SMIPS

a GlobalFoundries company

18500 Multiprocessing System
Programmer’s Guide

Revision 1.00
October 14, 2025

This document contains information that is proprietary to MIPS, a GlobalFoundries company, and MIPS’ affiliates,
as applicable, (“MIPS”). This document, and any information therein, are protected by patent, copyright, trademarks
and unfair competition laws, among others, and are distributed under a license restricting their use. MIPS has
intellectual property rights, including patents or pending patent applications in the U.S. and in other countries,
relating to the technology embodied in the product that is described in this document. Any distribution release of this
document may include or be accompanied by materials developed by third parties. Any copying, reproducing,
modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS or an
authorized third party is strictly prohibited. Any document provided in source format (i.e., in a modifiable form such
as in FrameMaker or Microsoft Word format) may be subject to separate use and distribution restrictions applicable
to such document. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE
DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION
OF, OR LICENSED FROM, MIPS. MIPS reserves the right to change the information contained in this document to
improve function, design or otherwise.

MIPS does not assume any liability arising out of the application or use of this information, or of any error or omission
in such information. DOCUMENTATION IS PROVIDED “AS IS” AND ANY WARRANTIES, WHETHER EXPRESS,
STATUTORY, IMPLIED OR OTHERWISE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE EXCLUDED,
EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID INACOMPETENT
JURISDICTION. Except as expressly provided in any written license agreement from MIPS or an authorized third
party, the furnishing or distribution of this document does not give recipient any license to any intellectual property
rights, including any patent rights, that cover the information in this document.

Products covered by and information contained this document are controlled by U.S. export control laws and may
be subject to the expert or import laws in other countries. The information contained in this document shall not be
exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any country or
international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Nuclear, missile,
chemical weapons, biological weapons or nuclear maritime end uses, whether direct or indirect, are strictly
prohibited. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained
in this document, the laws of the United States of America shall be the governing law.

U.S Government Rights — Commercial software. Government users are subject to the MIPS standard license
agreement and applicable provisions of the FAR and its supplements.

MIPS, MIPS [, MIPS II, MIPS lll, MIPS IV, MIPS V, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-Based,
MIPSsim, CorExtend, IASim, microMIPS, and SOC-it, are trademarks or registered trademarks of MIPS in the
United States and other countries. All other trademarks referred to herein are the property of their respective
owners.

MIPS Document Number: MD01179

TABLE OF CONTENTS

[0 T=T o7 £ gl I 141 o Yo 11 ') o 12
1.1 18500 System Level BIOCK DIagram.........oo ottt ee e ettt ee ettt ee e e et e ee e naeee e e nsneeee s 12
A O F= Yo T g D T=T o) o] PP UPPPR P 13
1.3 AddItioNal KEY RESOUITESceeiiiiiiiie ettt et e et ee e ettt ee e e e et ee e e e es et ee e e sn e ee e e e enneeeeeeannnees 14
1.4 Harts and Virtual ProCeSSOrS (VPS)oei ittt ettt e ettt e e et e e e et e e e e naeeeeenns 14

Chapter 2: Product Features OVEIVIEWeeeeiieeiremmmmmmmmmesressrsssssssssssesssssssssssssssssssssssesssssssnsssnssssss 15
2.1 18500 COre-LEVEI FEAUIES ... uveiii ittt et et ee e e st ee e s sttt ee e e s sbbeae e e s sbbbeeeessarbeeeaenas 15

2.1.1 18500 Core-Level BIOCK DIagrameeuiiiiiiiieis it s et e sttt e sas e s sne e e e s s e e s s snneee e e s snneneees 17
2.1.2 Simultaneous Multi-Threading (SIMT)coo it e s eneeee s 17
2.1.3 Tandem Control Transfer Unit (CTU)........ooiiiiiieeeiie et e ee e ee e ennnees 17
2.1.4 Integer Multiply / Divide Unit (IMDU)..........ooiiiiiiie ettt et e e e e s s e e e e sneeee e e ennnees 18
2.1.4.7 Integer MUIIDIES ... et e e ettt e e e e e e e e e e e eeeeaae e s 18

2.1.4.2 INTEQEI DIVIAES ...ttt e e e e e e e e ee e e s 18

2.1.5 Floating Point Pipelines (FP Short / FP LONG) ..ccoiiiiiiiiiiiiiee e 18

D IR o T To [oy YN O [o PSSP 18
2.1.7 Bus Interface UNit (BIU)ccoiiuiiiiiiiiiiie ettt e ettt ee e et ee e s e eabe e e e s snnneee e e e enneeeaenas 19

N I B 74 =4 (=1 o T [PPSR 19

2.2 18500 CIUSLEI-LEVEI FEATUIESooe it et e e et ee ettt e e e stteae e e st teee e saeaeeenn 19
2.2.1 18500 System Level BIOCK Diagramcoiiiiiieaiiiieiie et ie et ee ettt ee e s ssie e e e s s e e e s e ssne e e e s snneeeees 19
2.2.2 CM/Cluster and System Level FEAtUrESoooiiiiiiiii e 20
2.2.3 MUlti-Cluster ConfiQUIatioN.ueiiiiiiei et ee e et ee e st ee e e st e e e s s ssseeeeesenneeees 21

P I Y LS IS T VY7 T = I e T RS 22
PG Tt I o 1S OV I T PSSP 22
R B 0701 1] o] L= £ RS RSOP OO PUPRPPR 22

P IR B = T To] o Y= To =T USRI 22

(0 g T=1 o3 1= g N o] 4 11 (= o2 (0] PP 23
3.1 RISC-V Unprivileged Architecture Extensions Implemented by the 18500ccocoiiiiiiiiiiiiii 23
3.2 RISC-V Privileged Architecture Extensions Implemented by the 18500 ... 24
3.3 RISC-V Debug Architecture Extensions Implemented by the 18500ccooviiiiiiiiiiii e 25
3.4 RVOE4I InStruction Set DetaiilS. et e e et r e e e e e e e eeaeaaaas 26

B I T T 1= g =TSP SEPRE 26
3.4.2 mMisa[25:0] EXIENSION BILS.......ooiiiiiiiiii et e e e e e e e e e e e 26
I I 4 =Y < [o O EEPRUR 26
3.4.2.2 F @Nd D EXEENSION ..ottt et e e e e e ettt e e e e e e e e ea e e e e e teeeeeaaeeae e annnns 26
B A T Yl = (=Y 13 o o SO 27
3.4.4 Zihintpause and Zawrs EXIENSIONSuiiiiiiiiieai et ee e e e e e e et eraeaae e e e 27
3.4.5 ZINININ EXEENSION ... ettt et e e ettt e e e e e e e e e s e et s e eeaeeaeae e aan 27
B G A B = ¢ (=Y 1= (o) o PSR 27
B A4 = = (=]] T PRSI 27
IC T S 74 Tt o Yo o o TN b q (=Y o 1<) o 1P 27
B IS A T o Yo o BN b q 1= g < (o) o 1 USSR 28
G g O A T o T Al =5 1=] T o PP 28
3411 SVPDME EXEENSION ...ttt e et r e e e e e e e e e neeeeeeaeea e e 28
g 2 = 4[] 1 = SO 29
3.4.13 SVINVAl EXIENSION ..ottt ettt e e e e e e e e e e et teeeeeeae e e e ea e ennerennnaeaeeeans 29
3.5 OPEratiNg IMOESeei ittt et b et e e eh bt e e oo eh et ee e e eb b bt e e e e e ab b e ee e e s ab b e e e e s arbeee e e 29

Chapter 4: Memory Management UNit e e e e s e s e e s e s s s e e e e e e e s e e e e e eeeeeeees 30

AT OVEIVIBW......eeteeieiett et et et et e e et e e e et e ettt ettt ettt e e e e e eeeeeeeeeaeeeeeeeeeaeae s bebe et at et st st et e e e e eaeaeaeaeaeaeees 30

g I I I oSSR 31
4.1.1.1 ITLB @nd DTLB OVEIVIEWcueiieiiiii ittt ettt et stee e e ee e sne e e s eee e snte e s e nneeenneas 31
g I I I I o 11T = o o YU 32
g g I [a1 £ (U o 1 o o T 0 RSOSSN 32
g g I - - T I USSR 32

TABLE OF CONTENTS

o B R I =TT o) [T I SRR 32

o I I =T T I TSSO PP 33

g o I = 1= {1 o 1 o TSRS 33
4.1.3 Shared FTLB Translationsu it ee e e e e e e et eree e e e e e en e e nnnenne e eeeees 33
4.1.4 Global TLB INVAIAALE.........ueeieiiciiiiie ettt e e et ee e e e er e e e s esaeeae e s e esae e e asasnnneeas 34

L0 4 T= 1 o1 =T g 0= Ve o 1= 35
5.1 Cache Subsystem Overview and Configurationscccooiiiiiiiiiiiie e ae e 35
5.1.1 L1 INSIIUCHON CACNE ...ttt ettt e sttt e e s s ebb e e e s sbbbeee e e e arbeeeaaa 36
5.1.1.1 Level 1 Instruction Cache Error DeteCtioncccouiiiiiiiiiiie e 37

5.1.1.2 L1 Instruction Cache Organizationcoiiiiiiiiiiiiiie et ee e e e e 37

5.1.1.3 L1 InStruction Cache ErTOr TYPESuuiiiiiiii ittt e e e e e e e st be e aeaae e s s anns 37

5.1.1.4 L1 Instruction Cache Replacement POLICYcccuiriiiiiiiieii e 37

5.1.1.5 L1 Instruction Cache Coherency Managementccoviiiiiiiiiiiiiiiiie e e 38

5.1.1.6 MCACHE INStruCtion USAQEuuuuiiiiiiiiie ittt e e et re e e e ae e e e 38

5.1.1.7 FENCE.I INStruCtion USAQJEuvuiiiiiiiiiii ettt ee e e e e e et aeaaaeeeeeesans 39

oI 2 B I B T - T 0 T o T PSRRI 39
5.1.3 Level 1 Data Cache Error Checking and Correction (ECC)..........cooiiiiiiiiiiiiiieie e 42
5.1.3.1 L1 Data Cache Organizationc.eieiiioiiiiiiiiiie e ettt ee e e e e e st be e e e e ae e s e aans 42

5.1.3.2 L1 Data Cache Load/Store OPerationsccoccuviiiiiiieiie et ee e e 42

5.1.3.3 L1 Data Cache ErTOr TYPESuuiiiiiiiiieiieee e sttt ee e e e e e e ettt e e e eeae e e s e s sn s besaeaeaeaaeee s anns 42

5.1.3.4 Store Operations Less than 32-bifSccoiiiiiiiiiie e 42

5.1.3.5 Examples of L1 Data Cache ECC EITOIScccciuiiiiiiiiie ettt ee e e e e e 43

5.1.4 L1 Data Cache Replacement POIICYuuuiiiiiiiiiiiii it e e e e e e 43
5.1.5 L1 Data Cache Memory Coherence ProtOCOlcccoiuiiiiiiieiie ettt ee e 44
5.1.6 Load/Store BONINGccooiiiiiiieie ettt e e e e e e e e e e e aeae e e e e e e e arnaaaeaaas 44

T A I - T o = PRI 45
5.1.8 L2 Cache General FEAUIES.........uiiiiiiiiiiie ettt ee et ee e e st ee e s ee e e e s anneeee s 45
5.1.9 Overview Of the AXI INTEITACEoooiiiiiiie e et ee e ee e e enaeeee s 46
5.1.9.1 AXI CRANNEIScoii ettt ettt e e ettt e e e et ee e e eh et ee e e ea st ee e e e esbeeeeeeannnees 46

5.1.9.2 REAA OPEIatiONSuieiiiiieiiiieie et ettt e ettt e e e e e e e e s e e ettt eeeeeae e e e e e e r e aaaeaaeas 47

5.1.9.3 WIHtE OPEIAtIONSuuiiiiiiieeie ettt e e e et e e e e e e ee e et eeeeaeeeeesee s sassanaeaeeeeeeaeeaans 47

5.1.9.4 AXI MemOry BUS OrAEIING........ccioiiiiiiiiiiiie ittt e ettt e e e e e e e e et ee e e e e e e e e e s e sabbesbeaeaeaee s 47

5.1.10 L2 CaChe OPEIAtIONSuuviiiiiieiie e ee e ettt ee e e e e e et et e e eeeeeee e eas e aeeeaeeaeee e sassnsseaeeaeaeeeaenan 47
LT I B B 0= Tod 1= £ S F i o) o R 48

5.2 Cache CoherenCy AIDULEScoc et s e e e e e e e e e s e s b reaeaeaaeas 51
5.3 Directory Based L1 Cache CONEIENCEcciiiiiiiieee ettt e e e e e e e e be e eeaae s 52
5.3.1 L1 Data Cache CONEIENCE.uiiiii ittt ettt e e s ee e s ee e e annnsee s 52
5.3.2 L1 Instruction Cache CONEIENCE.ooiiiiiiiiii et e e e e 52

5.4 L2 Cache Initialization OPtiONSuiiiiii it e e e e e e e ee e e e e s e s sassae e eeeaeeeaeeanns 53
5.4.1 Automatic Hardware Cache Initializationc.ooeiiiiiiiiiiii e 53
5.4.2 Manual Hardware Cache INitialization..............ooiiiiiiiiiiiii e 53

5.5 L2 Cache Flush, BUrst, and ADOIoo et ee et ee e e ee e s enneeee e e e 54
oI TRt I I =T g L= U o SRR 54
5.5.2 L2 Cache BUrSt OPEratioNS........ccciiiiiiiiiiiiiiie ettt e e e e e e sttt ae e e ae e s e e e s tatbesbeaeaeaaeesaaaanns 54
Chapter 6: Control and Status RegisSters (CSR)eeuiiemiimmmimmmimrereire s ser e s e e s s s e s s e e s e s e ee e eeeeesees 56
6.1 User FIoating-Point REGISTEIS. ...t e e e e e e e e e e e e e eeeas 61
6.1.1 Floating-Point Accrued Exception Register — offset 0X001ccoviuiiieeiiiiiie e 61
6.1.2 Floating-Point Dynamic Rounding Mode Register — offset 0X002...........ccocoiieiiiiiiieeiiieie e 62
6.1.3 Floating-Point Control and Status Register — offset OX003............ccooiiiiiiiiiie e 62

6.2 SUupervisor Trap SEtUP REGISTEIScciiiiiiiie it e e st e e e st be e e e e e eb e e e e e 63
6.2.1 Supervisor Status (SSTATUS) — OffSet OXT00.......cuiiiiiiiiieii e 63
6.2.2 Supervisor Interrupt Enable (SIE) — OffSet OXT04cuiiiiiiiiiiie e 64
6.2.3 Supervisor Trap Handler Base Address (STVEC) — offset OX105.........coooiiiiieiiiiiiieeieee e 65

6.3 Supervisor Counter/TIMeEr REGISTEISuiiii ittt a e et e e e e 65

TABLE OF CONTENTS

6.3.1 Supervisor Counter Enable (SCOUNTEREN) — offset OX106coooviiiiiiiiiiiiee e 65
6.3.2 Supervisor Environment Configuration (SENVCFG) — offset OXTOA ... 66
6.3.3 Supervisor State Enable[0-3] (SSTATEN) — offset OXx10C/10D/10E/10Fcooeiiiiiiiiiiieeeeeeeee 66
6.3.4 Supervisor TIme Compare (STIMECMP) — offset OXT4Dooiiiiiiiiiiiiiie e 67
6.3.5 Supervisor Counter Overflow (SCOUNTOVF) — offset OXDAOD........ccvmiiiiriieeeeie e e 67
6.4 Supervisor Trap Handler REGISEIS ... i 67
6.4.1 Supervisor Trap Handler Scratch (SSCRATCH) — offset OX140c..vvviiiiiiieie e 67
6.4.2 Supervisor Exception Program Counter (SEPC) — offset OX141 ... 68
6.4.3 Supervisor Trap Cause (SCAUSE) — OffS€t OXT42.... ... ee e 68
6.4.4 Supervisor Bad Address or Instruction (STVAL) — offset OX143........coooiiiiiiiiecee e 69
6.4.5 Supervisor Interrupt Pending (SIP) — OffSet OX144 ... e 70
6.5 Supervisor Protection and Translation REGISErscooi i 71
6.5.1 Supervisor Address Translation and Protection (SATP) — offset OX180...........oocoeiiiiiiiieiniiieeee 71
6.6 Virtual SUPErVISOr REGISTEISooi ittt ettt ettt e e et e e e eeeae e e e naeeeeeans 71
6.6.1 Virtual Supervisor Status (VSSTATUS) — 0ffset OX200cueiiiiieeeeriiieieee e 71
6.6.2 Virtual Supervisor Interrupt Enable (VSIE) — offset O0X204ooooiiiiiiiiie e 72
6.6.3 Virtual Supervisor Trap Handler Base Address (VSTVEC) — offset Ox205cccccevviiieeiiiiiinneee 73
6.6.4 Virtual Supervisor Trap Handler Scratch (VSSCRATCH) — offset OX240..........ccccceiviiiiiiiiiiiieeeene 74
6.6.5 Virtual Supervisor Exception Program Counter (VSEPC) — offset 0x241..........cccoiiiiiiiiiieeee 74
6.6.6 Virtual Supervisor Trap Cause (VSCAUSE) — offset OX242coooiiiiiiiiiiiieeeee e 74
6.6.7 Virtual Supervisor Bad Address of Instruction (VSTVAL) — offset Ox243ccocoiiiiiiiiiieeee 75
6.6.8 Virtual Supervisor Interrupt Pending (VSIP) — offset 0X244 ... 76
6.6.9 Virtual Supervisor TIme Compare (VSTIMECMP) — offset OX24Dccooiieeeiiiiiiiieiiee e 77
6.6.10 Virtual Supervisor Address Translation and Protection (VSATP) — offset 0x280cccccovueeee. 77
6.7 Machine Trap SetUP REGISTEISuuiiiii et b e 78
6.7.1 Machine Status (MSTATUS) — 0ffset OX300.......cueeiiiiieiieie ettt e e eeseeeeeeee 78
6.7.2 Machine ISA and Extensions (MISA) — offset OX307uieiiiiiiiie e 79
6.7.3 Machine Exception Delegation (MEDELEG) — offset 0X302ccoouiiiriiiiiiie e 80
6.7.4 Master Interrupt Delegation (MIDELEG) — offset OX303 ..o 81
6.7.5 Machine Interrupt Enable (MIE) — offSet OX304ooiiiiiiiiii s 82
6.7.6 Machine Trap Vector Base Address (MTVEC) — offset OX305cc.eevviiiiiiiiiiee e 83
6.7.7 Machine Counter Enable (MCOUNTEREN) — offset 0X306c.cooriiiiiireiiiin e 84
6.7.8 Machine Environment Configuration (MENVCFG) — offset OX30A ..., 85
6.7.9 Machine State Enable[0] (MSTATEN) — offset OX30C........ccccuuriiiiieeiiie et 85
6.7.10 Machine State Enable[1-3] (MSTATEEN) — offset 0X30D/30E/30Fcoiiiiiiiieiieie e 86
6.8 Machine Counter SetUp REGISIEIS.oeiii e e e e 86
6.8.1 Machine Counter Inhibit (MCOUNTINHIBIT) — offset 0X320cccoiiiiiiiiiiiie e 86
6.8.2 Machine Performance Monitor Event Select (MHPMEVENT([3-6]) — offset 0x323/0x324/0x325/0x326
87
6.9 Machine Trap HandliNg REGISIEISooiiiiiiiii ettt e e ee e e 87
6.9.1 Machine Scratch (MSCRATCH) — offset OX340ooiiiiiiiiiiiiiee e 87
6.9.2 Machine Exception Program Counter (MEPC) — offset OX341 ..o 88
6.9.3 Machine Trap Cause (MCAUSE) — OffSet OX342.... ..o ae e 88
6.9.4 Machine Bad Address or Instruction (MTVAL) — offset 0X343.........c.coeiiiiiiiiiiiiiiieeee e 89
6.9.5 Machine Interrupt Pending (MIP) — OffSet OX344cooiiiiiiii e 90
6.9.6 Machine Trap Instruction (MTINST) — OffSEt OX34A 91
6.9.7 Machine Bad Guest Physical Address (MTVAL2) — offset OX34B ..., 92
6.10 Machine Memory Protection RegISIErS.oooi i e 92
6.10.1 Physical Memory Protection Configuration 0 Register (PMPCFGO0) — offset = Ox3A0 92
6.10.2 Physical Memory Protection Configuration 2 Register (PMPCFG2) — offset = Ox3A2 93
6.10.3 Physical Memory Protection Address Registers (PMPADDRO - PMPADDR15) — offset = 0x3BO0 -
0] = SR 94
6.11 Hypervisor Trap Setup REGISTEIScooi i e 95
6.11.1 Hypervisor Status (HSTATUS) — offSet OX600ccueimiiieeiieee e ee e e 95
6.11.2 Hypervisor Exception Delegation (HEDELEG) — offset OXB602ceeuveeveeiieeiiiiieiieiree e 96
6.11.3 Hypervisor Interrupt Delegation (HIDELEG) — offset OXB03cooeiiieiiiiiriiee e 97

TABLE OF CONTENTS

6.11.4 Hypervisor Interrupt Enable (HIE) — OffSet OXT04 ..o 98
6.11.5 Hypervisor Counter Enable (HCOUNTEREN) — offset OX606ccccuviiiiieieeeee e 98
6.11.6 Hypervisor Guest External Interrupt (HGEIE) — offset OX607uoeviiiiiieriiiiiiee e 99
6.11.7 Hypervisor Environment Configuration (HENVCFG) — offset OXB0A...........ccooiiiiiiiiiiiecc e, 99
6.11.8 Hypervisor State Enable[0] (HSTATEN) — offset OX60Cccoiiiieiiee e 100
6.11.9 Hypervisor State Enable[1-3] (SSTATEN) — offset 0X60D/60E/BOFcccceereeeiiiieeeeeeeens 100
6.12 Hypervisor Trap Handler REGISIEIS ..ot e e s s 101
6.12.1 Hypervisor Bad Address of Instruction (HTVAL) — offset OX643..........cccccoeiiiiiiiiiiiiiie e 101
6.12.2 Hypervisor Interrupt Pending (HIP) — OffSet OXB44............ooiiiiiiiiiiae e 101
6.12.3 Hypervisor Virtual Interrupt Pending (HVIP) — offset OX645 ... 102
6.12.4 Hypervisor Trap Instruction (HTINST) — Offset OXB4Aoermeiiieeeeeee e 103
6.12.5 Hypervisor Guest External Interrupt Pending (HGEIP) — offset OXE12cccooiiiiieeiiiiieienenen 103
6.13 Hypervisor Counter/Timer Virtualization ReGISIErS.cuvviiiiiiiiiiii e 104
6.13.1 Hypervisor Delta for VS/VU Mode Timer (HTIMEDELTA) — offset 0x605cccccoovviieeernnnen 104
6.14 Hypervisor Protection and Translation REGISTErSuviiiiiiioii i 104
6.14.1 Hypervisor Address Translation and Protection (HGATP) — offset OX680...........cccceevviieeeennneen. 104
6.15 Machine Counter/Timer REGISIEISco i e e n 105
6.15.1 Machine Cycle Counter Register (MCYCLE) — offset OXBOOcuueeiiiiiiiiiiiieeee e 105
6.15.2 Machine Instruction-Retired Counter (MINSTRET) — offset OXBO2...........ccevieiiiiiiiiiiie e 105
6.15.3 Machine Performance Monitor Counter[3-6] (MHPMCOUNTER[3-6] — offset 0xB03/B04/B05/B06 .
105
6.16 Machine Information and Identification RegISters.............oooiiiiiiiiii e 106
6.16.1 Machine Vendor ID Register (MVENDORID) — offset = OXF11 ..o 106
6.16.2 Machine Architecture ID Register (MarchlD) — offset = OXF12......ocuuieiiiiii e 106
6.16.3 Machine Implementation ID Register (mimpid) — offset = OXF13ccccoi i 106
6.16.4 Machine Hart ID Register (mhartiD) — OXF14oooiie e 107
6.16.5 Machine Configuration Pointer Register (mconfigptr) — OXF 5. 108
6.17 User Counter/Timer REGISIEISottt ae s 108
6.17.1 Cycle Register (UCYCLE) — offset OXCO0ccoiiuuiiiiiiiiieie et 108
6.17.2 Read Time Register (RDTIME) — 0ffset OXCOTouiiiiiiiiie e 109
6.17.3 User Instruction-Retired Counter (UINSTRET) — offset OXCO2ccceeiiiiiiiiiiiiiie e 109
6.17.4 User Performance-Monitor Counter[3-6] (HPMCOUNTER[3-6]) — offset 0xC03/C04/C05/C06.. 109
6.18 MIPS Custom Control and Status ReGIStersoooiiiiiiiiii e 110
6.18.1 MIPS Trap Vector Base Address Register (mipstvec) — offset = OX7COccceoviiieeiiiieeeecnn 110
6.18.2 MIPS Cache Error Register (mipscacheerr) — offset = OX7C5.........cccooiiiiiiiiiiiiie e 111
6.18.3 MIPS Error Control Register (mipserrctrl) — offset = OX7C06cooiiiiiiiiiiiiee e 113
6.18.4 MIPS Diagnostic Data Register (mipsdiagdata) — offset = OX7C8cccoiiiiiiiiiiiiiie e 114
6.18.5 MIPS Buffer Cache Configuration Register (mipsbcconfig) — offset = OX7C9ccooviiiiennn 114
6.18.6 MIPS Buffer Cache Active Segment Register (mipsbcactvseg) — offset = OX7CAccc. 115
6.18.7 MIPS Interrupt Control Register (mipsintctl) — offset = OX7CBcooiiiiiiiiiiie e 116
6.18.8 MIPS DSPRAM Base Register (mipsdsprambase) — offset = OX7CCcccoeeviiiiiiiniiiiieeee 117
6.18.9 MIPS ISPRAM Base Register (mipsisprambase) — offset = OX7CDcccooeviiiiiin i 117
6.18.10 MIPS Configuration 1 Register (mipsconfig1) — offset = OX7D 1ooiiiiiiiiiiie e 118
6.18.11 MIPS Configuration 4 Register (mipsconfigd) — offset = OX7D4cooviiiiiiiiiiiiie e 119
6.18.12 MIPS Configuration 5 Register (mipsconfigd) — offset = OX7D5cooviiiiiiiiiiiii 120
6.18.13 MIPS Configuration 6 Register (mipsconfig6) — offset = OX7D6coovieiiiiiiiiiiieiieeee 121
6.18.14 MIPS Configuration 7 Register (mipsconfig7) — offset = OX7D7ooeiiiiiiiiiiiiiee e 121
6.18.15 MIPS Wait For Event Register (mipswfe) — offset = OX800ccuueeieiiiiiiiiiiiie e 124
6.18.16 PMA Configuration REGISTEIScoiiiiiiie et e e 125
6.18.17 PMA Configuration 0 Register (PMACFGO) — offset = OX7EODcccuviriiiiiiiieiieee e 125
6.18.18 PMA Configuration 2 Register (PMACFG2) — offset = OX7TE2.......cccooeiiiiiiiiiie e 126
6.19 Debug Control and Status Register — offset = OX7BO0ccueiiiiiiiiiii e 127
Chapter 7: Exceptions and INterrupts.........oeeeeeeemmmmmmmmmmmmmmerremerrerseresersserseesesesseesesssessssesessseseeeseens 130
A = (o= o 1o T OFoTa Lo [} o) o [T PSTPRPRP 130
7.2 Selecting the EXCEPHION AGAIESSuiiiiieiieie et e e e e e e ee e et eaeeeeaeee s e s snsaeeneaeaee s 131

vi

TABLE OF CONTENTS

Chapter 8: Coherence Manager...........cccouiiiiiiiiiiinr s 132
S OV @ AT 1= PRSP 132
S I I oo (=R @ o 1= - 1T o PRSP 132
8.1.1.1 IOCU CONEIENCE ...ttt ettt ettt e et e e e b e ee e b beee e e e snbeeee e nneee 133

8.1.1.2 CUSIOM INSIIUCTIONS ...ttt ee e et e e e et ee e e e eneae e e e enneees 133

8.1.1.3 MUII-CIUSEEr MOTEeeeiiiee ettt ettt e et e et e st eeennte e seeeeeneeas 133

8.1.1.4 External GCR SIAVE ACCESSueeiiii ittt ettt et e et e e e e e 133

8.1.2 CM Interface — Register Ring Bus and DevViCe ID’S..........ueuiiiiiiiiiia et 133
8.1.3 ClUSTEr 10 ClUSIEI ACCESSESuieiieii ettt ettt ettt ettt e et e e et e e e e e e ee e enneee s 136

8.2 Verifying Overall System Configurationoouiiiiiiiiiii et ee e 137
8.3 Programming the Base Addresses in MEMOIYcoouiiiiiiiiiie e 138
8.3.1 CM GCR RegiSter INTEITACEeeiiiiiii it s 138

8.4 CM Register ACCESS PErMISSIONSooiiiiiiiiiii ettt e e e e ae e e enneaeee e 138
8.4.1 ENabling ACCESS PEIMISSIONSciiiiiiiiiiiii ittt et e e e e anneee e s 138

8.5 CONEIrENCY ENGDIEottt e ettt e e e et e e e e te e e e eneaeeeeanne 138
8.6 L2 CaChe PrefetCh........ ittt ettt e et e et e e et ee e ee s 138
8.6.1 PrefetCh ENADIE. ittt e e e e 139
8.6.2 Select Ports for L2 PrefetChingoo it 139
8.6.3 Enabling Code PrefetCht 139

8.7 CM Uncached Semaphore ManagemeEntcoouuiiii ittt e et ee e e e e e s nneee s 139
8.8 Custom GCR IMPIEMENTALION.......ccoiiiiiii ittt et e e et e e s eeae e s 140
R I =l o il o (o Tt TT oo RO 141
8.10 1/O Coherence UNit (IOCU)ooi ittt ee ettt e et ee e et ee e e nsaeeeeaeanneeeean 143
8.10.1 TOCU FRATUMNES ...ttt ettt e ettt e e e e ettt e e e en et e e e et b ee e e e enneteeeeennnees 143

S O I0Z [© 1@ U I 0o oo PSPPSRI 143
8.11 MMIO AdAreSS REGIONScoiiiiee ettt ettt ettt e e ettt ee e ettt e e s s bttt ee e e ase e ee e s anseee e e assaneeaasanneeeeas 144
8.11.1 CM GPR RegiSter INtErfacecooiiiiiiii ittt e 144
8.11.2 MMIO REGION CONTION ...ttt et e s et e e e et be e e e e b beeee e eeee 145
8.12 AUXIHAIY INTEITACES ... ettt ettt e ea e et te e e ennnae e s 145
TR B =ty o Tl o (oYt oYX o o ORI 146
8.13.1 Error Codes 1 and 3 — Tag ECC EITOruiiiiiee et 148
8.13.1.1 Command Group Field ENCOAINGccouuiiiiiiiie et 150

S e T 2 O 0 N 1 Fo B = Voo {13 T SRR 154
8.13.1.3 Type Field ENCOTINGccii ittt ettt et et e e et e e e e e 154

