned above, the DSPRAM is accessed using the mipsdsprambase CSR register located at offset 
0x7CC. From a kernel software perspective, there is one mipsdsprambase register per core. 

Figure 2 shows a 2-hart implementation.
Figure 2: Accessing the DSPRAM 

15.3.1 Register Programming Sequence

To select the DSPRAM block and set the address, size, and enable fields of the mipsdsprambase register, 
the following programming sequence can be used:

1. Specify the base address location of the DSPRAM in the ADDR field (bits 43:12) of the mipsdspram-
base register.

2. Specify the size of the DSPRAM in the Size field in bits 5:1 of the mipsdsprambase register.

3. Set the EN enable bit, bit 0, to enable DSPRAM accesses. All three of these steps may be performed 
by a single store instruction.

4. This is done by the privileged software (i.e. by operating system software if virtualization is not imple- 
mented, or by the Hypervisor if virtualization is implemented).

These steps can be represented by the following assembly language code, along with an example transfer 
of data:

la s5,TEST_DATA
#MCACHE Hit Wb Inv for L1
MCACHE (21,s5)

enter_mmode()

##DSPRAM_enable(TEST_DATA, 1)##
li t3, addr;\
li t5, 0x0000FFFFFFFF0000;\
and t3, t3, t5;\
srli t3, t3, 4;\

mipsdsprambase

CSR interface

Hart 0

Hart 1

DSPRAM
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ori t3, t3, 0x1;\
csrw (mipsdsprambase, t3);\

li s4, 0x11111111
sw s4, 0(s5) #Storing to DSPRAM

##DSPRAM_disable()##
csrr (t3, mipsdsprambase);\
li t5, 0xFFFFFFFFFFFE;\
and t3, t3, t5;\
csrw (mipsdsprambase, t3);\

15.3.2 Programming Constraints 

The DSPRAM is shared across all harts in the core. As such, accesses to the DSPRAM must adhere to the 
following constraints:

1. If multiple harts are present, each hart can access the DSPRAM independent of the other. Therefore, if 
one hart stores data to a location in the DSPRAM, that data can be overwritten by another hart at any 
time.

2. Since there is only one mipsdsprambase register per core, each hart can write to the mipsdsprambase 
register. Therefore, if one hart sets the base address and size for the DSPRAM, that information can 
be overwritten by another hart at any time. 

For example, in the code example above, hart 0 places the DSPRAM at a base of 0x80000 with a size 
of 64K, so the DSPRAM resides from 0x80000 - 0x8FFFF in memory. However, if hart 1 sets the base 
address at a different value, such as 0xA0000, then the location of the DSPRAM will be moved.

It is incumbent upon software to ensure that these conditions do not occur.
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Instruction Scratch Pad RAM

The optional Instruction Scratch Pad RAM (ISPRAM) block provides a general scratch pad RAM used for 
temporary storage of instructions. The ISPRAM provides a connection to on-chip memory or memory-
mapped registers, which are accessed in parallel with the L1 instruction cache to minimize access latency. 

The ISPRAM interface connects the CPU to an external customer designed ISPRAM module (a reference 
design is provided with the I8500 CPU). All the threads in the same CPU share the ISPRAM. For a system 
with multiple CPUs there is one ISPRAM per CPU.

The default RAM size is 64 KB when implemented, but can be set to any power of 2 (such as 128 KB, 256 
KB, etc.) The base address of the ISPRAM in memory is set using a new CSR register. 

Figure 1: ISPRAM Interface

16.1 Overview
The ISPRAM module has the following features:

• 16 Byte wide data path for both read and write operations.

• Data can be protected (parity/ECC/none on 32-bit granularity).

• One or multi-cycle latency for read/write in byte invariant format.

• Multi-threaded design, so the blocking of one thread may not block other thread.

• Root physical address (RPA) is checked against base and range to validate access. 

CPU

CM
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16.1.1 New CSR Register

A new CSR register has been added to facilitate access to the ISPRAM as shown in Figure 16.1   

16.1.2 Changes to Existing CSR Registers — Error Reporting

To accommodate error reporting by the ISPRAM, the following CSR register has been modified as shown 
below.