8.13.2 Error Codes 1 and 3 — Data ECC EFTOr........ooi ittt 155
8.13.3 Error Code 2 — Request DECOTE EITONooiiiiiieiie et 157
8.13.4 Error Code 4 — Parity EITOrooi ittt ettt e e e ene e s 159
8.13.5 Error Code 5 — Fetch and LOCK EFTOruuiiiiiei et 160
8.13.6 Error Codes 6, 7, 8 — Bus Interface Unit (BIU) EITOrSoouvieiiiiiiiiiiiiiee e 161
8.13.7 Error Code 10 — RING BUS EFTOT ...ttt 163
8.13.8 Error Code 11 — [OCU REQUESE EITON.........uuiiiiiieiie ettt 165
8.13.9 Error Code 12 — [OCU Parity EFTOr........coi ittt ettt 166
8.13.10 Error Code 13 — [IOCU RESPONSE ENTON......coiiiiiiiiiiiiiie ettt 166
8.13.11 Error Code 15 — RBI REGTC Bus ReqUESt ErrOr..........ouviiiiiiiiii e 167
8.14 CMS3 General Control REGISTEISoiiiiiiiiiiie ettt et e e e s ee e e eanne e ee e 168
8.14.1 ACCESSING the GRSttt ettt ettt ettt e et e e e et e e e enn e e e e ennneees 168
8.14.2 Controlling the GRS ... ittt et e e e e et e e e ee e e e e eneees 169
8.14.3 CM3 GCR GroUP OffSEES ..o cuuiiiiiiii ettt ettt e et e et tee e s et eeenteeasnsaeeanneeaaaseeeeneeeans 169
8.14.4 GCR GlODal REGISIEIS. ... eeiiiiiiiieii ettt et e e e e et te e e e ee e e e e eneees 169
8.14.4.1 Global Config Register (GCR_CONFIG): Offset 0X0000..........cccueeeieiiireie i 172
8.14.4.2 GCR Base Register (GCR_BASE): Offset OX0008...........ccooiiiiiiieiiiiie e 172
8.14.4.3 Global CM3 Control Register (GCR_CONTROL): Offset 0X0010cccceeviiiiieeiiiieeeee 173
8.14.4.4 GCR Revision Register (GCR_REV): Offset 0X0030ccooiiiiiiieeeiiieeee e 177
8.14.4.5 GCR Error Control Register (GCR_REV): Offset 0X0038ccceeiiiiiiiieeiiiieee e 177
8.14.4.6 Global CM3 Error Mask Register (GCR_ERR_MASK): Offset 0X0040cccceevvieeeeennnee. 178
8.14.4.7 Global CM3 Error Cause Register (GCR_ERR_CAUSE): Offset 0x0048ccccceevnneee. 178

vii

TABLE OF CONTENTS

8.14.4.8 Global CM3 Error Address Register (GCR_ERR_ADDR): Offset 0X0050ccccceerenneee 179
8.14.4.9 Global CM3 Error Multiple Register (GCR_ERR_MULT): Offset 0x0058.............cccceeerneee 179
8.14.4.10 GCR Custom Status Register (GCR_CUSTOM_STATUS): Offset 0x0068....................... 180
8.14.4.11 GCR AIA Status Register (GCR_AIA_STATUS): Offset 0X00DO0..........cccovceeeeiirerriieanenn. 180
8.14.4.12 Cache Revision Register (GCR_CACHE_REV): Offset OX00EOQ.........ccccccvvvieeeeiiieeeeenne 181
8.14.4.13 GCR Cluster Power Controller Status Register (GCR_CPC_STATUS): Offset 0x00FO0 ... 181
8.14.4.14 Global CSR Address Privilege Register (GCR_ACCESS): Offset 0x0120...........ccccceenneee. 182
8.14.4.15 GCR L2 Configuration Register (GCR_L2_CONFIG): Offset 0X0130cccceecverrvreennenn. 183
8.14.4.16 System SDB Configuration Register (GCR_SDB_CONFIG): Offset 0x00160 184
8.14.4.17 IOCU Revision Register (GCR_IOCU_REV): Offset 0X0200ccceeiieeeiieeriiieeeeeeee 185
8.14.4.18 DBU Revision Register (GCR_DBU_REV): Offset 0X0208cccceiiireiniieeiieeereeee e 185
8.14.4.19 AlA Revision Register (GCR_AIA_REV): Offset 0X0210........ccooieiiiiiiiie e 186
8.14.4.20 L2 RAM Configuration Register (GCR_L2_RAM_CONFIG): Offset 0x0240 186
8.14.4.21 Scratch0 Register (GCR_SCRATCHO): Offset 0X0280ccceviiiieiiirieciie e e 188
8.14.4.22 Scratch1 Register (GCR_SCRATCH1): Offset 0X0288ccceviiieiiis e 188
8.14.4.23 L2 Prefetch Control Register (GCR_L2_PFT_CONTROL): Offset 0x0300cccueen..e. 188
8.14.4.24 L2 Prefetch Control Register 2 (GCR_L2_PFT_CONTROL_B): Offset 0x0308................ 189
8.14.4.25 L2 Tag RAM Cache Op Address Register (GCR_L2_TAG_ADDR): Offset 0x0600 190
8.14.4.26 L2 Tag RAM Cache Op State Register (GCR_L2_TAG_STATE): Offset 0x0608............. 190
8.14.4.27 L2 Data RAM Cache Op Register (GCR_L2_DATA): Offset 0X0610cccoeerirerenernnnee 191
8.14.4.28 L2 Tag and Data ECC Cache Op Register (GCR_L2_ECC): Offset 0x0618 191
8.14.4.29 L2 Cache Op State Machine Control Register (GCR_L2SM_COP): Offset 0x0620 192
8.14.4.30 L2 Cache Op State Machine Tag Address Register (GCR_L2SM_TAG_ADDR_COP): Offset
OXOB2B.......eeeeee ettt ettt e e et e e e e et ee e e e e e e e e eaa—e—eee et a—aeaeeaae—eeee e aaeaeeeeaaaeaeeaeananeaeeeeenanaeeeeanaeees 193
8.14.4.31 Global CM3 Semaphore Register (GCR_SEM): Offset 0X0640cccccvvveeiiiiieeennn, 194
8.14.4.32 Global CM3 Timeout Timer Limit Register (GCR_TIMEOUT_TIMER_LIMIT): Offset 0x0650

195
8.14.4.33 MMIO Request Limit Register (GCR_MMIO_REQ_LIMIT): Offset 0x06F8....................... 195
8.14.4.34 Lower Bound of MMIO [0-3] Registers (GCR_MMIO[0-3] BOTTOM): See table below... 196
8.14.4.35 Upper Bound of MMIO [0-7] Registers (GCR_MMIO[0-7]_TOP): See table below........... 198
8.14.4.36 CM3 Performance Counter Control Register (GCR_DB_PC_CTL): Offset 0x0900........... 198
8.14.4.37 CM3 Performance Overflow Status Register (GCR_DB_PC_0V): Offset 0x0920............ 200
8.14.4.38 CM3 Performance Overflow Event Select Register (GCR_DB_PC_EVENT): Offset 0x0930.

201
8.14.4.39 CM3 Performance Cycle Counter Register (GCR_DB_PC_CYCL): Offset 0x0980.......... 201
8.14.4.40 CM3 Performance PO Qualifier Register (GCR_DB_PC_QUALO): Offset 0x0990............ 201
8.14.4.41 CM3 Performance Counter PO Register (GCR_DB_PC_CNTO): Offset 0x0998............... 202
8.14.4.42 CM3 Performance P1 Qualifier Register (GCR_DB_PC_QUAL1): Offset Ox09AO0 202
8.14.4.43 CM3 Performance Counter P1 Register (GCR_DB_PC_CNTO0): Offset 0x09A8 203
8.14.5 GCR COre REJISIEISttt e e e a et e e s e eh et e e e e eae e e e e e enneee e e e ennnees 203
8.14.5.1 Reset Exception Base Registers (GCR_C[a]H[b] RESET_BASE): Offset; see Table 8.72.

205
8.14.5.2 Core[a] Coherence Enable Registers (GCR_C[a]_COH_EN): Offset; see Table 8.72. 206
Chapter 9: Power Management ... s s s s s 207
S IO AT T PSSR PRRRTPSSIN 208
O.1.1 POWET DOMAINS ...ttt et e e e e e e h bt ettt e e e e e e e e b s e e eeeee e e e s 208
S 2 @1 o Tor 1 I To) o 1 =1 o PSPPI 209
9.1.3 Core and IOCU SEIECHON.c.ueeiiii ittt ettt et e e e et ee e e e anne e e e e annseee s 209
9.1.4 OVErVIEW Of POWET STAIES ... ittt et ee s ee e e e et ee e e anneeee s 209
9.2 RESEE CONIION. ... ettt ettt e e oottt e e e ekttt ee e e e ettt e ee e e et b beee e s s sbbeeeeeeannbeeeeaas 210
S IR [aTo [V (o [0 E= 1 I @ [Yo QL €= 1T TSP SPRRR 211
9.4 Global Control BIOCK REGISIEN MAPcciiiiii ittt e ee e e e e e e e e reaeeaeae e s 211
ST o o= @70] o1 140] I =] oo & PSPPSRI 213
9.6 CPC Register ProgramiMingc...uueiieiiieiee ettt e e e et e et e e e e e e s ee s et an e e eeeaeeeee s e ssabaebeeaeaeaees 214
9.6.1 Cluster Power Controller Register AdAress Mapcccvvuiiiiiiieie et 214

TABLE OF CONTENTS

9.6.2 Global Control BIoCk RegiSter Mapccoiiiiiiiiiiiiiie ettt 214
9.6.3 Requestor ACCeSS t0 CPC REGISIEISceiiiiiiiiie e 214
9.6.3.1 ReGIStEr INErfaCEoeeiiiieiiei et 214
9.6.4 Enabling CoNErent MOGEc.ueeiiiiiiii ettt eanae s 215
9.6.5 MaStEr ClIOCK PreSCAIETueeeieiieee ettt e e e e e e e e e e eeee e e e e s s e s e e eeeeeae e s 215
9.6.6 Individual Device Clock Ratio MOdIfiCationcoooi oo 216
9.6.6.1 Clock Domain Change Example — Register Programming Sequence............ccccoecceeernnneen. 216
9.6.6.2 CIOCK Change DEIAYcouuuiiiiie ittt ettt et e b ee e e 218
9.6.7 CM Standalone POWEIUDcoiuueeiiiiieiieie ittt ettt e e et e e e nnneee s 218
9.6.7.1 ReGIStEr INErTACEeeiiiiieiee et 218
9.6.8 RESEE DEIECHION.cei ettt e e et e e ee e e e e e ee e e e e et n e aeeaeee e s 218
9.6.9 VP RUNISUSPENG. ..ottt ettt ettt e ettt e ettt e e ettt ee e b e e e e e nnbeee e nneeee s 219
9.6.10 Local RAM Deep Sleep / Shutdown and Wakeup Delayccooueeiiiiiiiiiiiiiiiee 220
9.6.10.1 RAM DeEEP SIEEP MOUEoiiiiieiiit ettt e eeee 220
9.6.10.2 RAM Shut DOWN MOGEeoiiiiiiiiie ettt e e et ae e e ae e e e s ae e e e ennnae e e e ennnees 220
9.6.11 Accessing the CPC Registers in Another Power Domaincocvviiiiiiiin e 221
9.6.12 Fine Tuning Internal and External Signal Delayscooiiiiiiiiiiiiiii e 221
9.6.12.1 Global Sequence Delay COUNLco.uiiii e e 221
9.6.12.2 RaAII DEIAYuveeeiiiieieiie ettt ettt e et e e e e et e et a et b be e e e e rbe e e e e rens 221
9.6.12.3 RESEEDIAYceeiiieieeie ettt ettt et e e 222
Chapter 10: Interrupt CONrOlIEr......... . e reeeeeeeeeeeeeaseenesennenas 225
O TR =T (0 = T PSP PUPRUURPR 225
B2 @ 1= TP S PR 226
O T2 I =T Yo QD= T | - 1 o RS 226
10.2.2 Interrupt Controller DOM@AINSuuiiiiiiieiie e e e e e e s e e s et be e e aeeee e s e sraraere e 227
10.2.3 INterrupt PHOFLY RUIESoeeeiiieie et e e e e e e e e e e e aeeeeaeeaeaeeeeaeaesenns 227
10.2.4 Interrupt Pending and Clearing RUIEScccuuiiiiiiiiiie e 228
10.3 Advanced Platform Level Interrupt Controller (APLIC)uiiiiiiieiie e 228
10.3.1 SICE-DASEA DESIGN ...ccoiiiieiii ettt e e et ee e e e ee e s ee s et a e aeeaaaeaae e e e aranrrere e 228
10.3.2 Interrupt Controller APLIC DOM@INS........cccoiiiiiiiiiiieeiiie e e e et ee e e e e e e e e e e eeaeeee e e nnnaeens 229
10.4 Advanced Platform Level Interrupt Controller (ACLINT)uvviiiiiiir it 229
10.4.1 MEME aNd MEUMECIMIP ...coieeeeee et ee ettt e e e e e e e e aaeaeaeeaeaeeeseeaeennns 229
10.4.2 MEime SYNCHIONIZALION ... ee e e e e e e e e e e e e e e e es e e s anraeeeees 230
10.4.3 Machine Level Software Interrupts (MSWI)ouviiiiiiiiii e 230
10.4.4 Supervisor Level Software INterrupts (SWSI)ouveeiiiiiiii e 230
ORI TATE= (el e [Yo TN I8 41T SRR 230
LT =T L (U] PP EPP PSR RRPPPPP 230
10.5.2 WatChdOg TimME SEAgES......uuuuiiiiiiiiieeii ettt e e e e e e e e e e e s ettt beeeeeeaeee s e sabarbeeaeaeaees 231
10.5.3 Watchdog Timer Register INtErfaceccooioiiiiiiiiiiee e 231
O 1YL TET o] oo] SR 231
T0.5.5 TIMEOUL EVENES ..ottt et e e e e e e e e bbb aeee e as 231
10.6 Interrupt Controller Register AAAreSS Mapcccoeeeii it ee e e e e e ae e e aeaeee e e nannnns 232
10.7 ACLINT Memory Mapped REGISIEIS.uuuiiieiiieie ettt e e e e e e e et ae e e e e aeeesannans 232
10.7.1 ACLINT Machine Mode MemOry Mapcccocuuiiiiieiieee e e ettt ee e e e e e et ae e e e e e e s e e s ernnnae e e s 232
10.7.1.1 ACLINT Machine Software Interrupt Pending (MSIP[0-4094]) Register (offset = see below) ...

233
10.7.1.2 ACLINT Machine Time Compare (MTIMECMP[0-4094]) Register (offset = see below) 233
10.7.1.3 ACLINT WatchDog ConFiG (WDCFG[0-1023]) Register (offset = see below).................... 233
10.7.1.4 ACLINT WatchDog Control and Status (WDCSR[0-1023]) Register (offset = see below) .. 235
10.7.2 ACLINT Supervisor Mode MemOry IMaPueuiiiiieiie ittt ee et ee e e e e et reeaeaeaa s 236
10.7.2.1 ACLINT SET Supervisor Software Interrupt Pending (SETSSIP[0-4094]) Register (offset = see
o710 TP PRSP 237
10.8 APLIC Memory Mapped REGISIEISuuiiiiiiiie ettt ee e e e e e e e aeeeeaeeeee e e nnnnnns 238
10.8.1 APLIC Machine Domain MemOry Mapuuuuiiiiieieeiiie ittt ee e ee e e e e e e e e e eeae s 238
10.8.2 APLIC Supervisor Domain Memory IMaPueueiiiieiieee it e e e e e e e e e ae e s 240

TABLE OF CONTENTS

10.8.3 APLIC CuUStOmM MEMOIY IMBP ...ttt ettt et e e et e e ene e e e e ennnees 242
10.8.3.1 APLIC Domain Configuration (DOMAINCFG) Register (offset = see below)c..c....... 243
10.8.3.2 APLIC Source Configuration (SOURCECFG[1-1023]) Register (offset = see below)......... 244
10.8.3.3 APLIC SET Interrupt Pending (SETIP[0-31]) Register (offset = see below)..........c.ccveeeenne 245
10.8.3.4 APLIC Input/Clear Interrupt Pending (IN_CLRIP[0-31]) Register (offset = see below) 246
10.8.3.5 APLIC Set Interrupt-Pending Number (SETIPNUM) Register (offset = see below) 247
10.8.3.6 APLIC Clear IP Number (CLRIPNUM) Register (offset = see below)ccccceeviiiiniennnne 248
10.8.3.7 APLIC Set Interrupt Enable (SETIE[0-31]) Register (offset = see below)ccccoveeeie 249
10.8.3.8 APLIC Clear Interrupt Enable (CLRIE[0-31]) Register (offset = see below)............ccccccee. 250
10.8.3.9 APLIC Set Interrupt Enable Number (SETIENUM) Register (offset = see below)............... 251
10.8.3.10 APLIC Clear Interrupt Enable Number (CLRIENUM) Register (offset = see below) 252

10.8.3.11 APLIC Set Interrupt-Pending Number (SETIPNUM_LE) Register (offset = see below).... 253
10.8.3.12 APLIC Set Interrupt-Pending Number (SETIPNUM_BE) Register (offset = see below).... 254

10.8.3.13 APLIC Target (TARGET[1-1023]) Register (offset = see below).........ccccceevvviiiiiiinnne 255

10.8.3.14 APLIC Interrupt Delivery (HART[0-1023].IDELIVERY) Register (offset = see below)....... 256

10.8.3.15 APLIC Interrupt Force (HART[0-1023].IFORCE) Register (offset = see below)................ 257

10.8.3.16 APLIC Interrupt Threshold (HART[0-1023].ITHRESHOLD) Register (offset = see below) 258

10.8.3.17 APLIC Top Interrupt (HART[0-1023]. TOPI) Register (offset = see below)............ccueeeenne 259

10.8.3.18 APLIC Claim Interrupt (HART[0-1023].CLAIMI) Register (offset = see below) 260

10.8.3.19 APLIC Set NMI Enable (SETNMIE[0-31]) Register (offset = see below).........cccccovvveeeene 261

10.8.3.20 APLIC Set NMI Number (SETNMIENUM) Register (offset = Ox4CODC).......ccccevvvivreennnnne 262

10.8.3.21 APLIC Clear NMI Enable (CLRNMIE[0-31]) Register (offset = see below)ccceeee.. 263

10.8.3.22 APLIC Clear NMI Number (CLRNMIENUM) Register (offset = 0x4C1DC)cccceeeuennne 264

Chapter 11: Debug UnNit..........eeeeiiiiieiee s n e 265
11.1 RISC-V Debug Specification CompatiDility..............cooiiiiiiiiiiiiiie e 265
11.2 Halt Groups and EXErNal TIGQQErSccuuuuiiieiiieie e e e e ettt ee e e e e e e et ee e e e aeesae s s ssasbae e e aeaeaeeasanaann 265
2 I o = 1 =0 (0= P STSRSR 266

11.2.2 RESUME REQUEST ...ttt ettt e e e e e e e ee e e e e e e e e aeaeaeeeeeeeaesesesnnnnnnnns 266

TA.B DBU RESE.....ee ittt ettt ettt h et e e et e et ee e e e en e e n e an e 267
11.4 Debug Module Interface REGISIEISuuuiiiiiiiiie e e e e e e et eeaeaeeesen e 267
11.4.1 DMI REQGISIEN AP ...ttt et e et e e e e et et ettt ee e te ettt e e e s e s e e e e e e e aeaeaeaaeeesaeaeeeseesnsnnns 267
Chapter 12: Trace UNitcccciceeceeesr s ss s er s as e e e s ee s s ee s er e s er e s ereeereerseensesseeessensesssnnssnnsnnns 269
12.1 SUMMANY Of FEATUMNES ...t e et e e e e st e e e e ea e e e e snseeaeeeeennneeeesenneees 269
12.2 Trace Component Base AQArESSES..........uuuiuiieiieee ettt e e e e e e e e e e et e e e eeaeeeeeeanans 270
Chapter 13: Floating-Point Unit (FPU) ... s sss s s s smmmns e 271
T3.1 FAMUMES OVEIVIEW ..ottt ettt b e b et e e e bt e e e e b e e e e e e bbbeee e e bbeeeeeannnee 271
13.2 FPU EXECULION UNIES .ottt ettt e bbb e e eb e e e e e 271
13.2.1 SOt OPEIatiONSeeeiie ittt e e et e e e et e e e et e e e e e et ae e e e ennnees 271

RS I e g To I @ o 1=T = 1110 - F OSSPSR 272

13.3 Data FOIMALS. ...ttt b e e e e b e e bbb e e b e 272
13.3.1 Floating-Point FOrMALScoiiiiii e 272
13.3.1.1 Normalized and Denormalized NUMDETS..........c.ooiiiiiiiiiiii e 274

13.3.1.2 Reserved Operand Values—Infinity and NaNccccoiiiiiiiii e 274

13.3.1.3 Infinity @nd BEYONAooiiiiiiiie e 274

13.3.1.4 Signalling Non-Number (SNaN)cooi e 275

13.3.1.5 Quiet Non-Number (QNGN) ..ot e e e se e e enae e e e seeeeeneeeens 275

13.3.2 Signed INteger FOMMALS.o e e e ees 275

13.4 Floating-Point General REJISIEISeeiiiiieii ettt 276
13.4.1 FPRs and Formatted Operand LayOutoooi i 276
Chapter 14: Performance COUNLErS ..ottt s s s e s s s ss s e e s e s m s sn s s e e e e mnmnnns 277
14.1 Core PerformanCe COUNTEIS.ociiii ittt e ettt ee e e e e e e s e e eeeaeaeae s e sanssasseeaeeeaeeaeeeanns 277
14.1.1 Performance EVENt MasKiNgcouiiiiiiiiiiiiiiiiee ettt e e e e e e e e ennan e 277

TABLE OF CONTENTS

14.1.2 Core Performance Event Control Register (mhpmevent[6:3])cccooeiiiiiiiiiiniiiee e 278
14.1.3 Core Performance Counter Count Register (mhpmcounter[6:3])........cccceeiiiiiiiiiiiiiiee e 279
14.1.4 Core Performance Counter EVENTSoooiiiiiii et 279
14.2 CM3 PerformancCe COUNTEISiii ittt ettt e e b e e et e e e e e bt beee e e nbeeee e nneee 281
14.2.1 OVerview and FEATUIESooi e e ee e e 281
14.2.2 RegIStEr INTEITACEoeii i e eee 281
14.2.3 CM3 Performance Counter Usage MOEIScouuiiiiiiiiiiie e 283
14.2.3.1 PeriodiC SAmMPIING........ueeeei ittt ettt e e et ee e eb e e e ar e e nr b ee e 283
14.2.3.2 Stop and Interrupt 0N OVErfIOW..........ooi i 283
14.2.3.3 Large Count Capabilityoeoioiiieee e 284
14.2.4 CM3 Performance Counter Control Register, GCR_DB_PC_CTL (offset = 0x0800) 285
14.3 Histogram Performance COUNTETiii ittt e b e e e e nbeeee e e 294
14.3.1 Histogram ReGIStEr IMApcoo it e e e 295
14.3.2 Histogram Register DeSCIIPHIONS.eiiii et 297
14.3.2.1 CM PC Histogram Control Register (GCR_DB_PC_HIST_CTL) Offset: 0x1000................ 297
14.3.2.2 CM PC Histogram Granularity Register (GCR_DB_PC_HIST_GRAN) Offset: 0x1008 297

14.3.2.3 CM PC Histogram Counter Registers (GCR_DB_PC_HIST_CNT[0-63]) Offset: 0x1010-
0G0 1740 S 298
Chapter 15: Data Scratch Pad RAM ... e mr e e e s e e e e e er e e e e e e e e e eneeeseeneneneness 299
T5.1 OVBIVIEW. ...ttt ettt h ettt eh ettt e eh et 4 e bt e ee et e e eh e e e e e e eE e et nn e e 299
T5.1.1 NEW CSR REGISIEI ...ttt e et eae e e e e e e ae e e aeeeeaeeeee e e nnnnns 300
15.1.1.1 MIPS DSPRAM Base Address Register — mipsdsprambasecccccceevveeieiiiccinnnenen 300
15.1.2 Changes to Existing CSR Registers — Error REportingccccveeveeeiieie e 301
15.1.2.1 Cache Error — mipscacheerr (offset = 0X7C5)coooiiiiiiiiiiie e 301
15.2 DSPRAM SOftWare INtErfacecoiuiiiiiiie ittt 301
15.3 ACCESSING The DSPRAMottt e e e e e e e e e e et et e teeeaeeaeesse s s saesbeaeseeaeaeeeeanasnns 302
15.3.1 Register Programming SEQUENCEcooi ittt ee e e e e e e e et e e e e e e e e s e esesanrseeeees 302
15.3.2 Programming CONSIraINtSccuuiiiiiiiiiieie eannaee e 303
Chapter 16: Instruction Scratch Pad RAM ettt 304
(R O A=Y T PRSPPI 304
T16.1.1 NEW CSR REGISIET ...ttt e e et e e e et ee e e e ee e e eeenseeeeeeennnnaeeeeennnsaeeeannns 305
16.1.2 Changes to Existing CSR Registers — Error REportingccocvveeiiiiiieiisiiiie e 305
16.1.2.1 Cache Error — mipscacheerr (0ffset = OX7C5)cooiiiiiiiiiiiiie e 305
16.2 ISPRAM SOftWare INtEIACE.oeiiiiieie et e e et e e e e et te e e e e e tae e e e ennneeeeeenneees 305
16.3 ACCESSING the ISPRAIM ..ottt ettt e et e et e e e e et e e ee et e ee e e nsbeeeeeasssbeeeeeesbeeeeeennnne 306
16.3.1 Register Programming SEQUENCEuiiiiiiiiieie et e et e et e e e e e e e e e eeae e e e eeeae e e e ensaeeeeenneees 306
16.3.2 Programming CONSIraiNtS ... et e e et e e e e e e e e e 307
Chapter 17: MUltithreadingccccciiieiiiiiir s mnnne e 308
2000 1 3 18 x4 T) o o S 308
47228 T = N o S 309
17.3 Thread MaNAGEMENTttt ettt e bt e e e bt e e e et bt et e et b be e e e enbbe e e e eneee 309
17.4 Independent EXCEPiON MOGEI ..ot e e 309
Appendix A: ReVISION HIStOrY ... s e s 310
Appendix B: User Defined Instructions (UDI) via CorExtend Interface........c.ccooevoiiiecceicnnennnennees 311
B.1 COrEXIENA FEALUIES ...ttt e e e e e e et e e e ee e e e e e e e nennn e e seeeeeeaeenannns 311
B.2 CorExtend Usage Model and ReSTICHONSueiiiiiiiiiii ettt e e e e 311
B.3 CorExtend INterface SIgNaISc..uiii oottt e e et e e e e et e e e e e et te e e e enae e e e ennees 312
B.4 Implementing @ Custom INSrUCHION ... ettt e e ee e e e e e nenee 312
S Oo 5 =4 (=1 To I [5 1 U o 1o o SRR 313

Xi

Chapter 1

Introduction

This document describes the software-programmable aspects of the 18500 Multiprocessing System (MPS).
The 18500 MPS is an RV64-based implementation of the RISC-V instruction set architecture (ISA) and sup-
ports the RVB23 standard profile for unprivileged and privileged architecture and mandatory extensions,

plus several additional optional RISC-V extensions.

The 18500 also includes a suite of MIPS-Defined Instructions (MDIs) beyond the base RISC-V ISA for

enhanced operation on a variety of functions. CorExten

dTM

provides the ability for customers to add their

own custom User-Defined Instructions (UDIs) via a well-defined interface.

1.1 18500 System Level Block Diagram

The 18500 core supports hardware multi-threading and, as part of the 18500 MPS, forms a highly scalable
and configurable IP platform extending to multi-core and multi-cluster implementations. It consists of the
logic blocks shown in Figure 1.1.

Figure 1.1 System-level Block Diagram of Single-Cluster 18500 Multiprocessing System

Cluster Power Controller (CPC)

CPU O CPU 1

CPU 5

Interrupt
Controller

Global
Control
Registers
(GCR)

A

Custom
Control
Registers

[] Optional

A

4

A

.

A

Coherence Manager with Integrated L2 Cache

L2 Cache Memory

Debug Unit JTAG
IOCU 0 AXI-4

IOCU 7 AXI-4

AXI-4 Auxiliary
Non-coherent Buses

SMIPS

a GlobalFoundries company

I

AXI-4 or ACE
Main Memory

Trace Funnel Trace

12
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

1.2 Chapter Descriptions

The majority of blocks in the diagram above have a dedicated chapter, with each chapter providing pro-
gramming examples and the relevant background information required by the programmer in order to
understand the examples. Common functions such as enablement and initialization are provided for each
block, as well as more in-depth examples relative to that block.

The material provided in subsequent chapters of this document is as follows:

SMIPS

Product Features Overview: This chapter outlines the key features of the 18500 MPS at core, cluster,
system component and interface levels of the product.

Architecture Overview: This chapter outlines the RISC-V architecture support and supported operating
modes.

Memory Management (MMU): This chapter describes the programmable elements of the Translation
Lookaside Buffer (TLB) of the 18500 Multiprocessing System. The first section gives an overview of the
TLB architecture, a description of its functionality and a description of the elements that go into pro-
gramming the TLB. The sections that follow cover specific information on programming for the TLB.

Caches: This chapter provides an overview of the cache architecture, a description of its functionality,
and a description of the elements that go into programming the caches. A description of the CSR reg-
ister interface to each cache is provided, as well as initialization code for all three caches, setting up
cache coherency, handling cache exceptions, and testing the cache RAM.

Exceptions: This chapter describes an overview of exception processing and a definition of the inter-
rupt modes. Information on how to program the reset, boot, and general exception vectors in memory
is also covered. A list of exception priorities is provided, along with an assembly language example of
an exception handler.

Coherence Manager (CM): The 18500 MPS contains a third generation Coherence Manager. This
chapter provides an overview of the CM register ring bus and associated table that lists each device ID
on the bus. The programmer uses this information to access these devices. An overview of the CM
register address space is also provided. In addition, the chapter describes how to program the CM to
perform various functions, including setting the base addresses in memory, accessing another hart in
the same core, accessing a hart in another core, accessing the Interrupt Controller (APLIC), Cluster
Power Controller (CPC), and/or Debug Unit (DBU) registers via the CM, and setting the clock ratios
between the various 18500 system components. For the exact revision number of the Coherence Man-
ager, refer to the Release Notes.

This chapter also introduces the multi-cluster configuration that allows multiple 18500 Multiprocessing
Systems to be connected through a Network-On-Chip (NOC) interface and includes description of the
registers used to perform a cluster-to-cluster access.

Cluster Power Controller (CPC): This chapter provides an overview of how power is managed in the
18500 Multiprocessing System and identifies the various power and clock domains the programmer
can use to manage power consumption in the device. In addition, a procedure on how to set the CPC
base address in memory is provided. Other programming principles include setting the device to
coherent or non-coherent mode, requestor (core or IOCU) access of CPC registers, system power-up
policy, programming examples of a clock domain change and clock delay change, powering up the
CPC in standalone mode (no cores enabled), reset detection, hart run/suspend mechanism, local
RAM shutdown and wake-up procedure, accessing registers in another power domain, and fine tuning
internal and external signal delays to help the programmer easily integrate the device into a system
environment.

Interrupt Controller: The Interrupt Controller conforms to the RISC-V Advanced Interrupt Architecture
(AIA) standard and processes internal and external interrupts in the 18500 Multiprocessing System. It
supports up to 511 external interrupts (configurable in multiples of 8), which are prioritized and routed

13

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

to the selected hart for servicing. The interrupt priority and routing are programmed via memory-
mapped registers. The Interrupt Controller also implements per-hart timer and software interrupts,
non-maskable interrupt routing and watchdog timers.

« Debug: This chapter provides a brief overview of the features specific to the 18500 as part of the core
and multi-core support compliant with RISC-V v1.0 debug specification.

» Trace: This chapter provides a brief overview of the features specific to the 18500 as part of the core
and multi-core support compliant with the RISC-V v1.0 Trace Control and v1.0 N-Trace specifications.

* Floating Point Unit (FPU): This chapter provides information on how to enable the FPU, how to handle
floating point exceptions, and how to set the rounding mode.

» Virtualization: The 18500 core implements the RISC-V H "hypervisor" extension to allow efficient imple-
mentation of virtualized operating systems. In addition, the 18500 has additional hypervisor functional-
ity (instructions, CSRs) to accelerate portions of hypervisor actions beyond what the RISC-V extension
provides.

* Performance Counters: Provides a listing of Core and CM3 performance counters and associated con-
trol registers.

* DSPRAM: The optional Data Scratch Pad RAM (DSPRAM) block provides a connection to on-chip
memory used for temporary storage of data or memory-mapped registers, which are accessed in par-
allel with the L1 data cache to minimize access latency.

* ISPRAM: The optional Instruction Scratch Pad RAM (ISPRAM) block provides a connection to on-chip
memory, which are accessed in parallel with the L1 instruction cache to minimize fetch latency.

* Multi-threading: This chapter provides an overview of the hardware multi-threading mechanism in the
18500 MPS.

1.3 Additional Key Resources

The following are some additional key resources and references:
* RISC-V Architecture specifications: https://riscv.org/specifications/ratified/.

+ 18500 Data Sheet. Provides an overview of the 18500 core, the Coherence Manager, and a list of con-
figuration options.

* 64-bit MIPS 18500 Multiprocessing System Integrator's Guide. This companion document provides
hardware details about the device, including functional verification, system integration, and system
implementation.

1.4 Harts and Virtual Processors (VPs)

Throughout this document, the terms hart and Virtual Processor (VP) are both used to refer to a hardware
thread. The RISC-V nomenclature uses the term ‘hart’ exclusively, and MIPS documentation uses the term
hart where reasonable.

Virtual Processor or VP is the original MIPS ISA nomenclature. Since there are legacy signals and register

bits that still have VP embedded in their name, the term VP is used in these situations when referring to
hardware threads.

\}\<M I PS Copyrigr:tiF();.Zc(;);nZ

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

https://riscv.org/specifications/ratified/

Chapter 2

Product Features Overview

The 18500 Multiprocessing System (MPS) is a high performance multi-core platform that provides best in
class power efficiency for use in system-on-chip (SoC) applications. It is comprised of a multi-threaded
core, a coherence manager block for coherently connecting multiple cores together in a cluster, and a
coherent system interface for scaling to multi-cluster implementations. The following sections cover key
aspects at each level of the 18500 MPS.

2.1 18500 Core-Level Features

This section lists the main features of the 18500 core.
* RISC-V RV64 Architecture
— RVB23 standard profile
— H-extension for hardware virtualization
— SV48 and SV39 virtual address space
« 3-issue in-order 9-stage microarchitecture (fetch, decode, issue, graduate) with hardware multi-thread-
ing
— Issues up to 2 instructions from a single hart per cycle
— Issues up to 3 instructions from two harts per cycle
— Supports configurations up to 4 RISC-V harts per core
* L1 instruction and data caches
— 4 way associative
— Cache way predictor reduces fetch power for consecutive fetches
— D-cache way prediction on accesses to reduce power
— Optional SECDED ECC protection
— Configurable size (32KB, 64KB)
— Virtually Indexed, Physically Tagged (VIPT)
— Overlaps VA to PA translation with a tag lookup
— 64-byte line size
— Way-prediction to reduce power
— Up to 8 requests in flight to CM.
— Single cycle operations (fill, evict, store-commit) on entire (512-bit) cache lines.

* Memory Management Unit
15

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

— Large first-level ITLB/DTLB supporting 4K and 64K page sizes
— Fast on-core second-level Variable-page-size TLB (VTLB) and Fixed-page-size TLB (FTLB)

— VTLB is shared between harts and supports page sizes ranging from 4 KB to 256 GiB pages in
powers of four.

— VTLB size is build time configurable at 64, 128, 256 dual entries, and VTLB capacity is shared
between harts - one hart can allocate all entries if the other harts are idle.

— FTLB shared by all harts in core and supports 4KB and 64KB pages, but only one size at a time.
— Selectable hardware, or software managed, table walk
— MIPS DVM instructions provide global L1 Icache and TLB invalidation

+ Load/store bonding support: Bonds certain pairs of adjacent loads or adjacent stores into a single,
wider load or store access.

* Branch Prediction

— 8-bit path-based Global History Register (GHR) per hart

— Three 4-wide Branch History Tables (BHTs), shared by all harts

— Four 2-bit saturating counters / entry: one per instruction slot in a fetch bundle
* Jump Prediction

— Predicts up to 2 branches per 4 instruction fetch bundle each cycle

— Jump Register Cache predicts the target of indirect jumps

— 4-way set associative

— 8 entries/way (1 and 2 hart config) or 16 entries/way (4 hart config)
* Return Prediction Stack

— Predicts the target of return instructions

— 4-entry Last-In First-Out (LIFO) buffer per hart

» Optional Instruction Scratch Pad RAM (ISPRAM) with16KB to 1MB capacity configurable in powers of
2

* Optional Data Scratch Pad RAM (DSPRAM) with16KB to 1MB capacity configurable in powers of 2
» Parity and ECC
— ECC or parity error detection/correction on SRAM arrays

\}\<M I PS Copyrig?:g;g;nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
2.1.1 18500 Core-Level Block Diagram

Figure 2.1 shows the core-level block diagram for the 18500 device.

Figure 2.1 18500 Core-level Block Diagram

Instruction
_ Fetch Unit (IFU) _ Opional ||
| |
} } Tandem CTU
| |
ALUO/
| BHT | > | cTu || €V >
JRC Hart 0 Pipe >
| RPS |] ’ N
! , | —>» ALU1
|
! ! Instruction Result
i Y i —> Hart 1 Pipe |, Issue > FPU PipeA » Collect Instruction
: Graduation
! Address } | Instruction : > Unit
! | Generation | | >| Cache > Register > FPUPipeB | —» WRF
! ‘ File Read Write
! ! |, Hart2Pipe | —»
! ! > MDU —>
|
i v } Operand
| Insiuction L, o Hart3Pipe | s PP > CSRExec >
| | A
1 1 R
I A \ '} A\ 4
(R P 5| Load/Store Unit (LSU) Trace Unit
ISPRAM Address | .
\ Coptrol/Status _ Generation «—> DSPRAM
Registers (CSR) i Data
VTLB/ N Cache Debug
FTLB Data TLB Reset/Interrupts
E— Power Mgt.
A A
A A
Bus Interface Unit (BIU)
BHT = Branch History Table
JRC = Jump Register Cache
RPS = Return Prediction Stack To/from Coherency Manager (CM) Debug/Configuration Interface

Some of the main computing elements in the above diagram are described in the following subsections.

2.1.2 Simultaneous Multi-Threading (SMT)

Simultaneous Multi-Threading (SMT) allows a single core to execute multiple hardware threads (harts)
concurrently. When one thread stalls, other threads can continue to make progress. As a result, an 18500
core can achieve greater CPU resource utilization with a modest increase in area.

An 18500 core can be configured as single-thread, dual-thread, or quad-thread at build time, with each
thread equivalent to a standard RISC-V hardware thread (hart).

2.1.3 Tandem Control Transfer Unit (CTU)

As shown in Figure 2.1, the 18500 Execution Unit (EXU) implements a Tandem Control Transfer Unit
(CTU). The tandem CTU design reduces the apparent latency of load instructions as seen by control-trans-
fer instructions (branches and jumps) from an instruction scheduling perspective.

17

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

The 18500 retains one CTU issue slot but can issue to either CTU associated with that slot. This organiza-
tion allows the EXU to issue single-cycle Control Transfer instructions earlier than they otherwise might,
and gives the instruction scheduling logic greater flexibility to eliminate pipeline bubbles, improving execu-
tion efficiency. It also reduces the impact of instruction issue bottlenecks, where multiple instructions
become ready to issue in the same cycle. The Tandem CTU setup can be used by all CTU instructions
regardless of the source instruction.

2.1.4 Integer Multiply / Divide Unit (MDU)

The MDU implements integer multiplies and divides, as well as certain complex integer operations.

2.1.4.1 Integer Multiplies

Multiply instructions are fully pipelined and have a fixed latency of 3 cycles. This differs from the P8700
architecture, which has different latencies depending on the argument size.

2.1.4.2 Integer Divides

Divide instructions are iterative rather than pipelined and have variable latency. MDU implements an
Radix-4 SRT divider with early-exit that produces 2 quotient bits per cycle. MDU provides a completion
notice 2 cycles ahead of completion.

2.1.5 Floating Point Pipelines (FP Short/ FP Long)

The FPU implements two separate pipelines. The FP Short pipeline executes simple floating-point instruc-
tions such as format conversion and comparisons. The FP Long pipeline executes the remaining floating
point arithmetic instructions.

This structure allows simpler FP instructions to bypass more expensive FP computations. It also allows the
two instruction classes to have uniform latency within each pipeline for non-iterative instructions.

Architecturally, the FPU provides 32 64-bit registers for each hart, as described in the RISC-V F and D
standard extensions. Each floating-point value occupies 64 bits. Single-precision floating point values are
normally 32 bits. However, when placed in a register, the RISC-V architecture NaN-boxes the value,
extending it to 64 bits. Double-precision floating-point values are naturally 64 bits, and each value fills an
entire register without NaN-boxing. Note that the WRF holds both integer and FP temporary results. There
are distinct integer and FP architectural register files.

2.1.6 Load Store Unit

The Load Store Unit (LSU) moves data between the core and system memory. It maintains the L1 data
cache (L1D) to accelerate access to frequently accessed data stored in cacheable memory.

* Accepts 1 operation (load, store, fence, cache maintenance etc.) per clock. A bonded pair of loads or
stores is one operation.

* Nearly-full hardware support for misaligned loads and stores, including custom paired-load and paired
store instructions. Note that misaligned accesses that fit fully within a TLB mapping (4K or 64K) do not
cause an exception, but a misaligned access that requires two different page mappings (4K&4K,
64K&64K, 4K&64K, 64K&4K) will cause an alignment exception.

* Load-to-use latency for L1D hit: 3 cycles

* Load/Store Peak Sustained Throughput: 128 bits/cycle for any mix of loads and stores. 128-bit load/
store requires bonded 64-bit load/store or custom LDP and SDP instructions.

» 128-bit read and 128-bit write interfaces to the Bus Interface Unit (BIU) and Coherency Manager (CM).
18

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

2.1.7 Bus Interface Unit (BIU)

The BIU interfaces the instruction and data caches with the CM. This in an internal interface based on the
MIPS Coherence Protocol (MCP) and has three channels that support 128-bit/cycle data transfers. The
transaction size can vary from 1 byte to 16 bytes for a single uncached access or the full 64 bytes for a
cache line. The BIU supports full memory coherency, including interventions (i.e. snoops).

2.1.8 CorExtend

The 18500 core includes a modest implementation of MIPS CorExtend feature, a defined mechanism and
interface supporting the customer implementation of User Defined Instructions (UDIs), intended for state-
less arithmetic functions that operate on integer registers and immediate values encoded in the opcode.

Features of the CorExtend UDI include:

+ Up to 16 customer-defined instruction opcodes, defined by a configuration input.
+ Supports fixed latency, stateless instructions.

+ Two 64-bit register sources, one 64-bit register destination.

* Full 32-bit opcode provided to CorExtend interface, so customer can provide alternate interpretations
of opcode fields.

For more information, refer to Appendix C of this manual.
2.2 18500 Cluster-Level Features

The 18500 MPS is designed for implementation of multi-core and multi-cluster systems. It includes a num-
ber of cluster level components beyond the 18500 cores that can be used in combination to form a multi-
core cluster, including platform level interrupt control, debug, trace functions, 1/0 coherence units, and a
coherence manager to connect all the components together.

The 18500 Coherence Manager (CM) includes an integrated Level 2 cache, and the CM maintains cache
and system level coherency between all cores, the shared L2 cache, main memory, and 1/O devices. Fig-
ure 1.1 from the previous chapter is reproduced here for easy reference, and illustrates that the 18500 MPS
at the cluster level can be configured with a variable number of cores, 1/0O coherent interfaces, L2 cache
size along with interrupt resources and debug and trace features.

2.2.1 18500 System Level Block Diagram

Figure 2.2 shows a system level block diagram of the 18500 device, including the instantiation of cores and
IOCU’s.

19

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Figure 2.2 18500 System-level Block Diagram

Cluster Power Controller (CPC)

A y A A
A A A A 5
lobal
Custom .
Interrupt Control [] Optional
CPUO CPU 1 oo CPU 5 Controller Registers R(;opst{gll_s
(GCR) gl
A A A A A A
A A A A

Debug Unit <«—» JTAG

IOCU 0 AXI-4

‘ L2 Cache Memory XY X}

I0CU 7 AXI-4
P]]
[N X N J

AXI-4 Auxiliary AXI-4 or ACE
Non-coherent Buses Main Memory

Coherence Manager with Integrated L2 Cache

In an 18500 MPS cluster, the total number of cores and IOCUs together must be less than or equal to eight.
The 18500 MPS supports both single-cluster and multi-cluster configurations.

2.2.2 CM/Cluster and System Level Features

+ Up to eight coherent agents, in any combination of:
— Up to six 18500 cores
— Up to eight IOCUs
* Integrated, L2 cache controller
— 8-way and 16-way set-associativity
— Inclusive of the L1 data caches
— 256 KB to 2 MB cache sizes
— SECDED ECC protection
— Direct cache-to-cache data transfers
— Out-of-order data return

— Hardware L2 cache prefetch controller significantly improves performance of workloads such as
memcopy

* Cluster Power Controller (CPC) to shut down idle cores for power efficiency
— Software controlled core level and cluster level power management
* Independent clock ratios on core, memory, and IOCU ports, as well as Auxiliary AXI4 1/O interfaces

+ SoC system interface supports either the AXI-4 or ACE bus protocol for single or multi-cluster imple-
mentations, respectively, for connection to an external Network-on-Chip (NoC)

— 48-bit address and configurable 128/256/512-bit data path (256-bit default)
— ACE facilitates two or more clusters to be coherent when connected together

» Supports up to four auxiliary (AUX) AXI-4 ports per cluster.

\}\<M I PS Copyrigr:tiF();.chznz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

* High bandwidth 128-bit internal data paths between each core and the Coherence Manager
« Parity error detection on all internal buses

» Parity error detection on all external AXI interfaces

* AXI/ACE interface parity compatibility with the SoC's NoC

+ RISC-V Standard Debug and N-Trace with multi-core operation and aggregation features

For more information on the Cluster Power Controller (CPC) block, refer to the Cluster Power Controller
chapter of this manual.

For more information on the Interrupt Controller block, refer to the Interrupt Controller chapter of this man-
ual.

For more information on the Coherence Manager (CM), Global Configuration Registers, I/O Coherence
Units (IOCUs), L2 pre-fetch, etc. refer to the Coherence Manager chapter of this manual.

For more information on the L2 Cache Memory, refer to the Caches chapter of this manual.

2.2.3 Multi-Cluster Configuration

In addition to the single-cluster configuration shown above, the 18500 also allows for cluster-to-cluster
accesses. This allows a core or hart in one cluster to access a core or hart in another cluster through the
Network-On-Chip (NOC) interface. This interface is shown in Figure 2.3.

Figure 2.3 Cluster-to-Cluster Accesses Using the NOC
Cluster 1 Cluster 2

Core Core Core Core

[hart |[hart || | [hart][hart]

! I I I

Coherence Manager (CM) Coherence Manager (CM)

A A

A 4 h 4

Network on Chip (NoC)

For example, a hart within a core in Cluster 1 can access and update a register in a hart in Cluster 2 as
shown. The access is processed by the CM3.7 and driven onto the NOC. The NOC then routes the
request to the appropriate cluster where the access is scheduled by the CM3.7 in the destination cluster.
The data is fetched and returned to the requesting hart through the NOC.

For more information, refer to Chapter 8, Coherency Manager.

\}\<M I PS Copyrig?ig;;zr:;

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

2.3 MIPS Software Tools

MIPS offers a complete portfolio of tools that address all stages of product development, including RISC-V
Linux, Compilers, and MIPS boot loader. Some of the tools provided are described in the following subsec-
tions.

2.3.1 RISC-V Linux

MIPS actively supports, develops and improves the Linux kernel for the RISC-V architecture. Linux kernel
and distributions that currently support the RISC-V architecture include Fedora, Debian, GENTOO, and
Ubuntu.

For more information on RISC-V Linux, refer to the RISC-V website at www.riscv.org/exchange/software.
2.3.2 Compilers

MIPS ports and maintains the GNU Compiler Collection (GCC) and provides prebuilt tool chains for the
RISC-V SDK. A wide range of other industry leading compilers are also available for MIPS processors.

2.3.3 Boot Loader

MIPS offers a wide range of solutions for initializing MIPS cores and facilitating debugging. These include
open-source and proprietary solutions to suit any requirement.

22

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

Chapter 3

Architecture

The 18500 implements the RVB23 profile of the RISC-V RV64 architecture, plus several optional exten-
sions, such as the RISC-V Hypervisor (H) extension. It also supports a set of MIPS-Defined Instructions
(MDls) for enhanced operation on a number of functions, along with support for CorExtend, enabling users
to implement their own custom instructions, or UDIs.

The tables in the following sections list the RISC-V architecture modes and extensions supported by the
18500. The full RISC-V architecture specifications can be found at htips://riscv.org/specifications/ratified/.
Details on the MDIs and CorExtend support are available as Appendices at the end of this document.

3.1 RISC-V Unprivileged Architecture Extensions Implemented by the 18500

Table 3.1 lists the supported extensions for the RISC-V unprivileged architecture.

Table 3.1 RISC-V Unprivileged Architecture 20240411 + RVB23U64 v1.0 Summary

Name Version Description
A 21 Atomic Instructions
B 1.0.0 Bit manipulation instructions.
Zba: Address arithmetic
Zbb: General bit manipulation
Zbs: Single bit manipulation
C 2.0 Compressed Instructions
Zca: Base compressed instruction set
Zcd: Compressed double precision floating point load/store
CMO 1.00 Base cache management operations
Zicbom: Basic Cache Maintenance
Zicbop: Cache Prefetch
Zicboz: Cache Block Zero
D 2.2 Double Precision Floating Point
F 2.2 Single Precision Floating Point
M 2.0 Integer Multiplication and Division
RV64I 21 Base Integer Instruction Set
RVWMO 2.0 RVWMO Memory Consistency Model
Zicclsm RVB23 Misaligned load/store

SMIPS

a GlobalFoundries company

23

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

https://riscv.org/specifications/ratified/
https://riscv.org/specifications/ratified/

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 3.1 RISC-V Unprivileged Architecture 20240411 + RVB23U64 v1.0 Summary (continued)

Name Version Description
Zifencei 20 Instruction-Fetch Fence
Ziccif RVB23 Atomic instruction fetch up to 32 bits
Zicsr 2.0 Control and Status Register Instructions
Zicntr 2.0 Base Counters and Timers
Zihpm 2.0 Hardware Performance Counters
Zihintntl 1.0 Non-Temporal Locality Hints
Zihintpause 2.0 Pause Hint
Zimop 1.0 May-Be-Operations
Zcmop 1.0 Compressed May-Be-Operations
Zicond 1.0.0 Integer Conditional Instructions
Zawrs 1.01 Wait on Reservation Set
Zab4rs RVB23 Reservation sets are 64 bytes
Ziccrse RVB23 LR/SC progress guarantees (RsrvEventual)
Ziccamoa RVB23 Main memory regions support AMO Arithmetic
Zic64b RVB23 Cache blocks must be 64 bytes.
Zfa 1.0 Additional Floating Point Instructions
Zcb 1.0.0 Additional Compressed Instructions
Zbc 1.0.0 Carryless Multiply
Zkt 1.01 Data Independent Execution Latency

3.2 RISC-V Privileged Architecture Extensions Implemented by the 18500

The RISC-V privileged architecture covers all aspects of RISC-V systems beyond the unprivileged ISA,
including privileged instructions as well as additional functionality required for running operating systems
and attaching external devices.

The 18500 implements the RISC-V compliant Privileged Architecture, as well as more Custom CSRs and
MDIs (MIPS Defined Instructions) for enhancement on features and performance. The 18500 Privileged
Architecture includes:

» Privileged operating modes (Supervisor-mode, Machine-mode, Debug-mode, Hypervisor-mode)

M-mode: All Machine-level CSRs and Privileged Instructions

S-mode: All Supervisor-level CSRs and Supervisor Instructions

H-mode: All Hypervisor-level CSRs and Hypervisor Instructions (H-Ext)
D-mode: All Debug/Trace CSRs

* Aset of User-Defined Instructions and CSRs which have been proven in existing MIPS CPUs

To address security, privacy and reliability concerns in a wide range of devices, MIPS has added RISC-V
compliant virtualization technology into the 18500 core. The hardware virtualization support ensures that
applications that need to be secure are effectively and reliably isolated from each other, as well as pro-
tected from non-secure applications.

24

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Contact MIPS Customer Support through our Partner Portal about recommendations on which Hypervisors

are available for use.

Table 3.2 lists the supported extensions for the RISC-V privileged architecture.

Table 3.2 RISC-V Privileged Architecture 20240411 + RVB23S64 v1.0 Summary

Name Version Description

Ssstrict RvVB23 No non-conforming extensions present.

M mode 1.13 Machine-Level ISA
Smstateen 1.0.0 Machine state enable
Ssstateen 1.0.0 Supervisor state enable

Ss1p13 1.13 Supervisor-Level ISA

Sv39: Page-based 39-bit virtual memory system
Sv48: Page-based 48-bit virtual memory system

Sstvecd RVB23 Supervisor trap vector (stvec) supports DIRECT

Sstvala RVB23 Faulting address written to stval

Ssceptr RVB23 Main memory supports hardware page-table reads

Svbare RVB23 No translation or protection

Svade RVB23 Manage A/D bits with page faults

Ssub4xl RVB23 Supports 64-bit user mode (sstatus.UXL = 2)

Sscounterenw RVB23 Implemented hpmcounter bits have corresponding scounteren bits.

Svnapot 1.0 Naturally Aligned Power-of-Two (NAPOT) Translation

Svpbmt 1.0 Page-Based Memory Types

Svinval 1.0 Fine-Grained Address-Translation Cache Invalidation

Sstc 1.0.0 Supervisor-mode Timer Interrupts
Sscofpmf 1.0.0 Count Overflow and Mode-Based Filtering
H 1.0 Hypervisor Support
Shcounterenw RVB23 Implemented hpmcounter bits have corresponding hcounteren bits

Shvstvala RvVB23 Virt: writes vstval in all cases stval would be written

Shtvala RVB23 Virt: writes hvtal with faulting guest physical address
Shvstvecd RVB23 Virt: vstvec.MODE supports DIRECT w/ 4-byte aligned BASE
Shvstapa RVB23 Virt: vsatp supports same translation modes as satp

Shgatpa RvVB23 Virt: hgatp supports x4 versions of all supported satp modes

3.3 RISC-V Debug Architecture Extensions Implemented by the 18500

Table 3.3 lists the supported extensions for the RISC-V debug architecture.

Table 3.3 RISC-V Debug Architecture v1.0.0-rc2 ISA Extension Summary

Name Version Description
Sdext 1.0.0-rc2 RISC-V compliant external debug.
Sdtrig 1.0.0-rc2 RISC-V Trigger Module™.

SMIPS

25
mips.com
Copyright © 2025

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

3.4 RV64l Instruction Set Details

The following subsections provide additional details on the 18500 implementation of the RV64I instruction
set.

3.4.1 Endianess

The 18500 supports both little-endian and big-endian and boots into the mode selected by the pin input.
The 18500 operates in a single, uniform endian mode at run time.

3.4.2 misa[25:0] Extension Bits

The 18500 sets the misa extension bits listed below. misa is read only. Table 3.4 shows the associated bits
of the misa[25:0] field and the type of extension supported.

Table 3.4 18500 Supported Extensions and misa[25:0] Bit Assignments

Extension Group | misa[25:0] Bit Description
A 0 Atomic extension.
B 1 Bitmanip extension. Shogun implements the required Zba, Zbb, and Zbs extensions.
C 2 Compressed instruction extension.
D 3 Double-precision floating point extension.
F 5 Single-precision floating point extension.
H 7 Hypervisor extension.
I 8 RV64I| base ISA.
M 12 Integer multiply/divide.
S 18 Supervisor mode implemented.
U 20 User mode implemented.
X 23 Non-standard extensions present.

3.4.2.1 A Extension

The 18500 supports all of the AMO instructions in hardware. In addition, the 18500 CPU implements LR/SC
natively for both cacheable and uncacheable memory. For cacheable LR/SC, it implements one monitor
per hart in the LSU. For uncacheable LR/SC, the 18500 relies on a monitor outside the core.

For LR/SC sequences, the 18500 requires precise address and size matching; an LR of 8B and an SC of
4B within that 8B address will fail. Also, a reservation by one hart will be cleared by any ownership request
by any other hart or core for the same 64B coherence granule.

3.4.2.2 F and D Extension

The 18500 implements both F and D extensions together. The 18500 does NOT provide a configuration
option to remove either or both F and D extensions.

26

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

3.4.3 Zicntr Extension

The 18500 should serialize reads to mcycle and minstret, as well as all the performance monitor counters,
at issue. The 18500 natively handles access to the t ime register. The 18500 provides four programmable
performance monitor counters per hart.

3.4.4 Zihintpause and Zawrs Extensions

Shogun implements (RISC-V) pause, (MIPS) MPAUSE, WRS.STO, and WRS.NTO with variations on the
behavior of the previous MIPS custom PAUSE instruction.

3.4.5 Zihintntl Extension
The 18500 implements trivial support for Zihintntl: all Zihintntl HINTs are no-ops.

3.4.6 Zkt Extension

The 18500 MDU provides an OpCache intended to speed up operations with repeated arguments. This is
(and must be) disabled for multiply instructions, to ensure compatibility with Zkt.

3.4.7 Zfa Extension

The 18500 implements the F and D extensions (single- and double-precision floating point). The 18500
does not support the Q and Vfh extensions (quad- and half-precision floating point). Any 18500 instantiation
which supports F and D extensions also supports the single- and double-precision subsets of the Zfa
extension. No 18500 configuration supports the quad-precision nor half-precision subset of the Zfa exten-
sion.

3.4.8 Zicbom Extension

The 18500 maps the RISC-V cache block operations to existing MCACHE behaviors as follows:

Table 3.5 Equivalent MCACHE Instructions

Zicbom Equivalent MCACHE Comments
cbo.clean mcache L2HitWb op[4:2] == 6 && op[1:0] ==
cbo.flush mcache L2HitWblinv op[4:2] == 5 && op[1:0] ==
cbo.inval mcache L2HitWblnv op[4:2] == 5 && op[1:0] == 2 if CBIE == 01b // Flush if not delegated
to do invalidates via effective CBIE
mcache L2HitInv op[4:2] == 4 && op[1:0] == 2 if CBIE == 11b // Inval

In the table above, CBIE refers to the effective CBIE value determined by menvcfg.CBIE, henvcfg.CBIE,
senvcfg.CBIE, and the current privilege level.

27

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

3.4.9 Zicbop Extension

The 18500 maps the RISC-V prefetch operations to existing MIPS custom instruction behaviors as follows:

Table 3.6 Equivalent PREF Instructions

Equivalent MIPS Custom
Zicbop Instruction Comments
prefetch.i pref lcacheLoad hint[4:0] == 0 ("lcache" "Load")
prefetch.r pref DcachelLoad hint[4:0] == 8 ("Dcache" "Load")
prefetch.w pref DcacheStore hint[4:0] == 9 ("Dcache" "Store")

The Zicbop extension does not provide a mechanism to specify which level of cache to prefetch into.
HINTs defined in Zihintntl can provide this information; however, the i8500 implements Zihintntl as NOPs.
For the 18500, the Zicbop prefetch operations prefetch to L1. Software can continue to use the MIPS cus-

tom PREF instructions to specify the target cache if desired.

3.4.10 Zicboz Extension

The 18500 implements Zicboz as follows, based on the CCA encoding for the specified address. The CCA
meanings are specified in the MIPS internal specification for the pmal[n]cfg registers.

« CCA# 1: Data cache

— Miss in L1D cache: Commits a 64 byte write of zeros directly to L2.

— Hitin L1D cache: Commits a 64 byte write of zeros to L1D cache.

Note: Hit vs. Miss is determined by the ordinary rules regarding CCA and page-based memory types

(PBMT).

e CCA = 1: Buffer cache

— Miss in L1B cache: Allocates line in L1B and fills the line with zeros.

— Hitin L1B cache: Commits a 64 byte write of zeros to L1B cache.

3.4.11 Svpbmt Extension

The 18500 CPU honors Svpbmt PTE overrides, even for CCA = 1 buffer cache space. The PBMT encod-
ings are as shown in the table below:

Table 3.7 Svpbmt Extensions

Binary
Encoding Mode name Details Maps to this PMACCA Encoding

00 PMA Honor existing PMA attributes. --

01 NC Non-cacheable, idempotent, weakly-ordered | PMACCA =3 (UCA)and S =1
(RVWMO), main memory.

10 10 Non-cacheable, non-idempotent, strongly- PMACCA=2(UC)and S=0
ordered (I/O ordering), 1/0.

1 -- Reserved.

SMIPS

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
3.4.12 Rationale

The RISC-V architecture defines Page-Based Memory Types (PBMTs) as overriding the memory type
specified in the PMAs, unless the PMA specifies the address range as vacant.

3.4.13 Svinval Extension

The 18500 implements the Svinval implementation as described in the RISC-V Privileged Architecture
Specification.

3.5 Operating Modes

The 18500 supports the following operating modes when hypervisor is disabled:

Table 3.8 18500 Operating Modes — Hypervisor Disabled

Mnemonic Name Software Usage
u User Application software
S Supervisor Operating system kernel
M Machine Low-level machine management
D Debug Used by debugger software

When hypervisor support is enabled and the V bit is set, The 18500 adds the following operating modes:

Table 3.9 18500 Operating Modes — Hypervisor Enabled

Mnemonic Name Software Usage
VU Virtual User Application software running in a guest OS
VS Virtual Supervisor Guest operating system kernel
HU Hypervisor-extended User Deprivileged portions of Type 1 or Type 2 hypervisor kernel
HS Hypervisor-extended Supervisor Type 1 or Type 2 hypervisor kernel

The Hypervisor will always be enabled in that the misa[H] bit is 1, but can be unutilized by never setting the
V bit to signify VS/VU.

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

Chapter 4

Memory Management Unit

The MMU translates virtual addresses generated by the core, to physical addresses used to access
caches, memory and other devices. Virtual-to-physical address translation is especially useful for operating
systems that must manage physical memory to accommodate multiple tasks active in the same virtual
address space. The MMU also enforces the protection of memory areas and defines the cache attributes.
The 18500 MMU implements a Translation Lookaside Buffer (TLB).

This chapter covers the programmable elements of the TLB in the 18500 Multiprocessing System. The first
section gives an overview of the TLB architecture, a description of its functionality and a description of the
elements that go into programming the TLB. The sections that follow cover specific information on pro-
gramming for the TLB.

The 18500 TLB translates 39-bit or 48-bit virtual addresses to 48-bit physical addresses and provides
access control for different page segments of memory. The core writes to internal CSR registers with the
information used to initialize and modify entries in the TLB, then executes a TLB write instruction (MTL-
BWR) to move the data from the registers to the TLB.

4.1 Overview

Figure 4.1 shows an overview of the 18500 MMU architecture.

30

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Figure 4.1 Overview of MMU Architecture in the 18500 Core

Instruction
Cache
Tag RAM
; y
Instruction VA
Address > ITLB » Comparator
Calculator
A
|VA‘ Entry
Instruction
— > Hit/Miss
VTLB/
FTLB
Data
Hit/Miss
A
DVA v Entry
Data DVA
Address » DTLB » Comparator
Calculator A
Data Cache
Tag RAM

41.1 TLB Types

The Memory Management Unit (MMU) in the 18500 core consists of four address Translation Lookaside
Buffers (TLB). These include ITLB, DTLB, VTLB, and FTLB as described below:

4.1.1.1 ITLB and DTLB Overview

The Instruction TLB (ITLB) and Data TLB (DTLB) are both fully associative micro-TLBs. The Instruction
Fetch Unit (IFU) and Load Store Unit (LSU) use the ITLB and DTLB to perform high-speed Virtual Address
(VA) to Physical Address (PA) translation for instruction fetch and data accesses, respectively. The MMU
transparently manages both micro-TLBs in hardware.

The ITLB and DTLB entries support an arbitrary mix of 4KB and 64KB page sizes. The MMU transparently
segments larger pages into 64KB entries when refilling the ITLB and DTLB. Both micro-TLBs are shared
among all harts.

Each TLB entry is two-sectored, holding both an even page and its successive odd page, so 8 DTLB
entries can map 16 x 4K = 64K if they all hold 4K mappings.

Table 4.1 shows that the number of ITLB and DTLB entries is fixed, regardless of the number of harts.

\}\<M I PS Copyrig?tirg;(;):r:;

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
4.1.1.2 TLB Hierarchy

Table 4.1 Number of ITLB and DTLB Entries per hart

Harts ITLB Entries DTLB Entries
1 18 20
18 20
4 18 20

The ITLB and DTLB translate virtual addresses presented by the IFU and LSU to physical addresses. In
the event of a miss, the ITLB or DTLB initiates an access to the VTLB and FTLB. If the translation is pres-
ent in either the VTLB or FTLB, the translation is fetched in the following cycle. In the event of a miss in
both VTLB and FTLB, the MMU may initiate a page table walk via the Hardware Table Walker (HTW) if this
functionality is enabled.

In the event of a successful translation in VTLB or FTLB, possibly after a hardware table walk, the MMU
populates the translation record in the appropriate micro-TLB for future use.

4.1.1.3 Instruction TLB

Number of ITLB entries varies based on the number of harts. The ITLB maps only 4 KB or 64 KB pages.
The ITLB is managed by hardware and is transparent to software. The number of entries per hart in the
ITLB is shown in Table 4.1 above.

4.1.1.4 Data TLB

Number of DTLB entries varies based on the number of VPs. The DTLB maps only 4 KB or 64 KB pages.
The DTLB is managed by hardware and is transparent to software. The number of entries per hart in the
ITLB is shown in Table 4.1 above.