16.1.2.1 Cache Error — mipscacheerr (offset = 0x7C5)

In the I8500 mipscacheerr register, the following fields have changed as defined below. If not defined, the 
field(s) behave the same as in previous generation cores.

• Bits 29:26 are used to indicate the array where the error was detected. Encoding 0x9 of this field was 
added to indicate an ISPRAM error.

• Bits 21:20 are used to indicate the way where the error occurred. However, since the DSPRAM is a 1-
way set associative memory, this field is not used. 

16.2 ISPRAM Software Interface
The ISPRAM is accessed during instruction fetches. The CACHE, LL/SC variants, GINV variants, and 
PREF instructions are not supported on the address space of the ISPRAM. The instruction fetch to the 
ISPRAM must be aligned to the size of access (i.e. 4 bytes, 8 bytes, or 16 bytes). Any violation of the 
address alignment can cause an address error exception (i.e. unaligned loads/stores to ISPRAM are not 
supported). The SYNC instruction will enforce ordering of ISPRAM loads and stores.

Figure 16.1 MIPS ISPRAM Base Register Bit Assignments 
63 44 43 32

RSVD MIPSISPRAMBASE[47:36]

31 12 11 6 5 1 0

MIPSISPRAMBASE[35:16] RSVD SIZE EN

Table 16.1 MIPS ISPRAM Base Register Bit Descriptions 

Name Bits Description R/W Reset State

RSVD 63:44 Reserved. R 0

MIPSISPRAMBASE 43:12 Contains bits 47:16 of MIPS ISPRAM base address in 
memory.

R/W Undefined

RSVD 11:6 Reserved. R 0

SIZE 5:1 Size of the device. This field is encoded as 2^SIZE 
bytes. This value is preset at build time. 
For a 64 KB DSPRAM, the SIZE field should be 5'h10.

R/W Undefined

EN 0 Write 1 to enable ISPRAM access. Read gives the cur-
rent value of the bit. 

R/W Undefined
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16.3 Accessing the ISPRAM
As mentioned above, the ISPRAM is accessed using the mipsisprambase CSR register located at offset 
0x7CD. From a kernel software perspective, there is one mipsisprambase register per core. 

Figure 2 shows a 2-hart implementation.
Figure 2: Accessing the ISPRAM 

16.3.1 Register Programming Sequence

To select the ISPRAM block and set the address, size, and enable fields of the mipsisprambase register, 
the following programming sequence can be used:

1. Specify the base address location of the ISPRAM in the ADDR field (bits 43:12) of the mipsisprambase 
register.

2. Specify the size of the ISPRAM in the Size field in bits 5:1 of the mipsisprambase register.

3. Set the EN enable bit, bit 0, to enable ISPRAM accesses. All three of these steps may be performed 
by a single store instruction.

4. This is done by the privileged software (i.e. by operating system software if virtualization is not imple- 
mented, or by the Hypervisor if virtualization is implemented).

These steps can be represented by the following assembly language code, along with an example transfer 
of data:

la s5,TEST_DATA
#MCACHE Hit Wb Inv for L1
MCACHE (21,s5)

enter_mmode()

##ISPRAM_enable(TEST_DATA, 1)##
li t3, addr;\
li t5, 0x0000FFFFFFFF0000;\
and t3, t3, t5;\
srli t3, t3, 4;\
ori t3, t3, 0x1;\
csrw (mipsisprambase, t3);\

li s4, 0x11111111
sw s4, 0(s5) #Storing to DSPRAM

mipsisprambase

CSR interface

Hart 0

Hart 1

ISPRAM
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##ISPRAM_disable()##
csrr (t3, mipsisprambase);\
li t5, 0xFFFFFFFFFFFE;\
and t3, t3, t5;\
csrw (mipsisprambase, t3);\

16.3.2 Programming Constraints 

The ISPRAM is shared across all harts in the core. As such, accesses to the ISPRAM must adhere to the 
following constraints:

1. If multiple harts are present, each hart can access the ISPRAM independent of the other. Therefore, if 
one hart stores data to a location in the ISPRAM, that data can be overwritten by another hart at any 
time.