4.1.1.5 Variable TLB

The VTLB is a fully associative translation lookaside buffer that contains a pool of dual (i.e. entry +1 contig-
uous) entries per core, competitively shared between harts. In the 18500 there are 128 dual entries in the
pool. These entries can map variable page sizes in powers of 4 ranging from 4KB to 256GB via Svnapot.
Page sizes include:

+ 4KB

+ 16 KB
* 064KB
+ 256 KB
+ 1MB

+ 2MB

+ 4MB

- 16MB
* 64MB
+ 256MB
- 1GB

+ 4GB

\}\<M I PS Copyrigr:tirgf(;):n:

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

- 16GB
+ 64GB
-+ 256 GB

Each dual entry stores translations for two virtual addresses that differ by the least significant bit in their vir-
tual page number (e.g. bit 12 of the virtual address for a 4 KB page size).

4.1.1.6 Fixed TLB

The FTLB contains 512 "dual" or "two-sectored" entries organized as 128 sets and 4-way set-associative.
The FTLB page size can be configured for either 4KB or 64KB. Each dual entry stores translations for two
virtual addresses that differ only in bit 12 for 4KB (or bit 16 for 64KB) of the virtual address.

FTLB translations are qualified by VMID (Virtual Machine ID, 5 bits wide) + ASID (Address Space ID, 16
bits wide). FTLB capacity is competitively shared by all harts.

4.1.2 TLB Instructions

This section defines the various types of instructions used when accessing the TLB. For more information
on the instructions listed below, refer to Appendix B. For information on the Guest TLB instructions used in
the H-extension, refer to the RISC-V specification.

* MTLBWR — The TLB Write Random instruction causes a random TLB entry selected by hardware to
be written with the virtual address in mtval CSR and the leaf PTE value stored in integer register $rs1.

* MGINV.VMA — The Global Invalidate TLB instruction provides a way to globally invalidate all TLB
entries in multiple ways or the entire TLB. Refer to the Global TLB Invalidate section of this chapter for
more information.

* GINVT — The Global Invalidate TLB instruction provides a way to globally invalidate all TLB entries in
multiple ways or the entire TLB. Refer to the Global TLB Invalidate section of this chapter for more
information.

* MGINV.FENCE — The MGINV.FENCE instruction acts as a completion barrier with respect to any pre-
ceding MGINV.I, MGINV.VMA, MGINV.VVMA, or MGINV.GVMA instructions.

* MGINV.GVMA — Machine Global INValidate Guest Virtual Memory management Invalidates a guest
virtual memory entry.

* MGINV.I — Machine Global INValidate of instruction caches. Performs a global invalidate of the
instruction caches.

*+ MGINV.VMA — Machine Global INValidate virtual memory management.

* MGINV.VVMA — Machine Global INValidate, Virtual-supervisor Virtual-memory MAnagement. Per-
form the equivalent of an HFENCE.VVMA $rs1, $rs2 operation on all harts in the system.

* MTLBWR.HG — Machine TLB Write Random, Hypervisor Guest. Update a random entry in the imple-
mentation dependent TLB.

4.1.3 Shared FTLB Translations

The 18500 core supports shared FTLB translations across all harts in a core. In many applications, there
can be multiple threads that are working cooperatively or running the same application on different data. In
this situation, some translations are common across harts and sharing the translations increases the FTLB
capacity and reduces contention. Even under Linux, multiple threads can be associated with the same pro-
cess and use the same translations on different harts.

\}\<M I PS Copyrigr:tiF();.Zc(;):nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
4.1.4 Global TLB Invalidate

The 18500 core provides kernel software with the ability to globally invalidate the VTLB/FTLB structure
using the MGINV.VMA (Machine Global INValidate Virtual-memory MAnagement) instruction. When this
instruction is executed, all entries in the VTLB/FTLB are invalidated in all cores and all clusters. In addition,
all Instruction TLB (ITLB) and Data TLB (DTLB) entries that match in the VTLB are also invalidated.

The MGINV.VMA instruction provides the option to invalidate the TLB entries in the following ways:

* Invalidate the entire TLB. All TLB entries in all cores and all clusters are invalidated, without regard for
any virtual address of ASID match.

* Invalidate by ASID value and virtual address. The TLB entries across all cores and clusters are invali-
dated only for those translations that match the ASID value as well as the virtual address.

* Invalidate by ASID value only. The TLB entries across all cores and clusters are invalidated only for
those memory maps that match the ASID value.

* Invalidate by virtual address only. The TLB entries across all cores and clusters are invalidated only for
those addresses that match the virtual address.

34

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

Chapter 5

Caches

The I8500 Multiprocessing System contains the following caches: L1 instruction and L1 data
per core, and shared L2. These caches provide on-chip temporary storage of information that
can be retrieved much faster than accessing main memory. The dedicated L1 instruction and
data caches have the fastest access times and are accessed first. If the data is not present in
the appropriate L1 cache, the shared L2 cache is accessed. The L2 cache contains both data
and instructions. If the requested data is not in the L2 cache, the main memory is accessed.

This chapter provides an overview of the cache architecture and a description of the elements
that go into programming the caches. A description of the CSR register interface to each
cache is provided, as well as cache initialization code. Other programmable elements include
setting up cache coherency and handling cache exceptions.

5.1 Cache Subsystem Overview and Configurations

The I8500 Multiprocessing System contains the following caches: L1 instruction and L1 data
per core, and shared L2. These caches are non-optional and are always present.

Figure 5.1 shows the relative location of the caches within the I8500 Multiprocessing System.
The L1 instruction and L1 data caches are shared by all hart’s in the same core. The L2 cache
is shared by all cores.

Figure 5.1 18500 Multiprocessing System Caches
CPUO CPU n

| L1 Instruction Cache | | L1 Instruction Cache|

2N v v

Hart 0 Hart 1 . ‘ . . Hart 0 Hart 1

v 3 vy

| LiDataCache | | LiDataCache |

$ $

Coherence Manager (CM3)

Shared L2 Cache

\}\<M I PS CopyrigrEtiF();.Zc(;):nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

The size of each cache can be configured as shown in Table 5.1.

Table 5.1 18500 Cache Configurations

Attribute L1 Instruction Cache L1 Data Cache L2 Cache
Size 32 KB or 64 KB 32 KB or 64 KB 256 KB, 512 KB, 1 MB, 2 MB
Line Size 64-byte 64-byte 64-byte
Number of Cache Sets 128 or 256 128 or 256 512, 1024, 2048
Associativity 4-way 4-way 8-way (256 KB only)
16-way (all others)

The L1 instruction cache is attached to the Instruction Fetch Unit (IFU). The L1 data cache is
attached to the Load/Store Unit (LSU). The L2 cache is embedded within the Coherence Man-
ager (CM) and communicates with external memory via an AXI interface. The AXI interface is
256-bits wide by default, but is configurable at build time to be 128, 256, or 512-bits wide.

For more information on the L1 instruction cache, refer to Section 5.1.1 “L1 Instruction
Cache”.

For more information on the L1 data cache, refer to Section 5.1.2 “L1 Data Cache”.

5.1.1 L1 Instruction Cache

The L1 instruction cache contains two arrays: tag and data. The L1 instruction cache is virtu-
ally indexed and physically tagged.

Table 5.2 shows the key characteristics of the L1 instruction cache. Figure 5.2 shows the for-
mat of an entry in the three arrays comprising the instruction cache tag and data.

Table 5.2 L1 Instruction Cache Attributes

Attribute With EDC
Size! 32 KB or 64 KB
Line Size 64-byte
Number of Cache Sets 128 or 256
Associativity 4-way
Replacement LRU
Data Array
Read Unit (256b + 32-bit EDC) x number of ways
Write Unit 512b + 64-bit EDC
Tag Array
Read Unit (36-bit tag + 7-bit EDC + Valid bit) x 4-ways
(32K and 64K)
Write Unit 36-bit tag + 7-bit EDC + Valid bit
(32K and 64K)
Way-Select Array
Read Unit 6-bits (4-way)
Write Unit

6-bits (4-way)

1. For Linux based applications, MIPS recommends a 64 KB L1 instruction cache size.

\}\<M I PS Copyrig?ig;::é

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Figure 5.2 L1 Instruction Cache Read Unit — 32 KB and 64 KB Cache

Tag (per-way x 4 ways) 16 1 1 36
45-bits total per way EDC Valid | Lock PA[47:12]
Read Unit
16 32 32 32 32
EDC Word 3 Word 2 Word 1 Word 0
Data (per-way x 4 ways)
288-bits total per way
Read Unit 16 32 32 32 32
EDC Word 7 Word 6 Word 5 Word 4

Figure 5.3 L1 Instruction Cache Write Unit — 32 KB and 64 KB Cache

Tag 7 1 1 36
44-bits total EDC Valid | Lock PA[47:12]
Write Unit
16 32 32 32 32
EDC Word 3 Word 2 Word 1 Word 0
16 32 32 32 32
Data EDC Word 7 Word 6 Word 5 Word 4
576-bits total
Write Unit 16 32 32 32 32
EDC Word 11 Word 10 Word 9 Word 8
16 32 32 32 32
EDC Word 15 Word 14 Word 13 Word 12

5.1.1.1 Level 1 Instruction Cache Error Detection

The I8500 core includes detection of single and double-bit errors in the Level 1 Instruction
Cache. The error detection logic protects against data corruption caused by errors that may
occur while data is stored in RAM. When an error is found, the code is refetched from mem-
ory. The error is handled entirely by hardware and is software-transparent.

5.1.1.2 L1 Instruction Cache Organization

The I8500 core level 1 instruction cache comprises two logical RAM arrays (a tag array and a
data array) and one register-based array (way select array). With error detection, a 7-bit

EDC is added to the 36-bit tag stored in the tag array; a 16-bit EDC is also added to each 64-
bit data doubleword stored in the data array.

5.1.1.3 L1 Instruction Cache Error Types

On an L1 EDC error the Instruction Fetch Unit (IFU) re-fetches the data and bypasses the
desired instruction while overwriting the instruction in error. The EDC error gets counted by
the performance counters but the fetch continues. If the entire cache was to fail, the fetch

would effectively proceed uncached by this method. The IFU raises cache errors from L2 as
Cache Exceptions.

5.1.1.4 L1 Instruction Cache Replacement Policy

The L1 instruction cache replacement policy refers to how a way is chosen to hold an incom-
ing cache line on a miss which will result in a cache fill. The replacement policy is least-

SMIPS

Copyright © 2025
a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
recently used (LRU). The LRU bit(s) in the way-select array encode the order in which ways
on that line have been accessed.

On a cache miss, the LRU bits for the tag and way-select entries of the selected line may be
used to determine the way which will be chosen. In the I8500 core, the way select informa-
tion is stored in registers and is not part of a memory array.

The LRU field in the way select array is updated as follows:

e On a cache hit, the associated way is updated to be the most recently used. The order of
the other ways relative to each other is unchanged.

e On a cache refill, the filled way is updated to be the most recently used.

e On MCACHE instructions, the update of the LRU bits depends on the type of operation to
be performed:

- Cache Hit: The associated way is updated to be the most-recently used way at the
corresponding index. The relative age of the other ways are unmodified.

- Cache Invalidate: The associated way is updated to be the least-recently used way at
the corresponding index. The relative age of the other ways are unmodified.

- Index Invalidate: Least-recently used.
- Index Load Tag: The way-select array is unmodified.

- Index Store Tag: This is treated like a cache invalidate when the valid bit of the tag is
being cleared.

- Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.
- Fill: Most-recently used.

5.1.1.5 L1 Instruction Cache Coherency Management

In the I8500 core, the hardware does not automatically keep the instruction cache coherent
with the data cache, so code that modifies the instruction stream must invalidate stale
instruction cache lines using hit-type MCACHE or MGINV.I instructions

The globalized MGINV.I instruction eases the task of software I-Cache coherence and can be
used to remove the stale instructions from all cores in the system. The CM checks instruction
fetches against the directory and thus will be able to find newly written instruction data and
provide it to the instruction cache.

5.1.1.6 MCACHE Instruction Usage

The MCACHE instruction is the building block for OS interventions, and is required for the
correct handling of DMA data and for cache initialization. Historically, the MCACHE instruction
also had a role when writing instructions. Unless the programmer takes the appropriate
action, those instructions may only be in the D-cache and would need them to be fetched
through the I-cache at the appropriate time. Wherever possible, use the FENCE.I instruction
for this purpose, as described in Section 5.1.1.7 “FENCE.I Instruction Usage”.

A cache operation instruction is written MCACHE op, ($rsl), which means perform cache
operation of type op at address $rsi1. Cache operations are privileged and can only run in
kernel mode.

\}\<M I PS CopyrigrEtiF();.Zc(;):nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

In the MCACHE instruction, the op field packs together a 5-bit field. The lower 2 bits of this
field select which cache to work on:

00 L1 I-cache
01 L1 D-cache
10 L2 cache

11 Reserved/L3

The upper 3-bits of the OP field encodes a command to be carried out on the line the instruc-
tion selects.

The MCACHE instruction comes in three varieties which differ in how they pick the cache
entry (the “cache line”) they will work on:

e Hit-type cache operation: presents an address (just like a load/store), which is looked up
in the cache. If this location is in the cache (it “hits”) the cache operation is carried out on
the enclosing line. If this location is not in the cache, nothing happens.

e Address-type cache operation: presents an address of some memory data, which is pro-
cessed just like a cached access - if the cache was previously invalid the data is fetched
from memory.

e Index-type cache operation: as many low bits of the address as are required are used to
select the byte within the cache line, then the cache line address inside one of the four
cache ways, and then the way. The size of the cache (contained within the MIPSConfig1
register) determine exactly where the field boundaries are located. The instruction cache
is doubleword-indexed. The index format depends on the cache size as shown in the fol-
lowing diagrams.

32 KB Cache Index
63 15 14 13 12 6 5 3 2 0

Unused | Way | Line | DW | Unused |

64 KB Cache Index
63 16 15 14 13 6 5 3 2 0

Unused | Way | Line | DW | Unused ‘

where:

The Way field selects one of four ways in the cache.

The Line field selects one of line in the cache.
The DW field selects which doubleword within the line.

5.1.1.7 FENCE.l Instruction Usage

The FENCE.I instruction provides a mechanism available to user-level code for ensuring that
previously written instructions are correctly presented for execution. Use of the FENCE. I

instruction is preferred to the traditional alternative of a D-cache writeback followed by an I-
cache invalidate.

5.1.2 L1 Data Cache

The L1 data cache contains two arrays: tag and data. The L1 Data cache is virtually indexed
and physically tagged, but contains logic to correct virtual aliasing.

\}\<M I PS Copyrigr:tirgf(;):nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

The tag and data arrays hold 4 ways of information per set, corresponding to the 4-way set
associativity of the cache. A tag entry consists of the upper 34 or 35 bits of the physical
address (depending on cache size), two coherent state bits, and some ECC bits. A data entry
contains 64 bytes of data and associated ECC bits. All 64 bytes in the line are present in the
data array together, hence the coherent state bits (2) stored with the tag.

After a valid line is resident in the cache, a store operation can update all or a portion of the
words in that line depending on the type of store.

The data cache uses ECC so that single-bit errors can be corrected. ECC code is generated
across a 32-bit word. Sub-word stores are handled by doing a read-modify-write sequence.
The error checking and correction process is handled entirely by hardware and is transparent
to kernel software.

Each set contains a way-select register that holds bits used to select the way to be replaced
according to a Least Recently Used (LRU) algorithm. The LRU information applies to all the
ways and there is one way-select register for all the ways in the set. Note that this informa-
tion is stored in an array of registers and is not part of a memory array.

Table 5.3 shows the key characteristics of the data cache. Figure 5.4 through Figure 5.7
shows the format of an entry in the arrays comprising the data cache: tag, data, and way-
select for 32 KByte and 64 KByte read and write units.

Table 5.3 L1 Data Cache Organization

Attribute Value
size 32 or 64KB
Line size 64-byte
Number of Cache Sets 128 or 256
Associativity 4-way
Replacement LRU
Data Array
Read Unit (128b + 28b ECC) x 4
Write Unit 512b + 112b ECC
Tag Array
Read Unit (35b PPN + 2b CohSt + 8b ECC) x 4 (32K)
(34b PPN + 2b CohSt + 8b ECC) x 4 (64K)
Write Unit 35b PPN + 2b CohSt + 8b ECC (32K)
34b PPN + 2b CohSt + 8b ECC (64K)
Way-Select
Read Unit 6-bit register field
Write Unit 6-bit register field
Dirty Bits

Read Unit 4-bit register field
Write Unit 1-bit register field

\}\<M I PS Copyrigr:ti‘g;;:nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Figure 5.4 L1 Data Cache Read Unit — 32 KB Cache

8 2 35
Tag (per-way x 4 ways)
45-bits total per way ECC CohSt PA[47:13]
Read Unit
Data (per-way x 4 ways) 7 32 7 32 7 32 7 32
156-bits total per way | ECC Data ECC Data ECC Data ECC Data
Read Unit
Figure 5.5 L1 Data Cache Write Unit — 32 KB Cache
Tag 8 2 35
45-bits total ECC CohSt PA[47:13]
Write Unit
7 32 7 32 7 32 7 32
/ ECC 15 Data15 |ECC 14 Data14 |ECC 13 Data 13 |ECC 12 Data 12
7 32 7 32 7 32 7 32
ECC 11 Data11 |ECC10 Data 10 ECC9 Data 9 ECC 8 Data 8
Data
624-bits total 7 32 7 32 7 32 7 32
Write Unit
ECC7 Data 7 ECC 6 Data 6 ECC5 Data 5 ECC 4 Data 4
7 32 7 32 7 32 7 32
\ ECC 3 Data 3 ECC 2 Data 2 ECC 2 Data 1 ECCO Data 0
Figure 5.6 L1 Data Cache Read Unit — 64 KB Cache
Tag (per-way x 4 ways) 8 2 34
44-bits total per way ECC CohSt PA[47:14]
Read Unit
Data (per-way x 4 ways) 7 32 7 32 7 32 7 32
156-bits total per way ECC Data ECC Data ECC Data ECC Data
Read Unit
\{k . 41
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Figure 5.7 L1 Data Cache Write Unit — 64 KB Cache

T 8 2 34

ag

44-bits total ECC CohSt PA[47:14]
Write Unit

7 32 7 32 7 32 7 32
/ ECC 15 Data 15 |ECC 14 Data 14 |ECC 13 Data13 |ECC 12 Data 12

7 32 7 32 7 32 7 32
ECC 11 Data11 |ECC 10 Data 10 ECC9 Data 9 ECC 8 Data 8
Data
624-bits total 7 32 7 32 7 32 7 32
Write Unit

ECC7 Data 7 ECC6 Data 6 ECC5 Data 5 ECC 4 Data 4

7 32 7 32 7 32 7 32
\ ECC3 Data 3 ECC 2 Data 2 ECC 2 Data 1 ECCO0 Data 0

5.1.3 Level 1 Data Cache Error Checking and Correction (ECC)

The I8500 core includes error checking and correction (ECC) on the Level 1 Data Cache.
Error correction codes are added to information stored in data-cache. The error detection and
correction logic protects against data corruption caused by single-bit transient errors that
may occur while data is stored in RAM. The error codes allow for single-bit error correction
and double-bit error detection. ECC generation and checking and error handling is done in
the Load/Store Unit (LSU).

5.1.3.1 L1 Data Cache Organization

As shown in the above figures, the 18500 core level 1 data cache comprises two logical RAM
arrays: a tag array and a data array. With error detection and correction;

e An 8-bit ECC is added to each 34/35-bit tag stored in the tags array.
e A 7-bit ECC is added to each 32-bit data value stored in the data array.

5.1.3.2 L1 Data Cache Load/Store Operations

Cacheable loads and stores generate a data cache read to see if the memory operand is in
the cache. If an error is detected, incoming loads and stores are halted by hardware and the
LSU determines whether an ECC error is uncorrectable or correctable. Uncorrectable errors
generate an exception. If the error is correctable, correctable, the LSU performs a read-mod-
ify-write operation to correct the data in the L1 data cache, and the load/store is retried.

5.1.3.3 L1 Data Cache Error Types

L1 data cache ECC errors can be correctable or uncorrectable. Single-bit errors are correct-
able. Multiple-bit errors cannot be repaired. Multiple-bit errors in a data word of an invalid
cache line are ignored. Note that a tag needs to be free of errors to affirm that a line is
invalid. Hence, tag errors are processed before processing multiple-bit data errors. A multi-
ple-bit error is uncorrectable if it occurs in (a) a tag, or (b) a data word in a dirty cache line.

5.1.3.4 Store Operations Less than 32-bits

The addition of ECC to the cache data array has special implications for stores into the data
cache when the operand is smaller than a single 32-bit word, or the store operation is not
32-bit aligned. When partial-word stores hit in the cache, the LSU may need to perform a

\}\<M I PS Copyrigr:tirgf(;):n:

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

cache read-modify-write on the affected word because the ECC is a function of the entire 32-
bit word.

The store buffer keeps track of valid bytes and allows multiple stores to merge together. If
the entire word is valid, it can be written into the cache. If it is only partially valid, the data
array is read to fill in the missing bytes, and then the complete word and its new ECC value
are written into the cache.

5.1.3.5 Examples of L1 Data Cache ECC Errors
Consider some data cache ECC error scenarios:

Loads and Stores

During CPU loads and stores, single-bit errors in the primary tags array are corrected on
detection. Multiple-bit errors in the tag array generate an exception. During CPU loads and
stores, single-bit errors in the data array of valid lines are corrected on detection. Double-bit
data errors generate an exception.

Evictions

During eviction of a dirty cache line, single-bit data errors are corrected on the fly as data is
written back to the Bus Interface Unit (BIU). Multiple-bit errors in an evicted line are
reported as an uncorrectable error to the BIU and generate an exception.

Interventions

During interventions, single-bit errors in the tag array are corrected on detection. Multiple-bit
errors in the tag array generate an exception and return an ERROR response for the inter-
vention.

During an intervention write-back of a modified line, single-bit data errors are corrected on
the fly as data is forwarded to the BIU. Multiple-bit data errors during an intervention write-
back are reported to the BIU and an exception is generated.

5.1.4 L1 Data Cache Replacement Policy

The replacement policy refers to how a way is chosen to hold an incoming cache line on a
miss which results in a cache fill. The replacement policy is least-recently used (LRU). The
LRU bit(s) in the way-select array encode the order in which ways on that line have been
accessed.

On a cache miss, the LRU bits for the tag and way-select entries of the selected line may be
used to determine the way which will be chosen. In the I8500 core, the way select informa-
tion is stored in registers and is not part of a memory array.

The LRU field in the way select array is updated as follows:

e On a cache hit, the associated way is updated to be the most recently used. The order of
the other ways relative to each another is unchanged.

e On a cache refill, the filled way is updated to be the most recently used.

e On MCACHE instructions, the update of the LRU bits depends on the type of operation to
be performed:

— Cache Hit: The associated way is updated to be the most-recently used way at the
corresponding index. The relative age of the other ways are unmodified.

\}\<M I PS CopyrigrEtiF();.Zc(;):nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
- Cache Invalidate: The associated way is updated to be the least-recently used way at
the corresponding index. The relative age of the other ways are unmodified.
- Index Writeback Invalidate: Least-recently used.
- Index Load Tag: No update.

- Index Store Tag: This is treated like a cache invalidate when the valid bit of the tag is
being cleared.

- Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

- Hit Writeback Invalidate: Least-recently used if a hit is generated, otherwise
unchanged.

- Hit Writeback: No update.

If the way selected for replacement has its dirty bit asserted in the dirty array, then that 64-
byte line will be written back to memory before the new fill can occur.

5.1.5 L1 Data Cache Memory Coherence Protocol

The 16500 core supports cache coherency in a multi-CPU system in conjunction with the
directory-based coherence manger (CM).

The L1 data cache utilizes a standard MESI protocol. Each cache line will be in one of the fol-
lowing four states:

Invalid: The line is not present in this cache.

Shared: This cache has a read-only copy of the line. The line may be present in other L1
data caches, also in a Shared state. The line will have the same value as it does in the L2
cache.

Exclusive: This cache has a copy of the line with the right to modify. The line is not present
in other L1 data caches. The line is still clean - consistent with the value in L2 cache.

Modified: This cache has a dirty copy of the line. The line is not present in other L1 data
caches. This is the only up-to-date copy of the data in the system (the value in the L2 cache
is stale).

Some of the basic characteristics of the coherence protocol are summarized below.
e Writeback cache - Uses a writeback cache to ensure high performance
e Cache-line based - Coherence and ownership is maintained per 64-byte cache line

e Invalidate - A line is invalidated from the cache (possibly with a writeback to memory)
when a store from another processor is seen.

5.1.6 Load/Store Bonding

Bonding is a technique where adjacent loads or adjacent stores are merged into a single
request in the IDU and sent to the LSU in one cycle.

Supported bonds:
e Only word and dword loads and stores.
¢ Only identical instruction (i.e., LW + LW and not LW + LD).

e Only when using same base address register and the offset of the second instruction is
+4 (word size ops) or +8 (dword) from the first.

e Bonding also happens for -8, -4, and +0 offsets (where +0 says the first access is not
needed because the same location is being accessed).

\}\<M I PS Copyrigr:tiF();.Zc(;):nZ

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

e First load does not use the same register for the base and destination operands. but
bonding is supported to UC, UCA, and DSPRAM.

IDU bonding is based on instruction decode. It does not know the base address value or the
eventual alignment of operations. It attempts to bond any adjacent load/stores. If the opera-
tions turn out to not fall within an aligned quadword, they will be split into two operations
within the LSU. The IDU will also marks loads and stores that would have been bondable with
the preceding instruction. This allows the LSU to re-bond - merge with the preceding opera-
tion. This mitigates alignment issues during long sequences of sequential operations.

Bonding is invisible to software other than improved performance.

5.1.7 L2 Cache

The L2 cache processes transactions that miss in the L1 caches. The L2 cache is larger than
the L1 caches. In the I8500 Multiprocessing System, the L2 cache is integrated into the
Coherence Manager. The L2 communicates with external memory via an AXI-4 interface. The
L2 communicates with the cores through the proprietary MIPS Coherence Protocol (MCP)
bus.

The associativity of the L2 cache can be either 8 or 16 ways. The 8-way option is used when
the cache size is 256 KB. The 16-way option is used for all other cache sizes. The line size is
fixed at 64 bytes. The number of sets and ways is selected during the build process and can-
not be changed by the kernel software. Software can check the set size by reading the
GCR_L2_CONFIG register. Refer to the Coherence Manager chapter for more information.

Table 5.4 shows the list of possible L2 cache configurations.

Table 5.4 L2 Cache Configurations

Line Size Sets per Way Number of Ways Total L2 Cache Size
64 bytes 512 8 256 KBytes

64 bytes 512 16 512 KBytes

64 bytes 1024 16 1 MByte

64 bytes 2048 16 2 MBytes

The L2 cache processes transactions that are not serviced by the L1 cache. In the 18500 Mul-
tiprocessing System, the L2 cache is integrated into the Coherence Manager (CM). The L2
communicates with external memory via an AXI-4 interface.

The L2 also communicates with the CPU(s) through the proprietary MIPS Coherence Protocol
(MCP) bus. In addition, the L2 has the clock, reset, and bypass signals as well as some static
input signals which can be used to configure it for different operating modes.

5.1.8 L2 Cache General Features

e 5-stage pipeline.

e 48-bit address paths and 512-bit internal data paths
e Associativity: 8-way or 16-way

e Cache size: 256 KB, 512 KB, 1 MB, 2 MB

e Line Size: 64 bytes (8 doublewords)

e Locking Support: Yes

e Replacement Algorithm: Pseudo LRU

e Write policy: Write Back

45

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Write miss allocation policy: Write-Allocate

Error Checking and Correction (ECC): Single error correction and double error detection
covering the tag and data arrays.

Maximum read misses outstanding: 12 - 32. Build-time configuration option.

Maximum read misses outstanding: set based on cluster configuration — maximum will
be 96 unless by special request.

Build time configurable 128/256/512-bit data bus width on memory side AXI-4 interface.
Multi-cycle Data Rams: Configurable for either 2-cycle or 4-cycle latency
Multi-cycle Tag Rams: Configurable for either 1-cycle or 2-cycle latency

Multi-cycle Way-Select Rams: 0, 1, 2, or 3 stalls can set the Way-Select RAM access times
to 1, 2, 3, or 4 clocks.

In the table above, the associativity of the L2 cache is fixed at 16 ways and the line size if
fixed at 64 bytes. As a result, changes to the number of sets per way determine the overall
size of the L2 cache. The only exception is the 256 KB cache option, which contains the same
number of sets per way as the 512 KB option shown in Table 5.1, but is selected using 8
ways instead of 16.

5.1.9 Overview of the AXI Interface

In the I8500 core, the L2 cache is integrated into the CM. The following are some features of
the AXI interface to the CM.

Build time configurable to 128b/256b/512b — default is 256b
Requests are 4 beats of data on a 128-bit wide bus
Writes cannot receive an early response

5.1.9.1 AXI Channels

The AXI bus contains a 5-channel interface. Each channel is unidirectional and independent
of the other channels:

Read address
Write address
Write data
Read response
Write response

The AXI interface between the CM is build time configurable to 128b/256b/512b, with a fixed
64-byte line size. This is shown in Figure 5.8.

SMIPS

46

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Figure 5.8 AXIl Interface Between CM and Memory

Coherence Manager

L2 Cache

128/256/512 bits

Main Memory

5.1.9.2 Read Operations

On the AXI bus, each transaction is assigned an ID value. Depending on the type of transac-
tion, transactions can have either the same ID, or a different ID. Read operations with differ-
ent ID values can be processed and returned out of order. However, Read operations with the
same ID value are processed and returned in order.

5.1.9.3 Write Operations

For AXI write operations, the order of the write data must be the same as that on the write
address channel. However, the timing of the transactions can be different (transactions do
not have to be latched on the exact same clock).

Write responses can be returned out of order.

5.1.9.4 AXI Memory Bus Ordering

In the AXI architecture, there is no relationship between a requests on read address bus and
one driven on the write address bus, even for requests where the ID values or addresses
match. The CM ensures the proper ordering between the read and write address requests.
Cacheable accesses use different ID values to allow out-of-order responses. The CM recog-

nizes a Read/Write, Write/Read or Write/Write to the same cache line address. Hence, a 2nd
request is not issued onto AXI until response to the first request has been received. Read/
Read has no ordering constraints.

5.1.10 L2 Cache Operations

Cache-ops are used for control operations such as initialization, invalidation, eviction, etc. A
brief description of the cache-ops implemented by the L2 shown in Table 5.5.

47

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 5.5 indicates the operation and behavior of the L2 cache for each cache-op.

Table 5.5 L2 Cache-ops

Cache-op

Effective
Address
Operand Type

Operation

Index WB inv/
Index Inv

INDEX

If the state of the cache line at the specified index is valid and dirty, the line is written
back to the memory address specified by the cache tag. After that operation is completed,
the state of the cache line is set to invalid.

If the line is valid but not dirty, the state of the line is set to invalid

The LRU bits are updated to Least-recently-used.

The dirty bits are updated to clean for that way.

HIT Inv

ADDRESS

If the address is not contained in L2, nothing happens.
If the address hits in L2, it is invalidated and the dirty bit is cleared.
If any arrays are written, the appropriate parity fields are updated by hardware.

HIT WB Inv

ADDRESS

If the address is not contained in L2, nothing happens.

If the address hits in L2, and it is dirty, the line is written back to main memory. It is then
invalidated and the dirty bit is cleared.

If the address hits in L2, and it is clean, it is invalidated.

If any arrays are written, the appropriate parity fields are updated by hardware.

HIT WB

ADDRESS

If the address is not contained in L2, nothing happens.

If the address hits in L2, and it is dirty, the line is written back to main memory and the
dirty bit is cleared.

If the address hits in L2, and it is clean, nothing happens.

If any arrays are written, the appropriate parity fields are updated by hardware.

Fetch and Lock

ADDRESS

If the address is not contained in L2, the line is refilled. The refilled line is then locked in
the cache. The LRU bits in the WS array are updated to make the fetched way most-
recently-used. The Dirty bit and the dirty parity bit are set to clean.

On a hit the line is locked and the operation retires. The LRU bits or the dirty bits are not
affected.

5.1.11 Cache Instructions

Operations are performed on the L1I, L1D, and L2 caches using the following instructions:
e MCACHE — This instruction is used to perform various operations on the L1 instruction

and data caches and the L2 cache. These operations are described in Table 5.6.

e PREF — This instruction causes data to be moved to or from the cache, to improve pro-
gram performance. PREF does not cause addressing-related exceptions, including TLB
exceptions.

e FENCE.I — This instruction synchronizes a data cache line with an instruction cache line.

This instruction should be used when writing to the program image in memory to make

the newly stored instruction opcodes visible to the instruction fetch logic via the I-Cache.

e MGINV.I — This instruction is new to the I8500 and can be used to invalidate all L1
instruction caches in the system. In a multi-cluster system, this means all L1 instruction
caches in all clusters.

The FENCE.I and MCACHE I Hit Invalidate instructions are "globalized", which means that

they will invalidate the targeted cache line from all L1 instruction caches in the system. In
multi-cluster systems, the CACHE L2 Hit Invalidate, L2 Hit Writeback, and L2 Hit Writeback

Invalidate operations are globalized and will perform the specified operation on all L2 caches

in the system (including any L1 D-Cache operations required to maintain inclusivity). Note

that the I8500 MPS does not globalize the CACHE D Hit Invalidate, D Hit Writeback, or D Hit

SMIPS

a GlobalFoundries company

48

mips.com
Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 185

00 Multiprocessing System Programmer’s Guide — Revision 1.00

Writeback Invalidate instructions; these instructions only affect the L1 D-Cache of the core
that executed the instruction.

Bits 21:20 of the MCACHE instruction indicate the type of cache being accessed as shown in
the Cache column:

e I indicates L1 instruction cache — Bits [21:20] = 2’b00

e D indicates L1 data cache — Bits [21:20] = 2'b01

e S indicates L2 or secondary cache — Bits [21:20] = 2’b10
e T indicates L3 of tertiary cache — Bits [21:20] = 2'b11

Table 5.6 shows the various types of operations that can be performed using the MCACHE
instruction. In this table, bits 24:22 of the instruction encode the type of operation as shown
in the Code column.

Table 5.6 Encoding of Bits [24:22] of the MCACHE Instruction

Code

Cache Name Operation

3’b000

I Index Invalidate | Set the state of the cache line at the specified index to invalid.
This encoding may be used by kernel software to invalidate the entire
instruction cache by stepping through all valid indices.

D,S Index Writeback | If the state of the cache line at the specified index is valid and dirty,
Invalidate write the line back to the memory address specified by the cache tag.
After that operation is completed, set the state of the cache line to
invalid. If the line is valid but not dirty, set the state of the line to invalid.

This encoding may be used by kernel software to invalidate the entire
data cache by stepping through all valid indices, except during cache
initialization. Note that Index Store Tag should be used to initialize the
cache at power-up.

For the L2 cache, this operation will modify the L1 data caches as
needed to maintain inclusivity.

3’b001

- Reserved Reserved.

3’'b010

Reserved Reserved.

3’b011

- Reserved Reserved.

SMIPS

49

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 5.6 Encoding of Bits [24:22] of the MCACHE Instruction (continued)

Code

Cache

Name

Operation

3’'b100

I, S

Hit Invalidate

If the cache line contains the specified address, set the state of the
cache line to invalid.

This operation may be used by kernel software to invalidate a range of
addresses from the caches by stepping through the address range by
the line size of the cache.

This instruction is globalized for the | caches, meaning that when exe-
cuted, the instruction will invalidate the targeted cache line from all L1
instruction caches in the system. For the L2 cache, the instruction
would invalidate all targeted cache lines within all L2 caches in all clus-
ters.

For the L2 cache, this operation will modify the L1 data caches as
needed to maintain inclusivity.

Hit Invalidate

If the cache line contains the specified address, set the state of the
cache line to invalid.

This operation may be used by kernel software to invalidate a range of
addresses from the caches by stepping through the address range by
the line size of the cache.

Note that the 18500 MPS does not globalize the MCACHE D Hit Invali-
date instruction. This instruction only affects the L1 D-Cache of the
core that executed the instruction.

3'b101

Fill

Fill the cache from the specified address.
The cache line is refetched even if it is already in the cache. In that
case, the existing copy in the cache is invalidated

D, S

Hit WriteBack
Invalidate

If the cache line contains the specified address and it is valid and dirty,
write the contents back to memory. After that operation is completed,
set the state of the cache line to invalid. If the line is valid but not dirty,
set the state of the line to invalid.

This operation may be used by kernel software to invalidate a range of
addresses from the data cache by stepping through the address range
by the line size of the cache.

Note that the 18500 MPS does not globalize the MCACHE D Hit Write-
back Invalidate instruction. This instruction only affects the L1 D-
Cache of the core that executed the instruction.

For the L2 cache, this operation will modify the L1 data caches as
needed to maintain inclusivity.

SMIPS

a GlobalFoundries company

50

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 5.6 Encoding of Bits [24:22] of the MCACHE Instruction (continued)

Code Cache Name Operation

3'b110 D,S Hit WriteBack If the cache line contains the specified address and it is valid and dirty,
write the contents back to memory. After the operation is completed,
leave the state of the line valid, but clear the dirty state.

Note that the 18500 MPS does not globalize the MCACHE D Hit Write-
back instruction. This instruction only affects the L1 D-Cache of the
core that executed the instruction.

For the L2 cache, this operation will modify the L1 data caches as
needed to maintain inclusivity.

3'b111 I,D Fetch and Lock | The Fetch and Lock encoding is not supported in the 18500 L1 instruc-
tion and data caches. For the L1 instruction and data caches this oper-
ation executes as a no-op.

L2 Fetch and Lock | If the L2 cache does not contain the specified address, fill it from mem-
ory and writeback the data from the line being replaced. Set the state
to valid and locked. If the cache already contains the specified
address, set the state to locked. The way selected on fill from memory
is the least recently used.

The lock state is cleared by executing an Index Invalidate, Index Write-
back Invalidate, Hit Invalidate, or Hit Writeback Invalidate operation to
the locked line, or via an Index Store Tag operation with the lock bit
reset in the associated STATE field of the GCR L2 Tag RAM Cache Op
Address register.

Itis illegal to lock all ways at a given cache index.

5.2 Cache Coherency Attributes

The 18500 core defines a set of Cache Coherency Attributes (CCA). The cache coherency is
set using the PMA Configuration registers. For more information, refer to the MIPS RISC-V
Customizations document that is part of the document suite.

The 16500 core supports the following cacheability attributes:

e Cacheable, coherent, write-back, write-allocate, read misses request shared. (code #0):
Use coherent data. Load misses request data in the shared state (will get exclusive if the
data is not being shared by another CPU). Multiple caches can contain data in the shared
state. Stores bring data into the cache in an exclusive state - no other caches can contain
that same line. If a store hits on a shared line in the cache, the line is updated to the
exclusive state and any shared copies of the line in other L1 data caches are invalidated.

e Uncached (code #2): Addresses in a memory area indicated as uncached are not read
from the cache. Stores to such addresses are written directly to main memory, without
changing cache contents.

e Uncached Accelerated (code #3): Uncached stores are gathered together for more effi-
cient bus utilization.

\}\<M I PS Copyrigr:tirgfgz:;

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

5.3 Directory Based L1 Cache Coherence

The Coherence Manager (CM) maintains coherence between L1 data caches and the L2 cache
by maintaining a directory that tracks the state of each core's L1 data cache. The coherence
directory extends the L2 cache's address tags with additional L1 cache tracking information.

The CM consults L2's cache tags and coherence directory for all cacheable requests from L1
data caches, L1 instruction caches, and IOCUs. In multi-cluster configurations, CM consults
L2's cache tags and coherence directory in response to coherence requests received via its
ACE system port. It uses the attributes of the requests and the cache tag and directory infor-
mation to determine the appropriate actions to take.

CM maintains full coherence between L1 data caches and L2 cache. CM provides one-way
coherence for cacheable L1 instruction fetches and IOCU read requests: L1 fetches and IOCU
reads obtain the most recent data at the time of a read request. IOCU write requests invali-
date cached copies of data in L1 data caches, merging the write with earlier updates cached
in an L1 data cache if necessary.

CM updates its coherence directory in response to all requests that change the apparent
state of the L1 data caches it tracks.

For non-cacheable requests from any requestor, CM does not consult the L2 cache tags or
coherence directory. As per the RISC-V standard, CM forwards non-cacheable requests into
the system without consulting the L2 cache.

5.3.1 L1 Data Cache Coherence

L2 maintains a strictly inclusive cache policy with all L1 data caches in directly connected
cores. Any line held in an L1 data cache must also be present in L2. When L2 evicts a line, it
sends intervention requests to obtain updates and invalidate lines from L1 data caches as
needed to maintain strict inclusivity.

For cacheable L1 data cache requests that hit L2 cache, CM may send intervention requests
to one or more cores' L1 data caches to manage coherence among the L1 data caches and
L2. In multi-cluster configurations, CM may request ownership of the line from the system if
needed by the request. For read requests, CM sends the read data from the L2 data RAMs if
L2 holds the latest copy of the line. Otherwise, CM arranges for the L1 data cache that owns
line to forward the latest data to the requestor as part of an intervention request.

For cacheable L1 data cache requests that miss L2, it allocates a new line by sending a read
request into the system. In multi-cluster configurations, L2 will also request exclusive owner-
ship of the line if the request requires it.

5.3.2 L1 Instruction Cache Coherence

L2 does not track the contents of each core's L1 instruction caches.

If the L1 instruction cache contains a copy of a line, and this or another core modifies that
line, the L1 instruction cache is NOT notified in any way, and will continue to hold its stale
copy of the line. The software will need to perform a "fence.i" or cache maintenance opera-
tion to invalidate the stale line so that it can be refetched with the current values.

However, for cacheable fetches that miss in the L1 instruction cache, CM consults the L2
cache tags and coherence directory. If CM detects an L1 data cache currently has exclusive
ownership (E or M state) of the line, it sends an intervention to that cache. The intervention
downgrades the line to the shared state while returning updated data to CM. CM forwards the
updated data to the L1 instruction cache that requested the line.

52

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

This reduces the overhead of maintaining coherence between the L1 data and instruction
caches in the most common cases.

5.4 L2 Cache Initialization Options

The I8500 Multiprocessing System automatically selects hardware cache initialization at
reset.

e L2 Tag array only (fast)

Automatically selected hardware cache initialization (fast mode) initializes only the L2 tag
array.

Each of these options are described in the following subsections.

5.4.1 Automatic Hardware Cache Initialization

The I8500 MPS allows for the L2 cache to be automatically initialized by hardware when the
following conditions are met at reset:

e The external input pin (si_cpc_I2_hw_init_inhibit) is driven low, indicating that automatic
hardware initialization can proceed.

e Automatic hardware cache initialization is enabled by setting the L2_HW_INIT_EN bit in
the CPC Local Status and Configuration register (CPC_CL_STAT_CONF_REG) located at
offset 0x0008 in CPC CM-local address space.

e The L2 initialization delay has expired. Once this delay has expired, automatic hardware
cache initialization can begin.

e MBIST is not enabled. If it is enabled, the cache initialization does not begin until the
MBIST operation is complete. Even if the delay has expired, the cache initialization does
not begin until the MBIST has completed.

Once all of these conditions are met, the L2 cache Tag RAM is automatically initialized by
hardware. No initialization code is required. Once the initialization is complete, hardware sets
the HCI_DONE bit in the L2 RAM Configuration register (GCR_L2_RAM_CONFIG) at offset
address 0x0240 in GCR address space. Software can poll this bit to determine when the ini-
tialization is complete.

5.4.2 Manual Hardware Cache Initialization

The I8500 MPS allows for the L2 cache to be manually initialized by hardware. The user can

choose to initialize only the Tag RAM, or both the Tag RAM and Data RAM, when the following
conditions are met at reset:

* The external input pin (si_cpc_I2_hw_init_inhibit) is driven high, indicating that automatic hardware ini-
tialization described in the previous subsection is not selected and cannot proceed.

For manual cache initialization, kernel software indicates the type of cache initialization to be
performed using the following procedure.

1. Readthe L2SM_COP_REG PRESENT bit in the L2 Cache Op State Machine Config/Control register
(GCR_L2SM_COP) at offset address 0x0620 in GCR address space to determine if this register is present. A ‘1’
in this bit indicates that the flush cache operation is supported.

2. Read the L2SM_COP_MODE bit in the L2 Cache Op State Machine Config/Control register

(GCR_L2SM_COP) at offset address 0x0620 in GCR address space to determine the state of the L2 state
machine. This bit must be 0, indicating the state machine is idle, in order for cache initialization to proceed.

\}\<M I PS Copyrigr:tiF();.Zc(;):nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

3.

Set the type of operation to be performed by programming the L2SM_COP_TYPE field in bits 4:2 of the L2
Cache Op State Machine Config/Control register (GCR_L2SM_COP). A value of 0x1 in this field indicates that
only the Tag RAM is initialized. A value of 0x2 in this field indicates that both the Tag RAM and Data RAM is
initialized. Note that this operation is slower than initializing the Tag RAM only.

Start the L2 state machine by setting the L2SM_COP_CMD field in bits 1:0 of the L2 Cache Op State Machine
Config/Control register (GCR_L2SM_COP) to a value of 0x1. This starts the L2 cache initialization process.

To determine the result of the initialization, poll the L2SM_COP_RESULT field in bits 8:6 of the L2 Cache Op
State Machine Config/Control register (GCR_L2SM_COP). A value of 0x0 indicates the process is still running.
A value of 0x1 indicates that the process completed with no errors.

5.5 L2 Cache Flush, Burst, and Abort

This section describes the L2 cache flush, burst, and abort operations.

If software detects an L2SM_COP_RESULT = 0x2 (DONE-ERR) or 0x4 (ABORT-ERR) after the
completion of an L2ZCOP SM operation, it should program another short L2ZCOP SM operation
into GCRs GCR_L2SM_TAG_ADDR_COP / GCR_L2SM_COP and verify it completes without
error. This will guarantee that the previous error status is cleared in the CM mainpipe and any
subsequent aborted L2COP SM operations will return the correct error status.

5.5.1 L2 Cache Flush

An L2 flush operation can only be initiated by software. To flush the entire L2 cache in one
operation, perform the following steps:

1.

Read the L2SM_COP_REG_PRESENT bit in the L2 Cache Op State Machine Config/Control
register (GCR_L2SM_COP) at offset address 0x0620 in GCR address space to determine if
this register is present. A *1’ in this bit indicates that the flush cache operation is sup-
ported.

Read the L2SM_COP_MODE bit in the L2 Cache Op State Machine Config/Control register
to determine the state of the L2 state machine. This bit must be 0, indicating the state
machine is idle, in order for flush operation to proceed.

Program the L2SM_COP_TYPE field in bits 4:2 of the L2 Cache Op State Machine Config/
Control register to a value of 0x0. This selects the full cache flush operation.

Program the L2SM_COP_CMD field in bits 1:0 of the L2 Cache Op State Machine Config/
Control register to a value of 0x1. This starts the cache flush operation.

To determine the result of the flush operation, poll the L2SM_COP_RESULT field in bit 8:6
of the L2 Cache Op State Machine Config/Control register. A value of 0x0 indicates the
process is still running. A value of Ox1 indicates that the process completed with no
errors.

5.5.2 L2 Cache Burst Operations

The L2 Cache supports the following burst operations (CacheOps):

SMIPS

Hit_Inv
Hit_WB_Inv
Hit_WB

54

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

These operations can be requested only by software and can be performed on a range of
addresses in the cache. Burst operations can be executed using the following procedure.
Note that the number of cache lines requested must be less than or equal to the available
cache lines in the cache and also less than 65,536.

1.

SMIPS

Program the starting address where the flush operation begins into the
L2SM_COP_START_TAG_ADDR field in bits 47:6 of the GCR L2 Cache Op State Machine
Tag Address register (GCR_L2SM_TAG_ADDR_COP) at offset address 0x0628 in GCR
address space.

Program the L2SM_COP_NUM_LINES field in bits 63:48 of the GCR L2 Cache Op State
Machine Tag Address register to indicate the number of lines to be flushed from the start-
ing address defined in step 1.

Program the type of operation to be performed on each line using the L2SM_COP_TYPE
field in bits 4:2 of the L2 Cache Op State Machine Config/Control register. A value of 0x4
in this field indicates Hit Invalidate. A value of 0x5 indicates Hit Writeback Invalidate, and
a value of 0x6 indicates Hit Writeback.

Read the L2SM_COP_MODE bit in the L2 Cache Op State Machine Config/Control register
to determine the state of the L2 state machine. This bit must be 0, indicating the state
machine is idle, in order for the CacheOp to proceed.

If the state machine is idle as determined in step 4, program the L2SM_COP_CMD field in
bits 1:0 of the L2 Cache Op State Machine Config/Control register to a value of 0x1. This
initiates the CacheOp starting from the address defined in step 1 and continuing for the

number of lines defined in step 2. The operation to be performed in each of the selected
cache lines is defined in step 3.

To determine the result of the flush operation, poll the L2SM_COP_RESULT field in bit 8:6
of the L2 Cache Op State Machine Config/Control register. A value of 0x0 indicates the
process is still running. A value of Ox1 indicates that the process completed with no
errors.

55

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

Chapter 6

Control and Status Registers (CSR)

This chapter defines the following types of Control and Status Registers, or CSR’s. The regis-
ters are divided into the following sections. Click on the links below to navigate to a specific
section.

Section 6.1,
Section 6.2,
Section 6.3,
Section 6.4,
Section 6.5,
Section 6.6,
Section 6.7,
Section 6.8,
Section 6.9,

"User Floating-Point Registers"

"Supervisor Trap Setup Registers"

"Supervisor Counter/Timer Registers"
"Supervisor Trap Handler Registers"

"Supervisor Protection and Translation Registers"
"Virtual Supervisor Registers"

"Machine Trap Setup Registers"

"Machine Counter Setup Registers"

"Machine Trap Handling Registers"

Section 6.10, "Machine Memory Protection Registers"

Section 6.11, "Hypervisor Trap Setup Registers"

Section 6.12, "Hypervisor Trap Handler Registers"

Section 6.13, "Hypervisor Counter/Timer Virtualization Registers"

Section 6.14, "Hypervisor Protection and Translation Registers"

Section 6.15, "Machine Counter/Timer Registers"

Section 6.16, "Machine Information and Identification Registers"

Section 6.17, "User Counter/Timer Registers"

Section 6.18, "MIPS Custom Control and Status Registers"

Section 6.19, "Debug Control and Status Register — offset = 0x7B0"

Table 6.1 below shows the main register map for the Control and Status Registers (CSR).

Note: Software should only access the CSR registers listed in this chapter. Access to any reg-
isters not listed here can result in undefined behavior.

SMIPS

a GlobalFoundries company

56

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.1 CSR Register Map

Offset Name Type Description
User Floating-Point CSRs
0x001 FFLAGS URW | Floating-point accrued exception (EXU_ARF_CSR).
0x002 FRM URM | Floating-point dynamic rounding mode (EXU_ARF_CSR).
0x003 FCSR URW | Floating-point control and status (frm + fflags,
EXU_ARF_CSR).
Supervisor Trap Setup CSRs
0x100 SSTATUS SRW | Supervisor status (EXU_CSR).
0x104 SIE SRW | Supervisor interrupt-enable register (EXU_CSR).
0x105 STVEC SRW | Supervisor trap handler base address register (EXU_CSR).
Supervisor Counter/Timer CSRs
0x106 SCOUNTEREN SRW | Supervisor counter enable register (EXU_CSR).
0x10A SENVCFG SRW | Supervisor environment configuration register (EXU_CSR).
0x10C SSTATEENO SRO | Supervisor state enable 0 register - Helps in controlling
access to certain user-accessible registers which can't be
controlled otherwise.
0x10D SSTATEEN1 SRO | Supervisor state enable 1 register.
0x10E SSTATEEN2 SRO | Supervisor state enable 2 register.
0x10F SSTATEENS SRO | Supervisor state enable 3 register.
0xDAO SCOUNTOVF SRO | Supervisor counter overflow register.
Supervisor Trap Handler
0x140 SSCRATCH SRW | Scratch register for supervisor trap handlers register
(EXU_CSR).
0x141 SEPC SRW | Supervisor exception program counter register
(EXU_ARF_CSR).
0x142 SCAUSE SRW | Supervisor trap cause register (EXU_ARF_CSR) .
0x143 STVAL SRW | Supervisor bad address or instruction register
(EXU_ARF_CSR).
0x144 SIP SRW | Supervisor interrupt pending register (EXU_CSR).
0x14D STIMECMP SRW | Supervisor timer compate register (EXU_CSR).
Supervisor Protection and Translation
0x180 SATP SRW | Supervisor address translation and protection register
(EXU_CSR).
Virtual Supervisor Registers
0x200 VSSTATUS HRW | Virtual supervisor status register (EXU_CSR).
0x204 VSIE HRW | Virtual supervisor interrupt-enable register (EXU_CSR).
0x205 VSTVEC HRW | Virtual supervisor trap handler base address register

(EXU_CSR).

SMIPS

a GlobalFoundries company

57

mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.1 CSR Register Map (continued)

Offset Name Type Description
0x240 VSSCRATCH HRW | Virtual supervisor scratch register (EXU_CSR).
0x241 VSEPC HRW | Virtual supervisor exception program counter register
(EXU_CSR).
0x242 VSCAUSE HRW | Virtual supervisor trap cause register (EXU_CSR).
0x243 VSTVAL HRW | Virtual supervisor bad address or instruction register
(EXU_ARF_CSR).
0x244 VSIP HRW | Virtual supervisor interrupt pending register (EXU_CSR).
0x24D VSTIMECMP HRW | Virtual supervisor timer compare register (EXU_CSR).
0x280 VSATP HRW | Virtual supervisor address translation and protection
(EXU_CSR).
Machine Trap Setup
0x300 MSTATUS MRW | Machine status register (EXU_CSR).
0x301 MISA MRW |ISA and extension register (EXU_CSR).
0x302 MEDELEG MRW | Machine exception delegation register (EXU_CSR).
0x303 MIDELEG MRW | Machine interrupt delegation register (EXU_CSR).
0x304 MIE MRW | Machine interrupt-enable register (EXU_CSR).
0x305 MTVEC MRW | Machine trap-handler base address register (EXU_CSR).
0x306 MCOUNTEREN MRW | Machine counter enable register (EXU_CSR).
0x30A MENVCFG MRW | Machine environment configuration register (EXU_CSR).
0x30C MSTATEENO MRW | Machine state enable 0 register - Helps in controlling access
to certain user accessible registers which can't be controlled
otherwise.
0x30D MSTATEEN"1 MRW | Machine state enable 1 register.
0x30E MSTATEEN2 MRW | Machine state enable 2 register.
0x30F MSTATEEN3 MRW | Machine state enable 3 register.
Machine Counter Setup
0x320 MCOUNTINHIBIT MRW | Machine counter-inhibit register.
0x323 MHPMEVENT3 MRW | Machine performance monitor 3 (perfmon) event selector
register (EXU_CSR).
0x324 MHPMEVENT4 MRW | Machine performance monitor 4 (perfmon) event selector
register (EXU_CSR).
0x325 MHPMEVENT5 MRW | Machine performance monitor 5 (perfmon) event selector
register (EXU_CSR).
0x326 MHPMEVENT®6 MRW | Machine performance monitor 6 (perfmon) event selector
register (EXU_CSR).
Machine Trap Handling
0x340 MSCRATCH MRW | Scratch for machine trap handlers register (EXU_CSR).
0x341 MEPC MRW | Machine exception program counter register
(EXU_ARF_CSR).

SMIPS

a GlobalFoundries company

58

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.1 CSR Register Map (continued)

Offset Name Type Description
0x342 MCAUSE MRW | Machine trap cause register (EXU_ARF_CSR).
0x343 MTVAL MRW | Machine bad address or instruction register
(EXU_ARF_CSR).
0x344 MIP MRW | Machine interrupt pending (EXU_CSR).
O0x34A MTINST MRW | Machine trap instruction transformed register. (H-extension
CSRs).
0x34B MTVAL2 MRW | Machine bad guest physical address register (H-extension
CSRs).
Machine Memory Protection
0x3A0 PMPCFGO MRW | Physical memory protection configuration register 0
(EXU_CSR).
0x3A2 PMPCFG2 MRW | Physical memory protection configuration register 2
(EXU_CSR).
0x3B0 PMPADDRO MRW | Physical memory protection address 0 register (EXU_CSR).
MRW
O0x3BF PMPADDR15 MRW | Physical memory protection address 15 register
(EXU_CSR).
Hypervisor Trap Setup
0x600 HSTATUS HRW | Hypervisor status register (EXU_CSR).
0x602 HEDELEG HRW | Hypervisor exception delegation register (EXU_CSR).
0x603 HIDELEG HRW | Hypervisor interrupt delegation register (EXU_CSR).
0x604 HIE HRW | Hypervisor interrupt-enable register (EXU_CSR)
0x606 HCOUNTEREN HRW | Hypervisor counter enable (EXU_CSR)
0x607 HGEIE HRW | Hypervisor guest external interrupt-enable register
(EXU_CSR).
0x60A HENVCFG HRW | Hypervisor environment configuration register (EXU_CSR).
0x60C HSTATEENO HRW | Hypervisor state enable 0 register - Helps in controlling
access to certain user-accessible registers which can't be
controlled otherwise.
0x60D HSTATEEN1 HRW | Hypervisor state enable 1 register.
0x60E HSTATEEN2 HRW | Hypervisor state enable 2 register.
0x60F HSTATEEN3 HRW | Hypervisor state enable 3 register.
Hypervisor Trap Handler
0x643 HTVAL HRW | Hypervisor bad guest physical address register
(EXU_ARF_CSR).
0x644 HIP HRW | Hypervisor interrupt pending register (EXU_CSR).
0x645 HVIP HRW | Hypervisor virtual interrupt pending register (EXU_CSR).
Ox64A HTINST HRW | Hypervisor trap instruction register (transformed)
(EXU_CSR).

SMIPS

a GlobalFoundries company

59
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 6.1 CSR Register Map (continued)

Offset Name Type Description
OxE12 HGEIP HRO | Hypervisor guest external interrupt pending register
(EXU_CSR).
Hypervisor Counter/Timer Virtualization Registers
0x605 HTIMEDELTA HRW | Delta for VS/VU-mode timer register (EXU_CSR).
Hypervisor Protection and Translation
0x680 HGATP HRW | Hypervisor guest address translation and protection register
(EXU_CSR).
Machine Counter/Timers
0xB00 MCYCLE MRW | Machine cycle counter (EXU_CSR).
0xB02 MINSTRET MRW | Machine instructions-retired counter register (EXU_CSR).
0xB03 MHPMCOUNTER3 MRW | Machine Perf-mon counter 3 register (EXU_CSR) HOW
MANY?
MRW |....
OxB1F MHPMCOUNTER31 MRW | Machine Perf-mon counter 31 register (EXU_CSR) HOW
MANY?
Machine Information Registers
OxF11 MVENDORID MRO | Vendor ID register (EXU_CSR).
0xF12 MARCHID MRO | Architecture ID register (EXU_CSR).
OxF13 MIMPID MRO | Implementation ID register (EXU_CSR).
OxF14 MHARTID MRO |Hardware thread ID register (EXU_CSR).
OxF15 MCONFIGPTR MRO | Configuration pointer register (EXU_CSR).
User Counter/Timers
0xC00 CYCLE URO | Cycle counter for RDCYCLE instruction register.
0xC01 TIME URO | Timer for RDTIME instruction register.
0xC02 INSTRET URO Instructions-retired counter for RDINSTRET instruction reg-
ister.
0xC03 HPMCOUNTER3 URO | Performance monitor (Perfmon) counter 3 register.
0xC04 HPMCOUNTER4 URO | Performance monitor (Perfmon) counter 4 register.
0xC05 HPMCOUNTER5 URO | Performance monitor (Perfmon) counter 5 register.
0xC06 HPMCOUNTERG6 URO | Performance monitor (Perfmon) counter 6 register.
MIPS Custom CSRs
0x7CO MIPSTVEC MIPS trap vector register.
0x7C5 MIPSCACHEERR MRW | MIPS cache error register per CPU. For privileged level R/'W
permission, refer to register description.
0x7C6 MIPSERRCTL MRW | MIPS error control register per CPU.
0x7C8 MIPSDIAGDATA MIPS diagnostic data register.
0x7C9 MIPSBCCONFIG MRW | Buffer cache configuration register per CPU. For privileged
level R/W permission, refer to the description.

\}\<M I PS Copyrig?iggg}g

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 6.1 CSR Register Map (continued)

Offset Name Type Description

0x7CA MIPSBCACTVSEG MRW | MIPS buffer cache active segment per hart. For priviliged
level R/W permission, refer to the description.

0x7CB MIPSINTCTL MRW | MIPS interrupt control register.

0x7CC MIPSDSPRAMBASE MRW | MIPS DSPRAM base address register.

0x7CD MIPSISPRAM MRW | MIPS ISPRAM base address register.

0x7D1 MIPSCONFIG1 MRO | MIPS configuration register 1.

0x7D4 MIPSCONFIG4 MRW | MIPS configuration register 4.

0x7D5 MIPSCONFIG5 MRW | MIPS configuration register 5.

0x7D6 MIPSCONFIG6 MRW | MIPS configuration register 6.

0x7D7 MIPSCONFIG7 MRW | MIPS configuration register 7.

Ox7EO PMACFGO MRW | MIPS PMA configuration register 0.

Ox7E2 PMACFG2 MRW | MIPS PMA configuration register 2.

0x800 MIPSWFE MRO | MIPS wait for event register.

6.1 User Floating-Point Registers

The following registers are used for floating point operations in User mode.

6.1.1 Floating-Point Accrued Exception Register — offset 0x001

The Floating-Point Accrued Exception Register (FFLAGS) register allows the user to set
parameters such as overflow, underflow, and divide-by-zero.

Figure 6.1 Floating-Point Accrued Exception Register Bit Assignments

63 5 4 3 2 1 0
0 NV Dz OF UF NX
Table 6.2 Floating-Point Accrued Exception Register Bit Descriptions
Name Bits Description R/W Reset State

0 63:5 Reserved R 0
NV 4 Setting this bit indicates an invalid operation. R/W Undefined
Dz 3 Setting this bit indicates a divide-by-zero operation. R/W Undefined
OF 1 Setting this bit indicates an overflow condition. R/W Undefined
uv 1 Setting this bit indicates an underflow condition. R/W Undefined
NX 0 Setting this bit indicates an inexact condition. R/W Undefined

61

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
6.1.2 Floating-Point Dynamic Rounding Mode Register — offset 0x002

This register is a part of FCSR and holds the rounding mode for floating-point operations. Any
write to this CSR also sets the FS field to dirty in the MSTATUS register.

Figure 6.2 Floating-Point Dynamic Rounding Mode Register Bit Assighments

63 3 2 0

0 FRM

Table 6.3 Floating-Point Dynamic Rounding Mode Register Bit Descriptions

Name Bits Description R/W Reset State
0 63:3 Reserved R 0
FRM 2:0 Sets the rounding mode. This field is encoded as follows: R/W Undefined

000: RNE - Round to nearest, ties to even

001: RTZ - Round towards zero

010: RDN - Round down

011: RUP - Round up

100: RMM - Round to nearest, ties to maximum mag
101 - 110: Reserved

111: RFRM - Use CSR.FCSR.FM as rounding mode

6.1.3 Floating-Point Control and Status Register — offset 0x003

This register is a combined version of the FRM and FFLAGS registers described above. Any
write to these CSRs also sets the FS field to dirty in the MSTATUS register .

Figure 6.3 Floating-Point Accrued Exception Register Bit Assignments

63 8 7 5 4 3 2 1 0

0 FRM NV Dz OF UF NX

Table 6.4 Floating-Point Accrued Exception Register Bit Descriptions

Name Bits Description R/W Reset State
0 63:8 Reserved R 0
FRM 7:5 Sets the rounding mode. This field is encoded as follows: R/W Undefined

000: RNE - Round to nearest, ties to even

001: RTZ - Round towards zero

010: RDN - Round down

011: RUP - Round up

100: RMM - Round to nearest, ties to maximum mag
101 - 110: Reserved

111: RFRM - Use CSR.FCSR.FM as rounding mode
This field is a mirror of bits 2:0 of the FRM register.

NV 4 Setting this bit indicates an invalid operation. This bit is a R/W Undefined
mirror of bit 4 of the FFLAGS register.

Dz 3 Setting this bit indicates a divide-by-zero operation. This R/W 0
bit is a mirror of bit 3 of the FFLAGS register.

OF 2 Setting this bit indicates an overflow condition. This bit is R/W 0
a mirror of bit 2 of the FFLAGS register.

uv 1 Setting this bit indicates an underflow condition. This bit is R/W 0

a mirror of bit 1 of the FFLAGS register.

62

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.4 Floating-Point Accrued Exception Register Bit Descriptions (continued)

Name

Bits

Description

RW

Reset State

NX

0

Setting this bit indicates an inexact condition. This bit is a
mirror of bit O of the FFLAGS register.