2. Since there is only one mipsisprambase register per core, each hart can write to the mipsisprambase 
register. Therefore, if one hart sets the base address and size for the ISPRAM, that information can be 
overwritten by another hart at any time. 

For example, in the code example above, hart 0 places the ISPRAM at a base of 0x80000 with a size 
of 64K, so the ISPRAM resides from 0x80000 - 0x8FFFF in memory. However, if hart 1 sets the base 
address at a different value, such as 0xA0000, then the location of the ISPRAM will be moved.

It is incumbent upon software to ensure that these conditions do not occur.
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Multithreading

The I8500 Multiprocessing System (MPS) incorporates hardware multithreading that executes 
multiple threads in such a way that the threads appear to be run in parallel. This functionality 
is performed entirely in hardware and does not require any software control. Hence this 
chapter is only intended to provide an overview of multithreading and how it is implemented 
in the I8500 MPS.

In the I8500, each thread is referred to as a hart. Each hart contains a complete system state 
(General, CSR, and FP registers, TLB mappings, interrupt and exception model). In addition, 
each thread has its own system debug, reset and various boot and exception vectors, and 
memory coherency.

There are multiple types of multithreading implementations in MIPS cores and in the industry. 
The I8500 MPS implements Simultaneous Multithreading, where the core can execute multi-
ple threads in parallel every cycle. In addition, instructions from different threads can execute 
at the same time in the same pipeline stage. This allows for maximum throughput and mini-
mization of idle hardware during execution. The I8500 is a three-issue machine, allowing up 
to three threads to execute in a single pipeline stage. In the I8500, all threads (up to 4) can 
be fetched, decoded, issued, executed, and graduated in parallel. 

17.1 Instruction Flow

The I8500 Instruction Fetch Unit (IFU) fetches instructions from a shared Instruction Cache 
(IC) for all four threads. It fetches two instructions (for a single thread) in a cycle, using a 
program counter (PC) for that thread. This pair of instructions are sent to the Execution Unit 
(EXU). The IFU fetches instructions in a round-robin manner. 

The IFU also manages a shared Instruction TLB (ITLB) structure. The ITLB performs instruc-
tion address translation, allowing complete independence amongst threads. This ITLB is 
backed up by the larger Variable TLB (VTLB) and Fixed TLB (FTLB). 

The translated instructions are passed to the Execution Unit (EXU), which is responsible for 
decoding, issuing, executing and graduating the instructions. In addition, the EXU resolves all 
data and resource conflicts and manages precise exceptions. In the I8500, the instructions 
are issued and graduated in order.

Every cycle, the EXU decodes the top two instructions from each of the (up to) four threads 
to determine which instructions are ready to issue, based on resource availability and data 
dependencies. The EXU then takes that per-thread information from all four threads, and 
selects one thread to issue 2 instructions, and another thread to issue 1 instruction, if avail-
able. This can result in up to three instructions being issued in a single cycle. The selection 
process uses a round-robin scheme to ensure fairness and prevent starvation amongst the 
threads. Instructions can be issued from any of the harts, hence the term Simultaneous Mul-
tithreading (SMT). Note that the I8500 always issues instructions in order.
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Once the instructions are issued, they are executed in one of the functional units. During its 
execution, each instruction is appropriately tagged for thread identification and instruction 
order. This allows the proper instruction order to be maintained at graduation (completion) 
time. If an instruction completes, but an earlier instruction from the same thread has not 
graduated, the completed instruction remains in the graduation queue to maintain in-order 
completion.

17.2 Data Flow

Like the IFU mentioned above, the Load-Store Unit (LSU) manages a shared data cache to 
perform loads and stores for all threads. The LSU also performs a load or a store for a single 
thread in a cycle, but multiple loads and stores from differing threads can be queued up to 
access the data cache.