R/W

0

6.2 Supervisor Trap Setup Registers

6.2.1 Supervisor Status (SSTATUS) — offset 0x100

This register (SSTATUS) is a mirrored version of the MSTATUS register. Similar to the above
CSRs, this is also a separate user-accessible version of MSTATUS.

Figure 6.4 Supervisor Status Register Bit Assignments

63 62 34 33 32
SD RSVD UXL
31 20 19 18 17 16 15 14 13 12 9 8 7 6 5 4 2 1 0

RSVD MXR| SUM|RSVD| XS FS RSVD SPP|RSVD|UBE|SPIE| RSVD | SIE |RSVD
Table 6.5 Supervisor Status Register Bit Descriptions
Name Bits Description R/IW Reset State
SD 63 Summarized dirty bit. Set by hardware. RO 0
RSVD 62:34 |Reserved. RO 0
UXL 33:32 | Value of XLEN for User mode. This field has the same RO CFG
value and encoding as MISA.MXL.
RSVD 31:20 |Reserved. RO 0
MXR 19 Make eXecutable Readable. R/W 0
SUM 18 Allow Supervisor User Memory access. R/W 0
RSVD 17 Reserved. RO 0
XS 16:15 | eXtension Status. RO 0
00: Off (No floating point instruction has executed)
01: Initial (Similar to reset value)
10: Clean (same as context save , no change)
11: Dirty (different from previous context save)
FS 14:13 | This field contains the floating point status and is encoded R/W 0
as follows:
00: Off (No floating point instruction has executed)
01: Initial (Similar to reset value)
10: Clean (same as context save , no change)
11: Dirty (different from previous context save)
RSVD 12:9 Reserved. RO 0
SPP Supervisor Prior Privilege. R/W 0
RSVD Reserved. RO 0
UBE This bit is set by hardware when the user is in Big Endian RO 0
mode.
\{k . 63

\ MIPS mips.com

4 Copyright © 2025

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.5 Supervisor Status Register Bit Descriptions (continued)

Name Bits Description R/IW Reset State
SPIE 5 Supervisor Previous Interrupt Enable. R/W 0
RSVD 4:2 Reserved. RO 0
SIE 1 Supervisor interrupt enable. Set this bit to enable inter- R/W 0
rupts in Supervisor mode.
RSVD 0 Reserved. RO 0

6.2.2 Supervisor Interrupt Enable (SIE) — offset 0x104

This register (SIE) is a mirrored version of the Machine Interrupt Enable (MIE) register. Sim-
ilar to the above CSRs, this is also a separate supervisor-accessible version of MIE.

Figure 6.5 Supervisor Interrupt Enable Register Bit Assignments

63 32
RSVD
31 26 25 24 21 20 19 18 17 16 15 14 13 12 10 9 8 6 5 4 2 1 0
RSVD |WDTE|RSVD| C20IE|C19IE|C18IE/C17IE|C16IE|RSVD| LCOFIE | RSVD |SEIE|RSVD|STIE| RSVD |[SSIE|RSVD
Table 6.6 Supervisor Interrupt Enable Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:26 | Reserved. RO 0
WDTE 25 WatchDog Timer interrupt Enable. Setting this bit enables R/W 0
Watchdog timer interrupts.
RSVD 24:21 | Reserved. RO 0
C20IE 20 Custom 20 interrupt enable (corresponding to MEI). This bit R/W Undefined
is aliased from MIE if the Interrupt Controller is not present.
C19IE 19 Custom 19 interrupt enable (corresponding to MEI). This bit R/W Undefined
is aliased from MIE if the Interrupt Controller is not present.
C18IE 18 Custom 18 interrupt enable (corresponding to MEI). This bit R/W Undefined
is aliased from MIE if the Interrupt Controller is not present.
C171E 17 Custom 17 interrupt enable (corresponding to MEI). This bit R/W Undefined
is aliased from MIE if the Interrupt Controller is not present.
C16IE 16 Custom 16 interrupt enable (corresponding to MEI). This bit R/W Undefined
is aliased from MIE if the Interrupt Controller is not present.
RSVD 15:14 | Reserved. RO 0
LCOFIE 13 Local Count Overflow Interrupt Enable (aliased from MIE). R/W Undefined
RSVD 12:10 |Reserved. RO 0
SEIE 9 Supervisor external interrupt enable (aliased from MIE). R/W Undefined
RSVD 8:6 Reserved. RO 0
STIE 5 Supervisor Timer Interrupt Enable (aliased from MIE). R/W Undefined
RSVD 4:2 Reserved. RO 0
SSIE 1 Supervisor Software Interrupt Enable (aliased from MIE). R/W Undefined
RSVD 0 Reserved. RO 0
\{k . 64
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
6.2.3 Supervisor Trap Handler Base Address (STVEC) — offset 0x105

This register (STVEC) contains the base address for supervisor mode exceptions. Similar to
the above CSRs, this is also a separate supervisor-accessible version of MIE.

Figure 6.6 Supervisor Trap Handler Base Address Register Bit Assignments
63 2 1 0

RSVD MODE

Table 6.7 Supervisor Trap Handler Base Address Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:2 Reserved. RO 0
MODE 1:0 This field contains the vector mode and has the same R/W Undefined

encoding as MTVEC.MODE. This encoding is below.

00: Direct. All exceptions set PC to BASE.

01: Vectored. Asynchronous interrupts set PC to BASE +
4xCAUSE.

10 - 11: Reserved.

6.3 Supervisor Counter/Timer Registers

6.3.1 Supervisor Counter Enable (SCOUNTEREN) — offset 0x106

This register (SCOUNTEREN) is used to enable the access to user accessible timer, cycle,
INSTRET, and HPM for User/Virtual User modes. When the corresponding bit is set , there will
be no exception.

Figure 6.7 Supervisor Counter Enable Register Bit Assignments

63 7 6 3 2 1 0

RSVD HPM IR| TM | CY

Table 6.8 Supervisor Counter Enable Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:7 Reserved. RO 0
HPM 6:3 Performance-Monitor counter enable. The 18500 supports 4 R/W Undefined

hpm counters. As such, each of the bits in this field is the
enable for one of the counters as described below.

Bit 3: Enable for hpm3.
Bit 4: Enable for hpm4.
Bit 5: Enable for hpm5.
Bit 6: Enable for hpm6.

IR 2 Instruction-Retired counter enable. R/W Undefined
0: Instruction retired counter is disabled.
1: Instruction retired counter is enabled.

™ 1 Timer counter enable. R/W Undefined
0: Timer counter is disabled.
1: Timer counter is enabled.

65

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.8 Supervisor Counter Enable Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
CYy 0 Cycle counter enable. R/W Undefined
0: Cycle counter is disabled.
1: Cycle counter is enabled.
6.3.2 Supervisor Environment Configuration (SENVCFG) — offset 0x10A
Figure 6.8 SENV Configuration Register Bit Assignments
63 8 7 6 5 3 0
RSVD CBZE| HPM | CBCFC | CBIE RSVD
Table 6.9 SENV Configuration Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:7 Reserved. RO 0
CBZE 7 When this bit is set, the Cache Block Zero instruction is R/W 0
Enabled (Zicboz).
CBCFC 6 When this bit is set, the Cache Block Clean and Flush R/W 0
instruction is Enabled (Zicbom).
CBIE 5:4 Cache Block Invalidate instruction Enable (Zicbom). This R/W 0
field is encoded as follows:
00: The instruction raises an illegal instruction or virtual
instruction exception.
01: The instruction is executed and performs a flush opera-
tion.
10: Reserved.
11: The instruction is executed and performs an invalidate
operation.
RSVD 3.0 Reserved. RO 0

6.3.3 Supervisor State Enable[0-3] (SSTATEN) — offset 0x10C/10D/10E/10F

These CSRs come as a part of SMSTATEEN/SSSTATEEN. To prevent application programs
from communicating via user-accessible CSRs/register the bits are introduced. Setting one
field enables the associated access for lower privilege levels, user mode in this case.

Figure 6.9 State Enable[0-3] Register Bit Assignments

63 62 0
SE[0-3] RSVD
Table 6.10 State Enable[0-3] Register Bit Descriptions
Name Bits Description R/W Reset State
SE[0-3] 63 State enable 0 - 3. There are four registers, one per state, at R/W 0
the four offsets shown above. This bit is R/W due to spec
requirements , even if no custom extension is present.
RSVD 62:0 Reserved. RO 0
\{k . 66
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
6.3.4 Supervisor Time Compare (STIMECMP) — offset 0x14D

A supervisor timer interrupt becomes pending as reflected in the STIP bit in the mip and sip
registers, whenever the actual time contains a value greater than or equal to stimecmp,
treating the values as unsigned integers. This provides an alternate mechanism for supervi-
sor programs to directly generate STIP without relying on M mode for it.

Figure 6.10 Supervisor Time Compare Register Bit Assignments

63 0

STIMECMP

Table 6.11 Supervisor Time Compare Register Bit Descriptions

Name Bits Description R/W Reset State

STIMECMP 63:0 Value which is compared against time counter for generating R/W Undefined
a STIP.

6.3.5 Supervisor Counter Overflow (SCOUNTOVF) — offset 0xDAO

This CSR comes as part of SSCOFPMF extension. This ensembles the OF bits from various
mhpmevent.

Figure 6.11 Supervisor Counter Overflow Register Bit Assignments
63 7 6 3 2 0

RSVD OF RSVD

Table 6.12 Supervisor Counter Overflow Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:7 Reserved RO 0
OF 6:3 4-bit read-only register that contains shadow copies of the RO 0

OF bits in the 4 mhpmevent CSRs - where scountovf bit X
corresponds to mhpmeventX.

RSVD 2:0 Reserved. RO 0

6.4 Supervisor Trap Handler Registers

6.4.1 Supervisor Trap Handler Scratch (SSCRATCH) — offset 0x140
It is used to hold supervisor context while executing user programs.

Figure 6.12 Supervisor Counter Overflow Register Bit Assignments

63 0

SSCRATCH

Table 6.13 Supervisor Counter Overflow Register Bit Descriptions

Name Bits Description R/W Reset State
SSCRATCH 63:0 Supervisor scratch register that stores the supervisor context R/W Undefined
during program execution.

67

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

6.4.2 Supervisor Exception Program Counter (SEPC) — offset 0x141

It is used to hold the supervisor exception program counter. The low-order bit 0 of the sepc
register is always zero. If MISA.C is not set sepc[1] is masked on reads.

Figure 6.13 Supervisor Exception Program Counter Register Bit Assignments

63 1 0
SEPC RSVD
Table 6.14 Supervisor Exception Program Counter Register Bit Descriptions
Name Bits Description R/W Reset State
SEPC 63:1 This field is used to store the supervisor exception program R/W Undefined
counter. Note that bit O of this register is reserved and is
always zero.
RSVD 0 Reserved. RO 0

6.4.3 Supervisor Trap Cause (SCAUSE) — offset 0x142

Whenever an exception or interrupt is taken, this CSR is written with the distinguishing

value.
Figure 6.14 Supervisor Trap Cause Register Bit Assignments
63 62 5 0
INT RSVD EXC
Table 6.15 Supervisor Trap Cause Register Bit Descriptions
Name Bits Description R/W Reset State
INT 63 Interrupt. R/W 0
RSVD 62:6 Reserved. RO 0
\{k . 68
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.15 Supervisor Trap Cause Register Bit Descriptions (continued)

Name

Bits

Description

RIW

Reset State

EXC

5.0

Exception Code. This field is divided into Interrrupt and Non-
Interrupt encodings as follows:

Non-Interrupt Meaning (decimal)

0 Instruction address misaligned
1 Instruction access fault

2 lllegal instruction

3 Breakpoint

4 Load address misaligned

5 Load access fault

6 Store/AMO address misaligned
7 Store/AMO access fault

8 Environment call from U-mode
9 Environment call from S-mode
11 Environment call from M-mode
12 Instruction page fault

13 Load page fault

15 Store/AMO page fault

20 Instruction Guest page fault
21 Load Guest page fault

22 Virtual Instruction Exception
23 Store Guest page fault

24 Instruction TLB Miss

25 Load TLB Miss

27 Store TLB Miss

28 Instruction Guest TLB Miss
29 Load Guest TLB Miss

31 Store Guest TLB Miss

Interrupt meaning (decimal):

1 Supervisor software interrupt

3 Machine software interrupt

5 Supervisor timer interrupt

7 Machine timer interrupt

9 Supervisor external interrupt

11 Machine external interrupt

13 Machine Performance interrupt
25 WatchDog Timer Interrupt

R/W

0

6.4.4 Supervisor Bad Address or Instruction (STVAL) — offset 0x143

This register is written along with the exception which assists the Interrupt Service Routine
(ISR) in further identifying the nature of the exception, such as faulting virtual address for
access fault , page fault or misaligned access.

63

Figure 6.15 Supervisor Bad Address or Instruction Register Bit Assignments

STVAL

SMIPS

a GlobalFoundries company

69
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.16 Supervisor Bad Address or Instruction Register Bit Descriptions

Name

Bits

Description

RIW

Reset State

STVAL

63:0

Faulting virtual address or faulting instruction (zero if not
supported).

R/W

Undefined

6.4.5 Supervisor Interrupt Pending (SIP) — offset 0x144

This register provide a limited view of Master Interrupt Pending (MIP) register. It contains all
the pending bits from internal interrupt sources such as STIP and external such as APLIC and
ACLINT.

Figure 6.16 Supervisor Interrupt Pending Register Bit Assignments

63 26 25 24 21 20 19 18 17 16 15 14 13 12 10 9 8 6 5 4 2 A1 0
RSVD [WDTPRSVD| C20IP|C19IP| C18IP|C17IP|C16IP| RSVD [LCOFIP| RSVD |SEIP| RSVD | STIP| RSVD | SSIP|RSVD
Table 6.17 Supervisor Interrupt Pending Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:26 | RSVD RO 0
WDTP 25 Watchdog timer interrupt. When set, indicates a watchdog R/W Undefined
timer interrupt is pending.
RSVD 24:21 | Reserved RO 0
C20IP 20 Custom 20 interrupt pending (corresponding to MEI). This bit RO Undefined
is aliased from MIP if AlA not present.
C19IP 19 Custom 19 interrupt pending (corresponding to MSI). This bit RO Undefined
is aliased from MIP if AIA not present.
c18IP 18 Custom 18 interrupt pending (corresponding to SEI). This bit RO Undefined
is aliased from MIP if AlA not present.
C171P 17 Custom 17 interrupt pending (corresponding to STI). This bit RO Undefined
is aliased from MIP if AlA not present.
C16IP 16 Custom 16 interrupt pending (corresponding to VSEI). This RO Undefined
bit is aliased from MIP if AIA not present.
RSVD 15:14 | Reserved RO 0
LCOFIP 13 Local Count Overflow Interrupt pending (aliased from MIP). R/W Undefined
RSVD 12:10 |Reserved RO 0
SEIP 9 Supervisor external interrupt pending. This interrupt is R/W 0
cleared by configuring the APLIC.
RSVD 8:6 Reserved RO
STIP 5 Supervisor timer interrupt pending (aliased from MIP). This RO
interrupt is cleared by writing to the STIMECMP register
described in the following section.
RSVD 4:2 Reserved RO
SSIP Supervisor software interrupt pending (aliased from MIP). R/W
RSVD 0 Reserved RO
\{k . 70
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

6.5 Supervisor Protection and Translation Registers

6.5.1 Supervisor Address Translation and Protection (SATP) — offset 0x180

63

This register controls address translation and protection for non-machine mode.

Figure 6.17 Supervisor Address Translation and Protection Register Bit Assignments

60 59

44 43 36 35

MODE

ASID

PPN(RO)

PPN (R/W)

Table 6.18 Supervisor Address Translation and Protection Register Bit Descriptions

Name

Bits

Description

RIW

Reset State

MODE

63:60

Address translation mode: The following encodings are valid
for this field. All those not shown are reserved.

0x0 - No translation or protection
0x8 - Page-based 39-bit virtual address
0x9 - Page-based 48-bit virtual addressing

R/W

0

ASID

59:44

Address space identifier. This 16-bit field defines the chunk
of address space selected for the operation.

R/W

PPN

43:36

Physical page number. This 8-bit field stores the upper 8 bits
of the PPN for the selected address space. This field is read-
only.

RO

35:0

Physical page number. This 36-bit field stores the lower 36
bits of the PPN for the selected address space. This field is
read-write.

R/W

6.6 Virtual Supervisor Registers

6.6.1 Virtual Supervisor Status (VSSTATUS) — offset 0x200

63

This register (VSSTATUS) is a mirrored version of the Supervisor sstatus register. When V =
1, vsstatus substitutes for the usual sstatus, so instructions that normally read or modify
sstatus actually access vsstatus instead.

62

Figure 6.18 Virtual Supervisor Status Register Bit Assignments

34 33 32
SD RSVD UXL
31 20 19 18 17 16 15 14 13 12 9 8 7 6 5 4 2 1 0

RSVD MXR| SUM|RSVD| XS FS RSVD SPP|RSVD|UBE|SPIE| RSVD SIE |RSVD
Table 6.19 Virtual Supervisor Status Register Bit Descriptions
Name Bits Description R/W Reset State
SD 63 Summarized dirty bit. Set by hardware. RO 0
RSVD 62:34 | Reserved. RO 0
\{k . 71
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.19 Virtual Supervisor Status Register Bit Descriptions (continued)

Name Bits Description R/IW Reset State
UXL 33:32 | Value of XLEN for Virtual User (VU) mode. This field has RO CFG
the same value and encoding as MISA.MXL.
RSVD 31:20 |Reserved. RO 0
MXR 19 Make eXecutable Readable. R/W 0
SUM 18 Allow Supervisor User Memory access. R/W 0
RSVD 17 Reserved. RO 0
XS 16:15 |eXtension Status. RO 0
00: Off (No floating point instruction has executed)
01: Initial (Similar to reset value)
10: Clean (same as context save , no change)
11: Dirty (different from previous context save)
FS 14:13 | This field contains the floating point status and is encoded R/W 0
as follows:
00: Off (No floating point instruction has executed)
01: Initial (Similar to reset value)
10: Clean (same as context save , no change)
11: Dirty (different from previous context save)
RSVD 12:9 Reserved. RO 0
SPP Supervisor Prior Privilege. R/W 0
RSVD Reserved. RO 0
UBE This bit is set by hardware when the user is in Big Endian RO 0
mode. (CM)
SPIE 5 Supervisor Previous Interrupt Enable. R/W 0
RSVD 4:2 Reserved. RO
SIE 1 Supervisor interrupt enable. Set this bit to enable inter- R/W 0
rupts in Supervisor mode.
RSVD 0 Reserved. RO 0

6.6.2 Virtual Supervisor Interrupt Enable (VSIE) — offset 0x204

This register (VSIE) is a mirrored version of the Supervisor Interrupt Enable (SIE) register.
Similar to the above CSRs, this is also a separate supervisor-accessible version of MIE.

63

Figure 6.19 Virtual Supervisor Interrupt Enable Register Bit Assignments

32

RSVD
31 26 25 24 21 20 19 18 17 16 15 14 13 2 10 9 8 6 5 4 2 1 0
RSVD [WDTE|RSVD| C20IE| C19IE|C18IE|C171E|C16IE|RSVD| LCOFIE | RSVD |SEIE|RSVD|STIE| RSVD |[SSIE|RSVD
Table 6.20 Virtual Supervisor Interrupt Enable Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:26 | Reserved. RO 0
\{k . 72
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.20 Virtual Supervisor Interrupt Enable Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
WDTE 25 WatchDog Timer interrupt Enable. Setting this bit enables R/W Undefined
Watchdog timer interrupts.
RSVD 24:21 | Reserved. RO 0
C20IE 20 Custom 20 interrupt enable (corresponding to SEI). This bit R/W Undefined
is aliased from MIE if the Interrupt Controller is not present.
C19IE 19 Custom 19 interrupt enable (corresponding to SEI). This bit R/W Undefined
is aliased from MIE if the Interrupt Controller is not present.
C18IE 18 Custom 18 interrupt enable (corresponding to SEI). This bit R/W Undefined
is aliased from MIE if the Interrupt Controller is not present.
C17IE 17 Custom 17 interrupt enable (corresponding to SEI). This bit R/W Undefined
is aliased from MIE if the Interrupt Controller is not present.
C16lE 16 Custom 16 interrupt enable (corresponding to SEI). This bit R/W Undefined
is aliased from MIE if the Interrupt Controller is not present.
RSVD 15:14 | Reserved. R/W 0
LCOFIE 13 Local Count Overflow Interrupt Enable (aliased from MIE). R/W Undefined
RSVD 12:10 |Reserved. R/W 0
SEIE 9 Supervisor external interrupt enable (aliased from MIE). R/W 0
RSVD 8:6 Reserved. RO 0
STIE 5 Supervisor Timer Interrupt Enable (aliased from MIE). R/W 0
RSVD 4:2 Reserved. RO 0
SSIE 1 Supervisor Software Interrupt Enable (aliased from MIE). R/W 0
RSVD 0 Reserved. RO 0

6.6.3 Virtual Supervisor Trap Handler Base Address (VSTVEC) — offset 0x205

This register (VSTVEC) contains the base address for virtual supervisor mode exceptions.
Similar to the above CSRs, this is also a separate supervisor-accessible version of MIE.

Figure 6.20 Supervisor Trap Handler Base Address Register Bit Assignments

63 2 1 0

BASE MODE

Table 6.21 Supervisor Trap Handler Base Address Register Bit Descriptions

Name Bits Description R/W Reset State

BASE 63:2 This field contains the base address for a VS-mode excep- R/W Undefined
tion.

MODE 1:0 This field contains the vector mode and has the same R/W Undefined

encoding as MTVEC.MODE. This encoding is below.

00: Direct. All exceptions set PC to BASE.

01: Vectored. Asynchronous interrupts set PC to BASE +
4xCAUSE.

10 - 11: Reserved.

\}\<M I PS Copyrig?igfgz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

6.6.4 Virtual Supervisor Trap Handler Scratch (VSSCRATCH) — offset 0x240

It is used to hold supervisor context while executing user programs.

63

Figure 6.21 Virtual Supervisor Scratch Register Bit Assignments

VSSCRATCH

Table 6.22 Virtual Supervisor Scratch Register Bit Descriptions

Name

Bits

Description

R/W

Reset State

VSSCRATCH 63:0

VS-mode's version of the Supervisor register sscratch.
When V = 1, vsscratch substitutes for the usual sscratch, so
instructions that normally read or modify sscratch actually
access vsscratch instead.

R/W

0

63

6.6.5 Virtual Supervisor Exception Program Counter (VSEPC) — offset 0x241

This register is used to hold the virtual supervisor exception program counter. The low-order
bit 0 of the vsepc register is always zero. If MISA.C is not set, vsepc[1] is masked on reads.

Figure 6.22 Supervisor Exception Program Counter Register Bit Assignments

1 0
VSEPC RSVD
Table 6.23 Supervisor Exception Program Counter Register Bit Descriptions
Name Bits Description R/W Reset State
VSEPC 63:1 VVS-mode's version of the Supervisor register sepc. When V R/W Undefined
=1, vsepc substitutes for the usual sepc, so instructions that
normally read or modify sepc actually access vsepc instead.
RSVD 0 Reserved. This bit is always zero. RO 0

6.6.6 Virtual Supervisor Trap Cause (VSCAUSE) — offset 0x242

Whenever an exception or interrupt is taken, this CSR is written with the distinguishing

value.
Figure 6.23 Virtual Supervisor Trap Cause Register Bit Assignments
63 62 6 5 0
INT RSVD EXC
Table 6.24 Virtual Supervisor Trap Cause Register Bit Descriptions
Name Bits Description R/W Reset State
INT 63 Interrupt. R/W 0
RSVD 62:6 Reserved. RO 0
\{k . 74
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.24 Virtual Supervisor Trap Cause Register Bit Descriptions (continued)

Name

Bits

Description

RIW

Reset State

EXC

5.0

Exception Code. This field is divided into Interrrupt and Non-
Interrupt encodings as follows:

Non-Interrupt Meaning (decimal)

0 Instruction address misaligned
1 Instruction access fault

2 lllegal instruction

3 Breakpoint

4 Load address misaligned

5 Load access fault

6 Store/AMO address misaligned
7 Store/AMO access fault

8 Environment call from U-mode
9 Environment call from S-mode
11 Environment call from M-mode
12 Instruction page fault

13 Load page fault

15 Store/AMO page fault

20 Instruction Guest page fault
21 Load Guest page fault

22 Virtual Instruction Exception
23 Store Guest page fault

24 Instruction TLB Miss

25 Load TLB Miss

27 Store TLB Miss

28 Instruction Guest TLB Miss
29 Load Guest TLB Miss

31 Store Guest TLB Miss

Interrupt meaning (decimal):

1 Supervisor software interrupt

3 Machine software interrupt

5 Supervisor timer interrupt

7 Machine timer interrupt

9 Supervisor external interrupt

11 Machine external interrupt

13 Machine Performance interrupt
25 WatchDog Timer Interrupt

R/W

0

6.6.7 Virtual Supervisor Bad Address of Instruction (VSTVAL) — offset 0x243

This register is written along with the exception which assists the Interrupt Service Routine
(ISR) in further identifying the nature of the Virtual Supervisor exception, such as faulting
virtual address for access fault, page fault, or misaligned access.

Figure 6.24 Virtual Supervisor Bad Address or Instruction Register Bit Assignments

63

VSTVAL

SMIPS

a GlobalFoundries company

75
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.25 Supervisor Bad Address or Instruction Register Bit Descriptions

Name

Bits

Description

RIW

Reset State

VSTVAL

63:0

VS-mode's version of supervisor register stval. When V = 1,
vstval substitutes for the usual stval, so instructions that nor-
mally read or modify stval actually access vstval instead.

R/W

Undefined

6.6.8 Virtual Supervisor Interrupt Pending (VSIP) — offset 0x244

This register provides a limited view of Supervisor Interrupt Pending (SIP) register. It con-
tains all the pending bits from internal interrupt sources such as STIP and external sources
such as APLIC and ACLINT.

Figure 6.25 Virtual Supervisor Interrupt Pending Register Bit Assignments

63 26 25 24 21 20 19 18 17 16 15 14 13 12 10 9 8 6 5 4 2 1 0
RSVD [WDTPRSVD| C20IP|C19IP|C18IP|C17IP|C16IP| RSVD [LCOFIP| RSVD |SEIP| RSVD | STIP| RSVD | SSIP|RSVD
Table 6.26 Virtual Supervisor Interrupt Pending Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:26 | Reserved. RO 0
WDTP 25 Watchdog timer interrupt. When set, indicates a watchdog R/W 0
timer interrupt is pending.
RSVD 24:21 Reserved RO 0
C20IP 20 Custom 20 interrupt pending (corresponding to MEI). This bit R/W Undefined
is aliased from MIP if AlA not present.
C19IP 19 Custom 19 interrupt pending (corresponding to MSI). This bit R/W Undefined
is aliased from MIP if AlA not present.
C18IP 18 Custom 18 interrupt pending (corresponding to SEI). This bit R/W Undefined
is aliased from MIP if AIA not present.
C171P 17 Custom 17 interrupt pending (corresponding to STI). This bit R/W Undefined
is aliased from MIP if AlA not present.
C16IP 16 Custom 16 interrupt pending (corresponding to VSEI). This R/W Undefined
bit is aliased from MIP if AlA not present.
RSVD 15:14 | Reserved RO 0
LCOFIP 13 Local Count Overflow Interrupt pending (aliased from MIP). RO 0
RSVD 12:10 |Reserved RO 0
SEIP 9 Virtual Supervisor external interrupt pending. This interrupt is RO 0
cleared by configuring the APLIC.
RSVD 8:6 Reserved RO 0
STIP 5 Virtual Supervisor timer interrupt pending (aliased from MIP). RO
This interrupt is cleared by writing to the STIMECMP register
described in the following section.
RSVD 4:2 Reserved RO
SSIP 1 Virtual Supervisor software interrupt pending (aliased from R/W
MIP).
RSVD 0 Reserved RO 0
\{k . 76
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

6.6.9 Virtual Supervisor Time Compare (VSTIMECMP) — offset 0x24D

A virtual supervisor timer interrupt becomes pending as reflected in the VSTIP bit in the mip
and hip registers, whenever (time + htimedelta) contains a value greater than or equal to
vstimecmp, treating the values as unsigned integers. This provides an alternate mechanism
for supervisor programs to directly generate VSTIP without relying on M mode for it.

63

Figure 6.26 Virtual Supervisor Time Compare Register Bit Assignments

VSTIMECMP

Table 6.27 Virtual Supervisor Time Compare Register Bit Descriptions

Name

Bits

Description

R/W

Reset State

VSTIMECMP

63:0

Value which is compared against time counter for generating
a VSTIPR.

R/W

0

6.6.10 Virtual Supervisor Address Translation and Protection (VSATP) — offset 0x280

This register controls address translation and protection for Virtual Supervisor (VS) mode.

Figure 6.27 Virtual Supervisor Address Translation and Protection Register Bit Assignments

a GlobalFoundries company

63 60 59 44 43 36 35 0
MODE ASID PPN RSVD
Table 6.28 Virtual Supervisor Address Translation and Protection Register Bit Descriptions
Name Bits Description R/W Reset State
MODE 63:60 | Address translation mode: The following encodings are valid R/W 0
for this field. All those not shown are reserved.
0x0 - No translation or protection
0x8 - Page-based 39-bit virtual address
0x9 - Page-based 48-bit virtual addressing
ASID 59:44 | Address space identifier. This 16-bit field defines the chunk R/W 0
of address space selected for the operation.
PPN 43:36 | Physical page number. This 8-bit field stores the upper 8 bits RO 0
of the PPN for the selected address space. This field is read-
only.
35:0 Physical page number. This 36-bit field stores the lower 36 R/W 0
bits of the PPN for the selected address space. This field is
read-write.
\{k . 77
\ MIPS mips.com
4 Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

6.7 Machine Trap Setup Registers

This section describes the 18500 Machine mode trap setup registers.
6.7.1 Machine Status (MSTATUS) — offset 0x300
This register (MSTATUS) provide the current device status in Machine mode.

Figure 6.28 Machine Status Register Bit Assignments

63 62 40 39 38 37 36 35 34 33 32
SD RSVD MPV|GVA| MBE |SBE| SXL UXL
31 23 22 21 20 19 18 17 16151413 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD |TSR| TW [TVM| MXR|SUM|MPRV| XS | FS | MPP [RSVD| SPP |MPIE|UBE| SPIE | RSVD|MIE|RSVD|SIE[RSVD

Table 6.29 Machine Status Register Bit Descriptions

Name Bits Description R/IW Reset State
SD 63 When set, the line has been Summarized Dirty. RO 0

RSVD 62:40 |Reserved. RO 0
MPV 39 Machine Previous Virtualization Mode. R/W 0
GVA 38 Guest Virtual Address. When set, the most recent trap to R/W 0

Machine mode set a guest virtual address.
MBE 37 When set, indicates Machine mode is Big Endian. RO 0
SBE 36 When set, indicates Supervisor mode is Big Endian. RO
SXL 35:34 | Supervisor register length, same value and encoding as RO
MISA.MXL.
UXL 33:32 | User register length, same value and encoding as RO 0
MISA.MXL.

RSVD 31:23 | Reserved. RO 0
TSR 22 Trap SRET. R/W 0
TW 21 Trap on Wait for interrupt. R/W 0
TVM 20 Trap on Virtual Memory. R/W 0
MXR 19 Make eXecutable Readable. R/W 0
SUM 18 When set, permit Supervisor User Memory access R/W 0

MPRV 17 Machine mode load/store accesses use MPP privilege R/W 0

level.
XS 16:15 | eXtention Status. RO 0
00: Off (No floating point instruction has executed)
01: Initial (Similar to reset value)
10: Clean (same as context save , no change)
11: Dirty (different from previous context save)

78

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.29 Machine Status Register Bit Descriptions (continued)

Name Bits Description R/IW Reset State
FS 14:13 | Floating-point Status. R/W 0
00: Off (No floating point instruction has executed)
01: Initial (Similar to reset value)
10: Clean (same as context save , no change)
11: Dirty (different from previous context save)
MPP 12:11 | Machine Previous Privilege. R/W 0
00: User
01: Supervisor
10: Reserved
11: Machine
RSVD 10:9 Reserved. RO 0
SPP 8 Supervisor Previous Privilege. R/W 0
MPIE 7 Machine Previous Interrupt Enabled. R/W 0
UBE 6 User mode is Big Endian. RO 0
SPIE 5 Supervisor Previous Interrupt Enable. R/W 0
RSVD 4 Reserved. RO 0
MIE 3 Machine mode Interrupt Enable. R/W 0
RSVD 2 Reserved. RO 0
SIE 1 Supervisor mode Interrupt Enable. R/W 0
RSVD 0 Reserved. RO 0
6.7.2 Machine ISA and Extensions (MISA) — offset 0x301
This register (MIA) provides Machine mode ISA and extensions information.
Figure 6.29 Machine ISA and Extensions Register Bit Assignments
63 62 61 32
MXL RSVD
31 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD | Zz| Y| X|W|V|U|T|S|R|Q|P|O|N|M|L|K|{J|I|H|G|F|E| D]|C| B [|A
Table 6.30 Machine ISA and Extensions Register Bit Descriptions
Name Bits Description R/W Reset State
MXL 63:62 | Machine register Length, same value and encoding as RO 0
misa.mxl.
RSVD 61:26 |Reserved. RO 0
4 25 Reserved for future extension. RO 0
Y 24 Reserved for future extension. RO 0
X 23 Non-standard extensions present. RO 0
w 22 Reserved for future extension. RO 0
\% 21 Reserved for vector extension. RO 0
\{k . 79
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.30 Machine ISA and Extensions Register Bit Descriptions (continued)

Name Bits Description R/IW Reset State
U 20 User mode is supported. RO 1
T 19 Reserved for transactional memory extension. RO 0
S 18 Supervisor mode supported RO 1
R 17 Reserved for future extension. RO 0
Q 16 Quad-precision floating-point supported. RO 0
P 15 Reserved for Packed-SIMD extension. RO 0
0] 14 Reserved for future extension. RO 0
N 13 User-level interrupts supported. RO 0
M 12 Integer multiply-divide extension supported. RO 1
L 1" Reserved for Decimal floating-point extension. RO 0
K 10 Reserved for future extension. RO 0
J 9 Reserved for Dynamically Translated Languages exten- RO 0

sion
| 8 RV641 base ISA supported. RO 1
H 7 Hypervisor extension supported. RO 1
G 6 Reserved for future extension. RO 0
F 5 Single-precision floating-point extension supported. RO 1
E 4 RV32E base ISA. RO 0
D 3 Double-precision floating-point extension supported. RO 1
C 2 Compressed extension supported (Based on RV-204). RO 1
B 1 Bitmanip extension supported. RO 1
A 0 Atomic extension supported. RO 1

6.7.3 Machine Exception Delegation (MEDELEG) — offset 0x302

This register provides status on various Machine exceptions, including page faults and mis-
aligned accesses.

Figure 6.30 Machine Exception Delegation Register Bit Assignments

63 24 23 22 21 20 19 16 15 14 13 12 11
ST _GST_ LD_GST_ |INST_GST_ INST_
RSVD PFAULT VINST PFAULT PFAULT RSVD | STPFAULT |RSVD|LDPFAULT PFAULT RSVD
10 9 8 7 6 5 4 3 2 1 0
ENVCALL_ | ENVCALL_ STADRS _ LDADRS _ INSTADRS _
ENVCALL_VS SMODE UMODE STFAULT MALIGN LDFAULT MALIGN BKPOINT| RSVD MALIGN
Table 6.31 Machine Exception Delegation Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 62:24 | Reserved. RO 0
ST_GST_PFAULT 23 Delegate Guest Store Page fault exceptions to S-mode. R/W 0
VINST 22 Delegate virtual instruction exceptions to S-mode. R/W 0

\}\<M I PS Copyrig?ig;::é

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.31 Machine Exception Delegation Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
LD _GST_PFAULT 21 Delegate Guest Load Page fault exceptions to S-mode. R/W Undefined
INST_GST_PFAULT 20 Delegate Guest Instruction Page fault exceptions to S- R/W Undefined
mode.
RSVD 19:16 | Reserved. RO Undefined
STPFAULT 15 When set, indicates store/AMO page fault R/W Undefined
RSVD 14 Reserved RO Undefined
LDPFAULT 13 When set, indicates a load page fault. R/W Undefined
INST_PFAULT 12 When set, indicates and instruction page fault. R/W Undefined
RSVD 11 Reserved. RO Undefined
ENVCALL_VS 10 When set, indicates an environment call from Virtual R/W Undefined
Supervisor (VS) mode.
ENVCALL_SMODE 9 When set, indicates an environment call from Supervisor R/W Undefined
(S) mode.
ENVCALL_UMODE 8 When set, indicates an environment call from User (U) R/W Undefined
mode or Virtual User (VU) mode.
STFAULT 7 Setting this bit indicates a Store/AMO access faullt. R/W Undefined
STADRS_MALIGN 6 Setting this bit indicates a Store/AMO access is mis- R/W Undefined
aligned.
LDFAULT 5 Setting this bit indicates a load address fault. R/W Undefined
LDADRS_MALIGN 4 Setting this bit indicates a load address is misaligned. R/W Undefined
BKPOINT 3 When set, indicates a breakpoint has occurred. R/W Undefined
RSVD 2:1 Reserved. RO Undefined
INSTADRS_MALIGN 0 When set, indicates that the instruction address is mis- R/W Undefined
aligned.

6.7.4 Master Interrupt Delegation (MIDELEG) — offset 0x303

Figure 6.31 Machine Interrupt Delegation Register Bit Assignments

63 26 25 24 21 20 19 18 17 16
RSVD WDTD | RSVD | C20MD | C19MD c18MD | C17MD | C16MD

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

RSVD | LCOFID | SGEI | MEID | VSEID |SEID|RSVD| MTID | VSTID | STID |[RSVD|MSID| VSSID | SSID| RSVD

Table 6.32 Machine Interrupt Delegation Register Bit Descriptions

Name Bits Description R/W Reset State

RSVD 63:26 | Reserved. RO 0

WDTP 25 Watchdog timer interrupt - AlA. R/W Undefined

RSVD 24:21 | Reserved RO 0

C20MD 20 Custom 20 interrupt delegate. This bit is aliased from MIE if R/W Undefined
AlAis not present.

\}\<M I PS Copyrigr:ti‘g;::r:s]

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.32 Machine Interrupt Delegation Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
C19MD 19 Custom 19 interrupt delegate. This bit is aliased from MIP if R/W Undefined
AlAis not present.
C18MD 18 Custom 18 interrupt delegate. This bit is aliased from MIP if R/W Undefined
AlAis not present.
C17MD 17 Custom 17 interrupt delegate. This bit is aliased from MIP if R/W Undefined
AlAis not present.
C16MD 16 Custom 16 interrupt delegate. This bit is aliased from MIP if R/W Undefined
AlAis not present.
RSVD 15:14 | Reserved RO 0
LCOFID 13 Local Count Overflow Interrupt delegate. R/W 0
SGEI 12 HS-level Guest External Interrupt. RO 0
MEID 11 Machine External Interrupt Delegate. RO 0
VSEID 10 Virtual Supervisor external interrupt delegate. RO 1
SEID 9 Supervisor external interrupt delegate. R/W Undefined
RSVD 8 Reserved RO 0
MTID 7 Machine timer interrupt delegate. RO 0
VSTID 6 Virtual Supervisor timer interrupt delegate. RO 1
STID 5 Supervisor timer interrupt delegate. R/W Undefined
RSVD 4 Reserved RO 0
MSID 3 Machine software interrupt delegate. RO 0
VSSID 2 Virtual Supervisor software interrupt delegate. RO 1
SSID 1 Supervisor software interrupt delegate. R/W Undefined
RSVD 0 Reserved RO 0

6.7.5 Machine Interrupt Enable (MIE) — offset 0x304
This register (MIE) is used to enable or disable various machine mode interrupts.

Figure 6.32 Machine Interrupt Pending Register Bit Assignments

63 26 25 24 23 22 21 20 19 18 17 16
RSVD WDTE RSVD| IBERE RSVD C20IE | C19IE | C18IE |C17IE| C16IE
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD | LCOFIE| RSVD | MEIE | VSEIE | SEIE | RSVD | MTIE |VSTIE| STIE | RSVD | MSIE | VSSIE | SSIE| RSVD
Table 6.33 Machine Interrupt Enable Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:26 | Reserved. RO 0
WDTE 25 WatchDog Timer interrupt Enable. Setting this bit enables R/W Undefined
Watchdog timer interrupts.
RSVD 24 Reserved. RO 0
IBERE 23 Imprecise Bus Interrupt enable. R/W Undefined

\}\<M I PS Copyrig?igfgz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.33 Machine Interrupt Enable Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
RSVD 22:21 | Reserved. RO 0
C20IE 20 Custom 20 virtual interrupt enable. This bit is aliased from R/W Undefined
MIE if the Interrupt Controller is not present.
C19IE 19 Custom 19 virtual interrupt enable. This bit is aliased from R/W Undefined
MIE if the Interrupt Controller is not present.
C18IE 18 Custom 18 virtual interrupt enable. This bit is aliased from R/W Undefined
MIE if the Interrupt Controller is not present.
C17IE 17 Custom 17 virtual interrupt enable. This bit is aliased from R/W Undefined
MIE if the Interrupt Controller is not present.
C16IE 16 Custom 16 virtual interrupt enable. This bit is aliased from R/W Undefined
MIE if the Interrupt Controller is not present.
RSVD 15:14 | Reserved. R/W 0
LCOFIE 13 Local Count Overflow Interrupt Enable. R/W Undefined
RSVD 12 Reserved. R/W 0
MEIE 1" Machine external interrupt enable. R/W Undefined
VSEIE 10 Virtual Supervisor external interrupt enable. R/W Undefined
SEIE 9 Supervisor external interrupt enable. R/W Undefined
RSVD 8 Reserved. RO 0
MTIE 7 Machine Timer Interrupt Enable. R/W Undefined
VSTIE 6 Virtual Supervisor Timer Interrupt Enable. R/W Undefined
STIE 5 Supervisor Timer Interrupt Enable. R/W Undefined
RSVD 4 Reserved. RO 0
MSIE 3 Machine Software Interrupt Enable. R/W Undefined
VSSIE 2 Virtual Supervisor Software Interrupt Enable. R/W Undefined
SSIE 1 Supervisor Software Interrupt Enable. R/W Undefined
RSVD 0 Reserved. RO 0

6.7.6 Machine Trap Vector Base Address (MTVEC) — offset 0x305

This register (MTVEC) contains the base address for machine mode exceptions.
When MODE = 00, then mtvec.BASE = value[63:2].
When MODE = 01, then mtvec.BASE = value[63:10], 8'b00000000.

Figure 6.33 Machine Trap Vector Base Address Register Bit Assignments

63 2 1 0

BASE MODE

Table 6.34 Machine Trap Vector Base Address Register Bit Descriptions

Name Bits Description R/W Reset State

BASE 63:2 Base address for machine mode exceptions. R/W Undefined

\}\<M I PS Copyrig?igfgz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.34 Machine Trap Vector Base Address Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

MODE 1:0 This field contains the vector mode and has the same R/W Undefined
encoding as MTVEC.MODE. This encoding is below.

00: Direct. All exceptions set PC to BASE.

01: Vectored. Asynchronous interrupts set PC to BASE +
4xCAUSE.

10 - 11: Reserved.

6.7.7 Machine Counter Enable (MCOUNTEREN) — offset 0x306

This register (MCOUNTEREN) enables the access to user accessible cycle, time, and hpm-
counter from Machine mode for lower privilege levels i.e. VS/VU or U mode.

The counter-enable register mcounteren is a 64-bit register that controls the availability of
the hardware performance monitoring counters in S-mode.

When the CY, TM, IR, or HPMn bit in the mcounteren register is clear, attempts to read the
cycle, time, instret, or hpmcountern register while executing in HS-mode will cause an illegal
instruction exception. In addition with the SSTC extension, the TM bit provides access to
stimecmp and vstimecmp. When one of these bits is set, access to the corresponding register
is permitted. In User (U) mode , this is used as the first level check before checking the cor-
responding scounteren register in VS/VU mode. The Hypervisor register hcounteren is also
used in addition.

For the 18500, four performance counters are implemented. Therefore, all performance
counter control CSRs are implemented to support only 4 counters.
Figure 6.34 Machine Counter Enable Register Bit Assignments

63 7 6 3 2 1 0

RSVD HPM IR| TM | CY

Table 6.35 Machine Counter Enable Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:7 Reserved. RO 0
HPM 6:3 Performance-Monitor counter enable. The 18500 supports 4 R/W Undefined

hpm counters. As such, each of the bits in this field is the
enable for one of the counters as described below.

Bit 3: Enable for hpm3.
Bit 4: Enable for hpm4.
Bit 5: Enable for hpm5.
Bit 6: Enable for hpm6.

IR 2 Instruction-Retired counter enable. R/W Undefined
0: Instruction retired counter is disabled.
1: Instruction retired counter is enabled.

™ 1 Timer counter enable. R/W Undefined
0: Timer counter is disabled.
1: Timer counter is enabled.

CY 0 Cycle counter enable. R/W Undefined
0: Cycle counter is disabled.
1: Cycle counter is enabled.

\}\<M I PS Copyrigrati‘g;;zg

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
6.7.8 Machine Environment Configuration (MENVCFG) — offset 0x30A

Figure 6.35 Machine Environment Configuration Register Bit Assignments

63 62 62 8 7 6 5 4 3 0
STCE | PBMTE RSVD CBZE| CBCFC| CBIE RSVD
Table 6.36 Machine Environment Configuration Register Bit Descriptions

Name Bits Description R/W Reset State

STCE 63 Stimecmp/Vstimecmp Extension Enable. This bit controls R/W 0
access to VSTIMECMP and affects the definition of vstip.

PBMTE 62 This bit controls whether the Svpbmt extension is available R/W 0
for use in VS-stage address translation.

RSVD 61:8 Reserved. RO

CBZE 7 When this bit is set, the Cache Block Zero instruction is R/W
Enabled (Zicboz).

CBCFC 6 When this bit is set, the Cache Block Clean and Flush R/W 0
instruction is Enabled (Zicbom).

CBIE 5:4 Cache Block Invalidate instruction Enable (Zicbom). This R/W 0
field is encoded as follows:
00: The instruction raises an illegal instruction or virtual
instruction exception.
01: The instruction is executed and performs a flush opera-
tion.
10: Reserved.
11: The instruction is executed and performs an invalidate
operation.

RSVD 3.0 Reserved. RO o]

6.7.9 Machine State Enable[0] (MSTATEN) — offset 0x30C

These CSRs come as a part of SMSTATEEN/SSSTATEEN. To prevent application programs
from communicating via user accessible CSRs/register the bits are introduced. Setting one
field enables the associated access for lower privilege levels VS, VU, and U in this case.

Figure 6.36 Machine State Enable[0] Register Bit Assignments

63 62 61 60 59 58 57 56 0
SEO | ENVCFG | RSVD |AIA|RSVD| CONTEXT RSVD
Table 6.37 Machine State Enable[0] Register Bit Descriptions
Name Bits Description R/W Reset State
SEO 63 This bit controls access to the HSTATEN register. R/W 0
ENVCFG 62 This bit controls access to the HENVCFG register. R/W 0
RSVD 61:60 | Reserved. RO 0
AIA 59 This bit controls access to the AIA CSR registers. R/W 0
RSVD 58 Reserved. RO 0
\{k . 85
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.37 Machine State Enable[0] Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
CONTEXT 57 This bit controls access to the HCONTEXT register. R/W 0
RSVD 56:0 Reserved. RO 0

6.7.10 Machine State Enable[1-3] (MSTATEEN) — offset 0x30D/30E/30F

The three MSTATEEN[1-3] registers are used to control states 1 - 3. Each state register
resides at the offset addresses shown above. These registers control only the access to the
respective states, and do not include some of the functionality described in the MSTATENO
register described above.

Figure 6.37 Machine State Enable[1-3] Register Bit Assignments

63 62 0

SE[1-3] NI

Table 6.38 Machine State Enable[1-3] Register Bit Descriptions

Name Bits Description R/W Reset State

SE[1-3] 63 State enable 1 - 3. There are three registers, one per state, R/W 0
at the three offsets shown above. This bit is R/W due to spec
requirements , even if no custom extension is present.

NI 62:0 Not Implemented. For Custom Extensions which adds user RO 0
accessible registers it can be updated.

6.8 Machine Counter Setup Registers

6.8.1 Machine Counter Inhibit (MCOUNTINHIBIT) — offset 0x320

Figure 6.38 Machine Counter Inhibit Register Bit Assignments
63 7 6 3 2 1 0

RSVD HPM[3-6] IR | RSVD | CY

Table 6.39 Machine Counter Inhibit Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:7 Reserved. RO Undefined
HPM[3-6] 6:3 Performance-Monitor counter enable. The 18500 supports R/W 0x4

4 hpm counters. As such, each of the bits in this field is
the enable for one of the counters as described below.

Bit 3: Enable for hpma3.
Bit 4: Enable for hpm4.
Bit 5: Enable for hpm5.
Bit 6: Enable for hpm6.

IR 2 Setting this bit enables the instruction retired counter. R/W 1
RSVD 1 Reserved. RO 0

86

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.39 Machine Counter Inhibit Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

CY 0 Setting this bit enables the cycle counter. R/W 1

6.8.2 Machine Performance Monitor Event Select (MHPMEVENT[3-6]) — offset 0x323/
0x324/0x325/0x326

In the I8500, the MHPMEVENT[7-31] CSRs are not implemented. Reads to these locations
will return zero and writes are ignored.

Figure 6.39 Machine Performance Monitor Event Select[3-6] Register Bit Assignments

63 62 61 60 59 58 57 8 7 0

OF |MINH| SINH [UINH| VSINH | VUINH RSVD EVENTID

Table 6.40 Machine Performance Monitor Event Select[3-6] Register Bit Descriptions

Name Bits Description R/W Reset State
OF 63 Overflow status and interrupt disable bit that is set when RO Undefined
the counter overflows.

MINH 62 When set, the counting of events in M-mode is inhibited. R/W Undefined
SINH 61 When set, the counting of events in S/HS-mode is inhib- R/W Undefined

ited.

UINH 60 When set, the counting of events in U-mode is inhibited. R/W Undefined
VSINH 59 When set, the counting of events in VS-mode is inhibited. R/W Undefined
VUINH 58 When set, the counting of events in VU-mode is inhibited. R/W Undefined
RSVD 57:8 Reserved RO Undefined

EVENTID 7:0 Event ID from the event mapping table. For a list of event R/W Undefined
types encoded into this field, refer to Section 10.1.4, Core
Performance Counter Events.

6.9 Machine Trap Handling Registers

6.9.1 Machine Scratch (MSCRATCH) — offset 0x340
It is used to hold machine context information while executing user programs.

Figure 6.40 Machine Counter Overflow Register Bit Assignments
63 0

MSCRATCH

Table 6.41 Machine Counter Overflow Register Bit Descriptions

Name Bits Description R/W Reset State

MSCRATCH 63:0 Machine scratch register that stores the supervisor context R/W Undefined
during program execution.

\}\<M I PS Copyrigr:ti‘g;;zé

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

6.9.2 Machine Exception Program Counter (MEPC) — offset 0x341

It is used to hold the machine exception program counter. The low-order bit 0 of the mepc
register is always zero. If MISA.C is not set, mepc[1] is masked on reads.

Figure 6.41 Machine Exception Program Counter Register Bit Assignments

63 1 0
MEPC RSVD
Table 6.42 Machine Exception Program Counter Register Bit Descriptions

Name Bits Description R/W Reset State

MEPC 63:1 This field is used to store the machine exception program R/W Undefined
counter. Note that bit O of this register is reserved and is
always zero.

RSVD 0 Reserved. RO 0

6.9.3 Machine Trap Cause (MCAUSE) — offset 0x342

Whenever an exception or interrupt is taken, this CSR is written with the distinguishing

value.
Figure 6.42 Machine Trap Cause Register Bit Assignments
63 62 5 0
INT RSVD EXC
Table 6.43 Machine Trap Cause Register Bit Descriptions
Name Bits Description R/W Reset State
INT 63 Machine interrupt. R/W 0
RSVD 62:6 Reserved. RO 0
\{k . 88
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.43 Machine Trap Cause Register Bit Descriptions (continued)

Name

Bits

Description

RIW

Reset State

EXC

5.0

Exception Code. This field is divided into Interrrupt and Non-
Interrupt encodings as follows:

Non-Interrupt Meaning (decimal)

0 Instruction address misaligned
1 Instruction access fault

2 lllegal instruction

3 Breakpoint

4 Load address misaligned

5 Load access fault

6 Store/AMO address misaligned
7 Store/AMO access fault

8 Environment call from U-mode
9 Environment call from S-mode
11 Environment call from M-mode
12 Instruction page fault

13 Load page fault

15 Store/AMO page fault

20 Instruction Guest page fault
21 Load Guest page fault

22 Virtual Instruction Exception
23 Store Guest page fault

24 Instruction TLB Miss

25 Load TLB Miss

27 Store TLB Miss

28 Instruction Guest TLB Miss
29 Load Guest TLB Miss

31 Store Guest TLB Miss

Interrupt meaning (decimal):

1 Supervisor software interrupt

3 Machine software interrupt

5 Supervisor timer interrupt

7 Machine timer interrupt

9 Supervisor external interrupt

11 Machine external interrupt

13 Machine Performance interrupt
25 WatchDog Timer Interrupt

R/W

0

6.9.4 Machine Bad Address or Instruction (MTVAL) — offset 0x343

This register is written along with the exception which assists the Interrupt Service Routine
(ISR) in further identifying the nature of the exception, such as faulting virtual address for
access fault, page fault, or misaligned access.

This register adheres to the following protocols:

Mtval will be updated for any RISCV standard exceptions.

For any standard interrupt, the mtval will be set to zero.

For any custom mips exceptions the mtval will be set to zero, except for debug of
trigger related exception where the mtval will not be updated but will hold the
previous value.

SMIPS

a GlobalFoundries company

89
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

e For CBO.ZERO instruction TLB miss exceptions, the MTVAL CSR will be written with
the cache line aligned address, even when the actual base address for the instruction
is not cache line aligned.

Figure 6.43 Machine Bad Address or Instruction Register Bit Assignments

63

MTVAL

Table 6.44 Machine Bad Address or Instruction Register Bit Descriptions

Name

Bits

Description

RIW

Reset State

MTVAL

63:0

Faulting virtual address or faulting instruction (zero if not
supported).

Note: On a guest TLB miss exception, GPA>>2 is written to
mtval, and mtval2 remains 0.

On an MTLBWR.HG instruction, GPA is read from mtval, not
mtval2.

R/W

Undefined

6.9.5 Machine Interrupt Pending (MIP) — offset 0x344

This register provide the Machine Interrupt Pending (MIP) information. When a bit is set, the
corresponding interrupt is pending.

Figure 6.44 Machine Interrupt Pending Register Bit Assignments

63 26 25 24 23 22 21 20 19 18 17 16
RSVD WDTP RSVD| IBERP RSVD C20IP | C19IP| C18IP |C17IP| C16IP

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

RSVD | LCOFIP| RSVD | MEIP | VSEIP| SEIP | RSVD | MTIP |VSTIP| STIP | RSVD | MSIP| VSSIP | SSIP | RSVD

Table 6.45 Machine Interrupt Pending Register Bit Descriptions

Name Bits Description R/IW Reset State
RSVD 63:26 | Reserved. RO 0
WDTP 25 WatchDog Timer interrupt pending. When set, indicates a R/W Undefined
Watchdog timer interrupts is pending.
RSVD 24 Reserved. RO
IBERP 23 When set, indicates an imprecise bus interrupt is pending. R/W
Writable to 0
RSVD 22:21 | Reserved. RO 0
C20IP 20 Custom 20 virtual interrupt pending. This bit corresponds to RO Undefined
the MIE register if the Interrupt Controller is not present.
C19IP 19 Custom 19 virtual interrupt pending. This bit corresponds to RO Undefined
the MIE register if the Interrupt Controller is not present.
c18IP 18 Custom 18 virtual interrupt pending. This bit corresponds to RO Undefined
the MIE register if the Interrupt Controller is not present.
C171P 17 Custom 17 virtual interrupt pending. This bit corresponds to RO Undefined
the MIE register if the Interrupt Controller is not present.
\{k . 90
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.45 Machine Interrupt Pending Register Bit Descriptions (continued)

Name Bits Description R/IW Reset State
C16IP 16 Custom 16 virtual interrupt pending. This bit corresponds to RO Undefined
the MIE register if the Interrupt Controller is not present.
RSVD 15:14 |Reserved. RO 0
LCOFIP 13 When set, indicates a local count overflow interrupt is pending. R/W 0
RSVD 12 Reserved. RO 0
MEIP 1" When set, indicates a machine external interrupt is pending. RO Undefined
VSEIP 10 When set, indicates a virtual supervisor external interrupt is RO Undefined
pending.
SEIP 9 When set, indicates a supervisor external interrupt is pending. R/W Undefined
RSVD 8 Reserved. RO 0
MTIP 7 When set, indicates a machine timer interrupt is pending. RO Undefined
VSTIP 6 When set, indicates a virtual supervisor timer interrupt is pend- RO Undefined
ing.
STIP 5 When set, indicates a supervisor timer interrupt is pending. RO when 0
STCE,
R/W
otherwise
RSVD 4 Reserved. RO 0
MSIP 3 When set, indicates a machine software interrupt is pending. RO Undefined
VSSIP 2 When set, indicates a virtual supervisor software interrupt is R/W Undefined
pending.
SSIP 1 When set, indicates a supervisor software interrupt is pending. R/W
RSVD 0 Reserved. RO

The following interrupts need to be externally cleared before being internally cleared: MEI,
SEI, MTI, STI. These interrupts could be implemented as RO, no write to clear needed.

Custom Interrupts and the associated logic are present in non-AIA I8500 configurations. In
AIA enabled 18500 configurations, these custom Interrupts are not supported.

6.9.6 Machine Trap Instruction (MTINST) — offset 0x34A
Machine trap instruction register. This register is written when a trap occurs in M-mode.

Figure 6.45 Machine Trap Instruction Register Bit Assignments

63 16 15 0

RSVD MTINST

Table 6.46 Machine Trap Instruction Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:16 Reserved RO 0
MTINST 15:0 This field is written when a trap is taken in M-mode. It is writ- R/W Undefined

ten with 0x3000 when memory access is a read for VS-stage
translation and a guest page fault occurs.

\}\<M I PS Copyrigr:ti‘g;(;)?;

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
6.9.7 Machine Bad Guest Physical Address (MTVAL2) — offset 0x34B

Machine bad guest physical address register. This register is written when a guest TLB miss
occurs in M-mode. As noted below, this register works in conjunction with the MTVAL register
described in Section 6.9.4, "Machine Bad Address or Instruction (MTVAL) — offset 0x343".

Figure 6.46 Machine Bad Guest Physical Address Register Bit Assignments

63 46 45 0

RSVD MTVAL2

Table 6.47 Machine Bad Guest Physical Address Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:46 Reserved RO 0
MTVAL2 45:0 On a guest TLB miss exception, GPA>>2 is written to mtval, R/W Undefined

and mtval2 remains 0.

On an MTLBWR.HG instruction, GPA is read from mtval, not
mtval2.

mtval2 is updated for Inst guest page fault , load store guest
page fault.

6.10 Machine Memory Protection Registers

6.10.1 Physical Memory Protection Configuration 0 Register (PMPCFG0) — offset =
0x3A0

PMA Configuration register 0. This register controls the Read/Write/Execute accessibility to
any physical memory, either via an instruction fetch or load/store instructions.

Figure 6.47 PMP Configuration 0 Register Bit Assignments

63 56 55 48 47 49 39 32

PMP7CFG PMP6CFG PMP5CFG PMP4CFG

31 24 23 16 15 8 7 32

PMP3CFG PMP2CFG PMP1CFG PMPOCFG

Table 6.48 PMP Configuration 0 Register Bit Descriptions

Name Bits Description R/W Reset State
PMP7CFG 63:56 |PMP7 configuration field. R/W 0
PMP6CFG 55:48 | PMP6 configuration field. R/W 0
PMP5CFG 47:40 |PMPS5 configuration field. R/W 0
PMP4CFG 39:32 | PMP4 configuration field. R/W 0
PMP3CFG 31:24 | PMP3 configuration field. R/W 0
PMP2CFG 23:16 |PMP2 configuration field. R/W 0
PMP1CFG 15:8 | PMP1 configuration field. R/W 0
PMPOCFG 7:0 |PMPO configuration field. R/W 0

\}\<M I PS Copyrigr:ti‘gfgzn:

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Each of the 8-bit fields above is encoded the same way as shown in Table 6.49.

Table 6.49 PMP Configurations 0 and 2 Register Bit Descriptions

Name Bits Description R/IW Reset State
L 7 Indicates the corresponding PMP configuration is locked. R/W 0
RSVD 6:5 |Reserved. RO 0
A 4:3 Indicates the corresponding PMP configuration region used. This R/W 0

field is encoded as follows:

00: Null region (disabled) OFF

01: Top-of-range address TOR

10: Naturally aligned 4-byte NA4. This option is reserved in the
18500 (since G = 14, NA4 is reserved).

11: Naturally aligned power-of-two - NAPOT(>= 8 byte)

X 2 Indicates the corresponding PMP configuration is executable. R/W

w 1 Indicates the corresponding PMP configuration is writable. If R = 1, R/W
then update with new value, else it will be 0.

R 0 Indicates the corresponding PMP configuration is readable. R/W 0

If pmpcfgi.L is set (locked), then the respective pmpcfg[i] and pmpaddr[i] CSRs will not be
written, and writes will be dropped. If the configuration is locked, reset is the only option to
write the pmpcfg[i] and pmpaddr[i] registers.

NOTE: In the above paragraph, [i] can have a value of 0 or 2.

6.10.2 Physical Memory Protection Configuration 2 Register (PMPCFG2) — offset =
0x3A2

PMP Configuration register 2. This register controls the Read/Write/Execute accessibility to
any physical memory, either via an instruction fetch or load/store instructions.

Figure 6.48 PMP Configuration 2 Register Bit Assignments

63 56 55 48 47 49 39 32

PMP15CFG PMP14CFG PMP13CFG PMP12CFG

31 24 23 16 15 8 7 32

PMP11CFG PMP10CFG PMPOCFG PMP8CFG

Table 6.50 PMP Configuration 2 Register Bit Descriptions

Name Bits Description R/W Reset State
PMP15CFG 63:56 |PMP15 configuration field. R/W 0
PMP14CFG 55:48 | PMP14 configuration field. R/W 0
PMP13CFG 47:40 |PMP13 configuration field. R/W 0
PMP12CFG 39:32 | PMP12 configuration field. R/W 0
PMP11CFG 31:24 |PMP11 configuration field. R/W 0
PMP10CFG 23:16 |PMP10 configuration field. R/W 0
PMPOCFG 15:8 | PMP9 configuration field. R/W 0

{k 93
\\MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.50 PMP Configuration 2 Register Bit Descriptions (continued)

Name

Bits

Description R/W Reset State

PMP8CFG

7:0

PMP8 configuration field. R/W Undefined

Each of the fields above is encoded as described in Table 6.49 above.

6.10.3 Physical Memory Protection Address Registers (PMPADDRO - PMPADDR15) —
offset = 0x3B0 - 0x3BF

These 16 CSRs are configured to set the range for the associated pmpcfg physical address.

These registers are located at the following offset addresses.

63

Table 6.51 PMPADDR Offset Address Map

Offset Register
0x3B0 PMPADDRO
0x3B1 PMPADDR1
0x3B2 PMPADDR?2
0x3B3 PMPADDRS3
0x3B4 PMPADDRA4
0x3B5 PMPADDRS5
0x3B6 PMPADDR6
0x3B7 PMPADDRY7
0x3B8 PMPADDRS8
0x3B9 PMPADDR9
0x3BA PMPADDR10
0x3BB PMPADDR11
0x3BC PMPADDR12
0x3BD PMPADDR13
0x3BE PMPADDR14
0x3BF PMPADDR15

Figure 6.49 PMP Address[0-15] Register Bit Assignments

46 45 13 12 0

RSVD

PMPADDR[0-15] RSVD

Table 6.52 PMP Address[0-15] Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:46 |Reserved. RO 0
PMPADDR 45:13 | Physical Memory Protection Address. Bits 48:2 of the R/W 0
address value are stored in the lower 46 bits of this register.
12:0 |In pmpcfg address mode, bits 12:0 can be all 1s or all Os. RO 0
\{k . 94
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

For the i8500 with a granularity of G = 14:
e Read to any of the pmpaddri[G-2:0] will be read as all one's if pmpcfgi.A == NAPOT
e Read to any of the pmpaddri[G-1:0] will be read as all zero's if pmpcfgi.A == OFF/TOR

6.11 Hypervisor Trap Setup Registers

6.11.1 Hypervisor Status (HSTATUS) — offset 0x600

This register (HSTATUS) is a mirrored version of the MSTATUS register. Similar to the above
CSRs, this is also a separate user-accessible version of MSTATUS.