The LSU processes loads and stores in the order received to maintain cache coherency 
between threads. The data cache is organized as 4-way set associative cache, which elimi-
nates most of the cache conflicts.

The LSU also manages a shared Data TLB (DTLB) structure. The DTLB performs data address 
translation, allowing complete independence amongst threads. The shared DTLB is backed up 
by the larger Variable TLB (VTLB) and Fixed TLB (FTLB). 

The VTLB is a fully associative translation lookaside buffer with 64, 128, or 256 "dual" or 
"two-sectored" entries per core (competitively shared between harts) that can map variable 
page sizes in powers of 4 ranging from 4KB to 256GB. The 512 dual-entry Fixed TLB (FTLB) 
is shared between all harts.

Data stored by one thread does not become visible to other threads until the store instruction 
has graduated and the core has obtained ownership of the associated cache line (for cache-
able accesses). In other words, data stored by one thread becomes visible to other threads in 
the same core at exactly the same point that it becomes visible to other cores in the system.

The I8500 manages allocation of shared resources (such as data buffers) between threads to 
prevent starvation and ensure that all threads can make forward progress.

17.3 Thread Management

Each of the threads operate independently, except to share some common resources. How-
ever, there are times when the processor needs to make sure the system is being accessed in 
a very controlled manner.

17.4 Independent Exception Model

Since each thread has a completely independent exception model, one thread cannot block 
another thread. This independent exception model includes: Synchronous Exceptions (Over-
flow, TLB Miss, etc.), Asynchronous Interrupts (Int, NMI, etc.), Debug Exceptions (DIint), 
and Reset. A thread can be reset to reboot, while the other threads are completely unaf-
fected.
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Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in the document 
since its last release. Change bars are removed for changes that are more than one revision old. 

Revision Date Description

0.50 August 11, 2025 First release of I8500 Programmer’s Reference Guide.
0.75 September 15, 2025 Miscellaneous updates from internal review.
1.00 October 14, 2025 Convert document to GlobalFoundries template.

Added updates from internal review.
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User Defined Instructions (UDI) via CorExtend Interface

The I8500 implements a minimal CorExtend interface intended for stateless arithmetic func-
tions that operate on integer registers and immediate values encoded in the opcode. The 
CorExtend Unit executes the CorExtend™ User-Defined Instructions (UDI). The CorExtend 
capability allows the core’s performance to be tailored for specific applications, while still 
maintaining the benefits of the RISC-V instruction set architecture. 

By extending the instruction set with custom instructions, UDIs can enable significant perfor-
mance improvement in critical algorithms beyond what is achievable with standard MIPS 
RISC-V instructions.

B.1 CorExtend Features

Features of the CorExtend interface include:

• Up to 16 customer-defined instruction opcodes, defined by a configuration input.

• Supports fixed latency, stateless instructions.

• Two 64-bit register sources, one 64-bit register destination.

• Full 32-bit opcode provided to CorExtend interface, so customers can provide 
alternate interpretations of opcode fields.

B.2 CorExtend Usage Model and Restrictions

The usage model for the CorExtend instructions is as follows:

1. The CorExtend block will interface to several units on the core Decode/Issue, WRF, and 
GRU.

2. User-defined instructions may be added by modifying only the UDI module. The user may 
not modify any other module in the core.

3. The CorExtend block is synthesized with the core. The location of the UDI module within 
the RTL hierarchy is mips_core_sam.sam_top.pso.main.exu.corxtnd_wrapper. Thus, 
synthesis of the custom CorExtend block is rolled into the synthesis flow for the rest of 
the core.

4. RTL file for CorExtend block to be replaced by the customer: 
$MIPS_HOME/samurai/user/rtl/corxtnd/sam_exu_corxtnd.v.

5. The opcodes reserved for UDI instructions is given in Decode opcode Section. This allows 
for 16 distinct opcodes that are distinguishable by the Decode.
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6. The core sends the instruction to the UDI in X0 stage, it sends the GPR operands rs1 and 
rs2 in X1 stage. The instruction is sent a cycle before execution, so that the UDI can do 
some basic decode. The instruction is dispatched as soon as the operands become avail-
able.

7. To determine source and destination dependencies for the UDI instruction the core 
assumes RISC-V R-type instruction format (2 source and 1 destination).

8. In order to not create any new bypass networks, the UDI instructions are restricted to 2 
cycle latency. However, the results produced by a UDI instruction will be ready for bypass 
only in the X3 state so the effective latency will be 3 cycles, similar to MUL instructions in 
MDU.

9. The UDI instruction they will use the same write port into the WRF as the MUL pipe.

10.UDI block may be shared by multiple TCs.

11.The destination must be a GPR.

12.The UDI block must be pipelined. The core may send instructions every clock if there is 
no source dependency.The core does not expect the UDI block to save any state between 
instructions (i.e. only stateless instructions are allowed)

13.The execution pipeline of UDI should never be stalled. 

B.3 CorExtend Interface Signals

For more information on the CorExtend interface signals, refer to Appendix E of the I8500 
Integrator’s Guide.

B.4 Implementing a Custom Instruction

If a customer wants to implement a custom instruction they will have to modify this RTL stub 
file:

$MIPS_HOME/samurai/user/rtl/corxtnd/sam_exu_corxtnd.v

Using the provided ports they will have to add functional logic for each custom instruction (up 
to a max of 16 instructions) implemented. The custom instruction opcodes reserved and 
available for functional implementation in corextend are defined in the MIPS RISC-V Internal 
specification.

In particular the following output signal must be reassigned to drive out the result of the 
instructions:

assign corxtnd_gpr_wr_data_x2 = 64'd0;

For Shogun decode logic to be aware of the implemented instruction, the user must modify 
this assignment to drive “1” on each bit position of this 16-bit vector corresponding to an 
implemented instruction (i.e. 16-bits correspond to 16 possible instructions):

assign corxtnd_present_xx = 16'h0000;

For example, if only the seventh custom instruction (of those reserved for corextend) is 
implemented then this assignment will be modified as follows: 

assign corxtnd_present_xx = 16’h0040; // i.e. bit corresponding to eight 
position is set
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The bit position corresponds to the value of 4-bit immediate field of the custom instructions 
reserved for corextend. For the instruction in the example above (seventh instruction) the 
value of the 4-bit immediate field will have to be 0x7.

B.5 CorExtend Instruction

The bit assignments for the CorExtend instruction are shown below.
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Extension Name: xmipscorextend

Extension Number: 1.0

Format: mips.corextend $rd, $rs1, $rs2, imm

Description: The CorExtend instruction extends the base core functionality by performing on of 16 possible 
CorExtend operations, using registers $rs1 and $rs2 as input, and writing the result to integer register $rd. The 
specific CorExtend operation to be carried out is selected by the 4-bit immediate value item, with unsupported 
immediate values raising an illegal instruction exception.

Operation:
if not CONFIG.core_extend & (1 << imm):

raise illegal_instruction_exception(f”CorExtend operation {imm} not supported”)

Exceptions: 
Illegal Instruction: when the imm field of the instruction contains an illegal value.

Restrictions: 
1. Generate an instruction accepted notice in the X1 pipeline stage from CorExtend to ITRKR.
2. Send a result valid for it to be used by the bypass network. This is sent in 3 cycle of the CorExtend operation as 

it is considered a two cycle operation. A flopped version of UDI_gpr_we_stribe_xx. This is used to generate the 
oprnd_dvld given each execution unit.

Encoding: The MSB of the COREXTEND instruction determines whether the instruction is for COREXTEND or 
PREF. The upper 3 bits of the COREXTEND instruction are decoded as follows:

Bits 31:29
0xx = PREF (000/001/010/011)
1xx = COREXTEND (100/101/110/111)

31 29 28 25 24 20 19 15 14 12 11 7 6 2 1 0

100 imm rs2 rs1 000 rd 00010 1 1

COREXTEND  User Defined Core Extension
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