Figure 6.50 Hypervisor Status Register Bit Assignments

63 62 34 33 32
RSVD VSXL

31 23 22 21 20 19 18 17 12 11 10 9 8 7 6 5 4 0

RSVD | VTSR| VTW | VTVM| RSVD VGEIN RSVD |HU| SPVP | SPV | GVA| VSBE RSVD

Table 6.53 Hypervisor Status Register Bit Descriptions

Name Bits Description R/IW Reset State
RSVD 62:34 |Reserved. RO 0
VSXL 33:32 | Controls the effective XLEN for VS-mode, same value RO CFG

and encoding as MISA.MXL. Refer to the MISA register in
Section 6.7.2, "Machine ISA and Extensions (MISA) —

offset 0x301".

RSVD 31:23 | Reserved. RO 0

VTSR 22 This bit has the same value as the MSTATUS.TSR bit for R/W Undefined
VS-mode.

VTW 21 This bit has the same value as the MSTATUS.TW bit for R/W Undefined
VS-mode.

VTVM 20 This bit has the same value as the MSTATUS.TVM bit for RO Undefined
VS-mode.

RSVD 19:18 |Reserved. RO

VGEIN 17:12 | Virtual Guest External Interrupt Number. This field selects RO
a guest external interrupt source for VS-level external
interrupts.

In the 18500, the VGEIN is hard-wired to zero and
GEILEN is zero, so no implemented bits in hgeip or hgeie.

RSVD 11:10 | Reserved. RO 0
HU 9 Setting this bit indicates Hypervisor user mode. R/W Undefined
SPVP 8 Setting this bit indicates Supervisor Previous Virtual Privi- R/W Undefined
lege.
SPV 7 Setting this bit indicates the Supervisor Previous Virtual- R/W Undefined
ization mode.
GVA 6 Guest Virtual Address. This bit is updated by hardware R/W Undefined

whenever a trap is taken in HS-mode.

95

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.53 Hypervisor Status Register Bit Descriptions (continued)

Name Bits Description R/IW Reset State

VSBE 5 This bit controls the endianness of explicit memory R/W CM
accesses made in VS-mode. If VSBE = 0, explicit load
and store memory accesses made from VS-mode are lit-
tle-endian. If VSBE = 1, they are big-endian.

RSVD 4:0 Reserved. RO 0

6.11.2 Hypervisor Exception Delegation (HEDELEG) — offset 0x602

This register provides status on various Hypervisor exception, including page faults and mis-
aligned accesses.

Figure 6.51 Hypervisor Exception Delegation Register Bit Assignments

63 24 23 22 21 20 19 16 15 14 13 12 1
RSVD SFII;,D(\;USLTT_ VINST LIEF_/-(\;USL-!—I'_ INIS’IIKSI?'I'T —| RSVD | STPFAULT |RSVD| LDPFAULT PIE ASJET %I\I\JI\I\//I%AI\DLIIE_
10 9 8 7 6 5 4 3 2 1 0

RSVD E|_II\ISVI\§|: él[-)LE_ EB\I\//IC(:)AE)LIIE-_ STFAULT SI\-/IFQII_DIE?\I_ LDFAULT LSAABE% BKPOINT [ILINST FIXISITT lNS;'IA‘_IleRNS—M

Table 6.54 Hypervisor Exception Delegation Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 62:24 | Reserved. RO 0
ST_GST_PFAULT 23 When set, indicates store/AMO guest-page fault RO 0
VINST 22 When set, indicates a virtual instruction. RO 0
LD _GST_PFAULT 21 When set, indicates a load guest page fault. RO 0
INST_GST_PFAULT 20 When set, indicates an instruction guest page fault. RO 0
RSVD 19:16 | Reserved. RO 0
STPFAULT 15 When set, indicates store/AMO page fault R/W 0
RSVD 14 Reserved RO 0
LDPFAULT 13 When set, indicates a load page fault. R/W 0
INST_PFAULT 12 When set, indicates and instruction page fault. R/W 0
ENVCALL_MMODE 1" When set, indicates an environment call from Machine RO 0

(M) mode.

RSVD 10 Reserved. RO 0

ENVCALL_HSMODE 9 When set, indicates an environment call from HS mode. RO

ENVCALL_UMODE 8 When set, indicates an environment call from User (U) R/W
mode or Virtual User (VU) mode.
STFAULT 7 When set, indicates a store page fault. R/W
STADRS_MALIGN 6 When set, indicates that a store/AMO address is mis- R/W
aligned.
LDFAULT 5 When set, indicates a load access fault. R/W
LDADRS_MALIGN 4 When set, indicates that a load address is misaligned. R/W

\}\<M I PS Copyrig?igfgz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.54 Hypervisor Exception Delegation Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
BKPOINT 3 When set, indicates a breakpoint has occurred. R/W 0
ILINST 2 When set, indicates an illegal instruction. R/W 0
INSTFAULT 1 When set, indicates an instruction access fault. R/W 0
INSTADRS_MALIGN 0 When set, indicates that the instruction address is mis- R/W 0
aligned.
6.11.3 Hypervisor Interrupt Delegation (HIDELEG) — offset 0x603
Figure 6.52 Hypervisor Interrupt Delegation Register Bit Assignments
63 26 25 24 21 20 19 18 16
RSVD WDTP | RSVD | C20HD | C19HD C18HD C17HD | C16HD
15 14 13 12 11 10 9 7 6 5 3 2 12 0
RSVD LCOFIP RSVD VSEID RSVD VSTID RSVD VSSID RSVD
Table 6.55 Hypervisor Interrupt Delegation Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:26 | Reserved. RO 0
WDTP 25 Watchdog timer interrupt delegate. R/W Undefined
RSVD 24:21 | Reserved RO Undefined
C20HD 20 Custom 20 Hypervisor interrupt delegate. This bit is aliased R/W Undefined
from MIP if AIA not present.
C19HD 19 Custom 19 Hypervisor interrupt delegate. This bit is aliased R/W Undefined
from MIP if AlIA not present.
C18HD 18 Custom 18 Hypervisor interrupt delegate. This bit is aliased R/W Undefined
from MIP if AIA not present.
C17HD 17 Custom 17 Hypervisor interrupt delegate. This bit is aliased R/W Undefined
from MIP if AIA not present.
C16HD 16 Custom 16 Hypervisor interrupt delegate. This bit is aliased R/W Undefined
from MIP if AIA not present.
RSVD 15:14 | Reserved RO 0
LCOFIP 13 Local Count Overflow Interrupt delegate. R/W Undefined
RSVD 12:11 | Reserved RO 0
VSEID 10 Virtual Supervisor external interrupt delegate. R/W Undefined
RSVD 9:7 Reserved RO 0
VSTID 6 Virtual Supervisor timer interrupt delegate. R/W Undefined
RSVD 5:3 Reserved RO 0
VSSID 2 Virtual Supervisor software interrupt delegate. R/W Undefined
RSVD 1:0 Reserved RO 0
{k 97
\\M I PS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
6.11.4 Hypervisor Interrupt Enable (HIE) — offset 0x104

This register (HIE) is a mirrored version of the Machine Interrupt Enable (MIE) register. Sim-
ilar to the above CSRs, this is also a separate Hypervisor-accessible version of MIE.

63

Figure 6.53 Hypervisor Interrupt Enable Register Bit Assignments

32

RSVD
31 26 25 24 21 20 18 17 16 15 14 13 12 1 10 9 7 6 5 3 2 1.0
RSVD|WDTE|RSVD| C20IE| C19IE|C18IE|C17IE|C16IE|RSVD|LCOFIE|RSVD|VSSEIE| RSVD |VSTIERSVD| VSSIE | RSVD
Table 6.56 Hypervisor Interrupt Enable Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:26 | Reserved. RO 0
WDTE 25 WatchDog Timer interrupt Enable. Setting this bit enables R/W Undefined
Watchdog timer interrupts.
RSVD 24:21 Reserved. RO 0
C20IE 20 Custom 20 Hypervisor virtual interrupt enable This bit is R/W Undefined
aliased from MIE if the Interrupt Controller is not present.
C19IE 19 Custom 19 Hypervisor virtual interrupt enable This bit is R/W Undefined
aliased from MIE if the Interrupt Controller is not present.
C18IE 18 Custom 18 Hypervisor virtual interrupt enable This bit is R/W Undefined
aliased from MIE if the Interrupt Controller is not present.
C171E 17 Custom 17 Hypervisor virtual interrupt enable This bit is R/W Undefined
aliased from MIE if the Interrupt Controller is not present.
C16IE 16 Custom 16 Hypervisor virtual interrupt enable This bit is R/W Undefined
aliased from MIE if the Interrupt Controller is not present.
RSVD 15:14 | Reserved. R/W 0
LCOFIE 13 Local Count Overflow Interrupt Enable (aliased from MIE). R/W Undefined
RSVD 12:11 | Reserved. R/W 0
VSSEIE 10 VS-level external interrupt enable (aliased from MIE). R/W Undefined
RSVD 9:7 Reserved. RO 0
VSTIE 6 VS-level Timer Interrupt Enable (aliased from MIE). R/W Undefined
RSVD 5:3 Reserved. RO 0
SSIE 2 V/S-level Software Interrupt Enable (aliased from MIE). R/W Undefined
RSVD 1:0 Reserved. RO 0

6.11.5 Hypervisor Counter Enable (HCOUNTEREN) — offset 0x606

This register (HCOUNTEREN) enables the access to user accessible cycle, time, and hpm-
counter from Hypervisor mode for lower privilege levels i.e. VS/VU or U mode.

Figure 6.54 Hypervisor Counter Enable Register Bit Assignments

63 7 6 3 2 1 0
RSVD HPM IR| T™M | CY
\{k . 98
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.57 Hypervisor Counter Enable Register Bit Descriptions

Name

Bits

Description

RIW

Reset State

RSVD

63:7

Reserved.

RO

0

HPM

6:3

Performance-Monitor counter enable. The 18500 supports 4
hpm counters. As such, each of the bits in this field is the
enable for one of the counters as described below.

Bit 3: Enable for hpm3.
Bit 4: Enable for hpm4.
Bit 5: Enable for hpm5.
Bit 6: Enable for hpm6.

R/W

Undefined

Instruction-Retired counter enable.
0: Instruction retired counter is disabled.
1: Instruction retired counter is enabled.

R/W

Undefined

™

Timer counter enable.
0: Timer counter is disabled.
1: Timer counter is enabled.

R/W

Undefined

CcY

Cycle counter enable.
0: Cycle counter is disabled.
1: Cycle counter is enabled.

R/W

Undefined

6.11.6 Hypervisor Guest External Interrupt (HGEIE) — offset 0x607

VGEIN is hard-wired to zero and GEILEN is zero, so no implemented bits in hgeip or hgeie.

As such, the HGEIE register is not supported in the I8500. It is there so that program does

not generate an exception. The software may write and read to determine that it is a RO 0
register.

Figure 6.55 Hypervisor Guest External Interrupt Register Bit Assignments

63 1 0
HGEIE RSVD
Table 6.58 Hypervisor Guest External Interrupt Register Bit Descriptions
Name Bits Description R/W Reset State
HGEIE 63:1 This field is always 0 as the HGEIE function is not supported R/W 0
in the 18500.
RSVD 0 Reserved. RO 0
6.11.7 Hypervisor Environment Configuration (HENVCFG) — offset 0x60A
Figure 6.56 Hypervisor Environment Configuration Register Bit Assignments
63 62 62 8 7 6 5 4 3 0
STCE | PBMTE RSVD CBZE| CBCFC| CBIE RSVD
\{k . 99
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.59 Hypervisor Environment Configuration Register Bit Descriptions

Name Bits Description R/W Reset State
STCE 63 Stimecmp/Vstimecmp Extension Enable. This bit controls R/W 0
access to VSTIMECMP and affects the definition of vstip.
PBMTE 62 This bit controls whether the Svpbmt extension is available R/W 0
for use in VS-stage address translation.
RSVD 61:8 Reserved. RO
CBZE 7 When this bit is set, the Cache Block Zero instruction is R/W
Enabled (Zicboz).
CBCFC 6 When this bit is set, the Cache Block Clean and Flush R/W 0
instruction is Enabled (Zicbom).
CBIE 5:4 Cache Block Invalidate instruction Enable (Zicbom). This R/W 0
field is encoded as follows:
00: The instruction raises an illegal instruction or virtual
instruction exception.
01: The instruction is executed and performs a flush opera-
tion.
10: Reserved.
11: The instruction is executed and performs an invalidate
operation.
RSVD 3:0 Reserved. RO 0

6.11.8 Hypervisor State Enable[0] (HSTATEN) — offset 0x60C

These CSRs come as a part of SMSTATEEN/SSSTATEEN. To prevent application programs
from communicating via user accessible CSRs/register the bits are introduced. Setting one
field enables the associated access for lower privilege levels VS, VU, and U in this case.

Figure 6.57 Hypervisor State Enable[0] Register Bit Assignments

63 62 61 60 59 58 57 56
SEO ENVCFG | RSVD |AIA|RSVD| CONTEXT RSVD
Table 6.60 Hypervisor State Enable[0] Register Bit Descriptions

Name Bits Description R/W Reset State
SEOQ 63 This bit controls access to the HSTATEN register. R/W 0
ENVCFG 62 This bit controls access to the HENVCFG register. R/W 0
RSVD 61:60 |Reserved. RO 0
AIA 59 This bit controls access to the AIA CSR registers. R/W 0
RSVD 58 Reserved. RO 0
CONTEXT 57 This bit controls access to the HCONTEXT register. R/W 0
RSVD 56:0 Reserved. RO 0

6.11.9 Hypervisor State Enable[1-3] (SSTATEN) — offset 0x60D/60E/60F

The three HSTATEN[1-3] register are used to control states 1 - 3. Each state register resides
at the offset addresses shown above. These registers control only the access to the respec-

SMIPS

a GlobalFoundries company

100

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

tive states, and do not include some of the functionality described in the HSTATENO register
described above.

Figure 6.58 Hypervisor State Enable[1-3] Register Bit Assignments

63 62 0
SE[1-3] NI
Table 6.61 Hypervisor State Enable[1-3] Register Bit Descriptions
Name Bits Description R/W Reset State
SE[1-3] 63 State enable 1 - 3. There are three registers, one per state, R/W 0
at the three offsets shown above. This bit is R/W due to spec
requirements , even if no custom extension is present.
NI 62:0 Not Implemented. For Custom Extensions which adds user RO 0
accessible registers it can be updated.

6.12 Hypervisor Trap Handler Registers

6.12.1 Hypervisor Bad Address of Instruction (HTVAL) — offset 0x643

This register is written along with the exception which assists the Interrupt Service Routine
(ISR) in further identifying the nature of the exception, such as faulting virtual address for
access fault , page fault or misaligned access.

In the 18500, PA_SIZE = 48. Therefore, using the formulas shown below, PA_SIZE-2 = 48 -
2 = 46. Similarly, PA_SIZE-2-1 =48 - 2 - 1 = 45.
NOTE: The STVAL register described in Section 6.4.4, "Supervisor Bad Address or Instruction

(STVAL) — offset 0x143", can be written with the virtual address ,thus the full 64-bit value

can be used. Since the HTVAL register can only be written with the GPA , only bits 45:0 are
R/W.

Figure 6.59 Hypervisor Bad Address or Instruction Register Bit Assignments
63 46 45

RSVD HTVAL

Table 6.62 Hypervisor Bad Address or Instruction Register Bit Descriptions

Name Bits Description R/W Reset State

RSVD 63:46 Reserved RO 0
63:(PA_SIZE-2)

HTVAL 45:0 On a trap to HS-mode, may be written with exception spe- R/W Undefined
(PA_SIZE-2-1):0 |cific information in addition to what is written to STVAL.

6.12.2 Hypervisor Interrupt Pending (HIP) — offset 0x644

This register provide a limited view of Hypervisor Interrupt Pending (HVIP) register described

in the following section. When a bit is set here, enabled, and not delegated, an interrupt is
taken.

NOTE: When it is enabled via the hie register, and not delegated in the hideleg register, then

an interrupt is taken to HS mode , else it appears in the vsip register and interrupt is taken in
VS mode.

SMIPS

Copyright © 2025
a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Figure 6.60 Hypervisor Interrupt Pending Register Bit Assignments

63 26 25 24 14 13 12 1" 10 9 7 6 5 3 2 1 0

RSVD |(WDTP RSVD LCOFIP| SGEIP| RSVD | VSEIP | RSVD | VSTIP RSVD VSSIP RSVD

Table 6.63 Hypervisor Interrupt Pending Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:26 | RSVD RO 0
WDTP 25 Watchdog timer interrupt. When set, indicates a watchdog RO 0
timer interrupt is pending. Alias from HVIP register.
RSVD 24:14 | Reserved RO
LCOFIP 13 Local Count Overflow Interrupt pending (aliased from HVIP). RO
SGEIP 12 When set, indicates an HS-level guest external interrupt is RO
pending.
RSVD 11 Reserved RO
VSEIP 10 When set, indicates a VS-level guest external interrupt is RO
pending. Aliased from the MIP register.
RSVD 9:7 Reserved RO
VSTIP 6 When set, indicates a VS-level interrupt is pending. Aliased RO
from the MIP register. VS-level timer interrupt pending
(aliased from MIP). Set by writing to the VSTIMECMP regis-
ter if enabled from the ENVCFG register, 0 otherwise.
RSVD 5:3 Reserved RO
VSSIP 2 When set, indicates a VS-level software interrupt is pending. R/W
RSVD 1:0 Reserved RO

6.12.3 Hypervisor Virtual Interrupt Pending (HVIP) — offset 0x645

These bits can be visible in the vsip register if properly delegated and can be used by the
Hypervisor to send interrupts to the guest OS.

Figure 6.61 Hypervisor Virtual Interrupt Pending Register Bit Assignments

63 32
RSVD

31 26 25 24 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 3 2 1.0

RSVD|WDTP|RSVD| C20IP| C19IP|C18IP|C17IP|C16IP|RSVD| LCOFIP|RSVD| VSEIP | RSVD|VSTIP|[RSVD| VSSIP|RSVD

Table 6.64 Hypervisor Virtual Interrupt Pending Register Bit Descriptions

Name Bits Description R/W Reset State

RSVD 63:26 | Reserved. RO 0

WDTP 25 WatchDog Timer interrupt pending. When this bit is set, indi- R/W Undefined
cates a Watchdog timer interrupt is pending.

RSVD 24:21 | Reserved. RO 0

102

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.64 Hypervisor Virtual Interrupt Pending Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

C20IP 20 Custom 20 Hypervisor virtual interrupt pending (if AlA is not R/W Undefined
present.

C19IP 19 Custom 19 Hypervisor virtual interrupt pending (if AlA is not R/W Undefined
present.

C18IP 18 Custom 18 Hypervisor virtual interrupt pending (if AIA is not R/W Undefined
present.

C171P 17 Custom 17 Hypervisor virtual interrupt pending (if AIA is not R/W Undefined
present.

C16IP 16 Custom 16 Hypervisor virtual interrupt pending (if AlA is not R/W Undefined
present.

RSVD 15:14 | Reserved. R/W 0

LCOFIP 13 Local Count Overflow interrupt pending. R/W Undefined

RSVD 12:11 | Reserved. RO 0

VSEIP 10 VS-level external interrupt pending. R/W 0

RSVD 9:7 Reserved. RO 0

VSTIP 6 VS-level Timer Interrupt Enable. R/W 0

RSVD 5:3 Reserved. RO 0

VSSIP 2 VS-level Software Interrupt Enable. R/W 0

RSVD 1:0 Reserved. RO 0

6.12.4 Hypervisor Trap Instruction (HTINST) — offset 0x64A

Hypervisor trap instruction register. This register is written when a trap occurs in HS-mode.

63

Figure 6.62 Hypervisor Trap Instruction Register Bit Assignments

16 15

RSVD

HTINST

Table 6.65 Hypervisor Trap Instruction Register Bit Descriptions

written with 0x3000 when memory access is a read for VS-
stage translation and a guest page fault occurs.

Name Bits Description R/W Reset State
RSVD 63:16 Reserved RO 0
HTINST 15:0 This field is written when a trap is taken in HS mode. It is R/W Undefined

6.12.5 Hypervisor Guest External Interrupt Pending (HGEIP) — offset 0xE12

VGEIN is hard-wired to zero and GEILEN is zero, so no implemented bits in hgeip or hgeie.
As such, the HGEIP register is not supported in the 18500.

Figure 6.63 Hypervisor Guest External Interrupt Pending Register Bit Assignments

63 1 0
HGEIP RSVD
A
\\<M I PS mips.cl)(:g
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.66 Hypervisor Guest External Interrupt Pending Register Bit Descriptions

Name Bits Description R/W Reset State
HGEIP 63:1 Hypervisor guest external interrupt pending. This field is RO 0
always 0 as the HGEIP function is not supported in the
18500.
RSVD 0 Reserved. RO 0

6.13 Hypervisor Counter/Timer Virtualization Registers

6.13.1 Hypervisor Delta for VS/VU Mode Timer (HTIMEDELTA) — offset 0x605

Figure 6.64 Hypervisor Delta for VS/VU Mode Timer Register Bit Assignments
63 0

HTIMEDELTA

Table 6.67 Hypervisor Delta for VS/VU Mode Timer Register Bit Descriptions

Name Bits Description R/W Reset State

HTIMEDELTA 63:0 Reading the time CSR in VS or VU mode returns the sum of R/W Undefined
the contents of htimedelta and the actual value of time.

6.14 Hypervisor Protection and Translation Registers

6.14.1 Hypervisor Address Translation and Protection (HGATP) — offset 0x680
This register controls address translation and protection for Hypervisor mode.

Figure 6.65 Hypervisor Address Translation and Protection Register Bit Assignments
63 60 59 49 48 44 43 36 35 0

MODE RSVD VMID PPN RSVD

Table 6.68 Supervisor Address Translation and Protection Register Bit Descriptions

Name Bits Description R/W Reset State

MODE 63:60 | Address translation mode: The following encodings are valid R/W 0
for this field. All those not shown are reserved.

0x0 - No translation or protection
0x8 - Page-based 39-bit virtual address
0x9 - Page-based 48-bit virtual addressing

RSVD 59:49 | Reserved RO
VMID 48:44 | Virtual machine identifier, facilitates address-translation R/W
fences on a per-virtual-machine basis.
PPN 43:36 | Bits 43:36 are 0 because of max PA_LEN (= 48) - 12, which RO 0
is 36 bit is required to contain PPN
35:2 Physical page number. This 34-bit field stores the PPN R/W 0
within the guest physical root page table.
1:0 The two LSB bits of the PPN are always 0. RO 0

\}\<M I PS Copyrigr:ti‘g;(};:g

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

6.15 Machine Counter/Timer Registers

6.15.1 Machine Cycle Counter Register (MCYCLE) — offset 0xB00

This is the Machine cycle (MCYCLE) counter for the RDCYCLE instruction (EXU_CSR). The
MCYCLE register is accessible through machine mode only.

Figure 6.66 Cycle Register Bit Assignments

63 0

MCYCLE

Table 6.69 Cycle Register Bit Descriptions

Name Bits Description R/W Reset State

MCYCLE 63:0 Machine mode cycle counter. R/W 0

6.15.2 Machine Instruction-Retired Counter (MINSTRET) — offset 0xB02

This register (MINSTRET) contains the number of instructions retired in Machine mode.

Figure 6.67 Machine Instruction-Retired Counter Register Bit Assignments

63 0

MINSTRET

Table 6.70 Machine Instruction-Retired Counter Register Bit Descriptions

Name Bits Description R/W Reset State

MINSTRET 63:0 Contains machine instruction-retired counter information. R/W 0

6.15.3 Machine Performance Monitor Counter[3-6] (MHPMCOUNTER[3-6] — offset
0xB03/B04/B05/B06

In the I8500, each hart has four HPMCOUNTERs. The hpm counters are per-hart, so each
hart has its own CSR address space.

Figure 6.68 User Performance-Monitor Counter[3-6] Register Bit Assignments

63 0

MHPMCOUNTER

Table 6.71 User Performance-Monitor Counter[3-6] Register Bit Descriptions

Name Bits Description R/W Reset State

MHPMCOUNTER 63:0 Contains machine HPM counter information. R/W 0

Note that HPMCOUNTER[7-31] at offset addresses 0xC07 - OxC1F are reserved in the 18500
Multiprocessing System.

105

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

6.16 Machine Information and Identification Registers

6.16.1 Machine Vendor ID Register (MVENDORID) — offset = 0xF11

Figure 6.69 Machine Vendor ID Register Bit Assignments

31 0

MVENDORID

Table 6.72 Machine Vendor ID Register Bit Descriptions

Name Bits Description R/W Reset State
MVENDORID 63:0 Machine vendor ID number. RO From
configuration

6.16.2 Machine Architecture ID Register (MarchlD) — offset = 0xF12

The Machine Architecture ID register (MarchID) is an implementation dependent read-only
register specifying the microarchitecture version of the core. For MIPS Technologies imple-
mentations, the microarchitecture version is broken down into “class” and “uarch” versions
as described below.

Figure 6.70 Machine Architecture ID Register Bit Assignments
63 62 32

MSB RSVD

31 16 15 8 7 0

RSVD CLASS UARCH

Table 6.73 Machine Architecture ID Register Bit Descriptions

Name Bits Description R/W Reset State
MSB 63 The most significant bit of the marchid register is set to R From
one for commercial RISC-V cores, including MIPS Tech- configuration
nologies implementations.
RSVD 62:16 | Reserved R 0
CLASS 15:8 | AMIPS Technologies specific field encoding the core R From
“class” as follows: configuration

0x00: M-class core (alias = M)
0x01: I-class core (alias = 1)
0x02: P-class core (alias = P)
0x03 - OxFF: Reserved

UARCH 7:0 A MIPS Technologies specific field encoding the core R From
microarchitecture sub-version for the specified core class. configuration
See the core user manual for details.

6.16.3 Machine Implementation ID Register (mimpid) — offset = 0xF13

Machine IMPlementation ID register. mimpid is an implementation dependent read-only reg-
ister specifying the implementation version of the core. For MIPS Technologies implementa-

\}\<M I PS Copyrigr::g;é;:rz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

tions, the implementation version is broken down into “major”,

” \

versions as described below.

minor”,

” \

Figure 6.71 Machine Implementation ID Register Bit Assignments

patch” and “config”

63 56 55 48 47 40 39 32
MAJOR MINOR PATCH CONFIGID
31 0
RSVD
Table 6.74 Machine Implementation ID Register Bit Descriptions
Name Bits Description R/W Reset State
MAJOR 63:56 | AMIPS Technologies specific field encoding the core R From
major release version. configuration
MINOR 55:48 | AMIPS Technologies specific field encoding the core R From
minor release version. configuration
PATCH 47:40 | AMIPS Technologies specific field encoding the core R From
patch release version. configuration
CONFIGID 39:32 | AMIPS Technologies specific field which identifies the R From
core configuration. The encoding scheme for this field configuration
may vary by core type, see the core user manual for
details.
RSVD 31:0 Reserved. R

6.16.4 Machine Hart ID Register (mhartlD) — 0xF14

This read-only register contains a number uniquely identifying the hart within the system.
For RISC-V systems in general, a hart with mhartid = 0 must be present, and other harts can
be assigned any uniquely identifying number.

For MIPS Technologies implementations, the hartid is constructed from the number of the

current clusters within the system, the number of the current cores within the current cluster,
and the number of the current harts within the current core, as described below. This register
is organized in the RV32 format.

Figure 6.72 Machine Hart ID Register Bit Assignments

63 22 21 16 15 12 11 4 3 0
RSVD CLUSTERNUM RSVD CORENUM HARTNUM
Table 6.75 Machine Hart ID Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:22 | Reserved R
CLUSTERNUM 21:16 | Cluster number. For MIPS Technologies implementations, R From
a contiguous number starting at zero uniquely identifying configuration
the cluster in the system. The value comes from the BIU
during configuration.
RSVD 15:12 | Reserved. R

SMIPS

a GlobalFoundries company

107
mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.75 Machine Hart ID Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
CORENUM 11:4 Core number. For MIPS Technologies implementations, a RO From
contiguous number starting at zero uniquely identifying configuration
the core in the cluster.
HARTNUM 3:0 Hart number. For MIPS Technologies implementations, a RO From
contiguous number starting at zero uniquely identifying configuration
the hart in the core.

6.16.5 Machine Configuration Pointer Register (mconfigptr) — 0xF15
This read-only register contains information on the configuration pointer.

Figure 6.73 Machine Configuration Pointer Register Bit Assignments
63 0

MCONFIGPTR

Table 6.76 Machine Hart ID Register Bit Descriptions

Name Bits Description R/W Reset State
MCONFIGPTR 63:0 Machine configuration pointer. This register can be used RO From
by software to discover more hardware configuration configuration
related information. This field is RO = 0 for the 18500.

6.17 User Counter/Timer Registers

The following registers are used for counter and timer operations in User mode.

6.17.1 Cycle Register (UCYCLE) — offset 0xC00

This is the User cycle (UCYCLE) counter for the RDCYCLE instruction (EXU_CSR). This regis-
ter is a mirror version from the MCYCLE register. While the MCYCLE is accessible through
machine mode only, this register is accessible from all modes. The accessibility can be con-
trolled using the MCOUNTEREN, HCOUNTEREN, and SCOUNTEREN registers.

Figure 6.74 Cycle Register Bit Assignments

63 0

CYCLE

Table 6.77 Cycle Register Bit Descriptions

Name Bits Description R/W Reset State

CYCLE 63:0 User mode cycle counter. R/W Undefined

108

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
6.17.2 Read Time Register (RDTIME) — offset 0xC01

This register (RDTIME) is a read only version of the memory-mapped MTIME. It is physically
implemented in the CM and fanout comes in EXU. Having a separate user accessible MTIME
helps in other applications to directly read the value without changing the privilege level.

Figure 6.75 Read Time Register Bit Assighments
63 0

RDTIME

Table 6.78 Read Time Register Bit Descriptions

Name Bits Description R/W Reset State

RDTIME 63:0 Contains timer information and is a read-only version of RO 0
the MTIME register.

6.17.3 User Instruction-Retired Counter (UINSTRET) — offset 0xC02

This register (UINSTRET) is a mirrored version of the MINSTRET register. Similar to the above
CSRs , this is also separate user accessible version of MINSTRET.

Figure 6.76 User Instruction-Retired Counter Register Bit Assignments

63 0

UINSTRET

Table 6.79 User Instruction-Retired Counter Register Bit Descriptions

Name Bits Description R/W Reset State

UINSTRET 63:0 Contains user instruction-retired counter information and RO Undefined
is a read-only version of the MINSTRET register.

6.17.4 User Performance-Monitor Counter[3-6] (HPMCOUNTER[3-6]) — offset 0xC03/
C04/C05/C06

This register (HPMCOUNTER[3-6]) is a mirrored version of the MHPMCOUNTER([3-6] regis-
ters. Similar to the above CSRs, this is also a separate user-accessible version of MHPM-
COUNTER[3-6].
Figure 6.77 User Performance-Monitor Counter[3-6] Register Bit Assignments
63 0

HPMCOUNTER

Table 6.80 User Performance-Monitor Counter[3-6] Register Bit Descriptions

Name Bits Description R/W Reset State
HPMCOUNTER 63:0 Contains user HPM counter information and is a read- RO Undefined
only version of the MHPMCOUNTER register.

NOTE: The HPMCOUNTER[7-31] at offset addresses 0xC07 - OxC1F are reserved in the
I8500 Multiprocessing System.

109

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

6.18 MIPS Custom Control and Status Registers

MIPS Technologies implementations use the following custom CSRs, which are described in
more detail in the following subsections. The address map for the custom CSR'’s is shown in
Table 6.81.

Table 6.81 MIPS Custom Registers Map

Address Offset Register Name
0x7CO mipstvec
0x7C5 mipscacheerr
0x7C6 mipserrctl
0x7C8 mipsdiagdata
0x7C9 mipsbconfig
0x7CA mipsbcactvseg
0x7CB mipsintctl
0x7CC mipsdsprambase
0x7CD mipsispram
0x7D1 mipsconfig1
0x7D4 mipsconfig4
0x7D5 mipsconfig
0x7D6 mipsconfig6
0x7D7 mipsconfig7
Ox7EOQ pmacfg0
Ox7E2 pmacfg2
0x800 mipswfe

6.18.1 MIPS Trap Vector Base Address Register (mipstvec) — offset = 0x7C0

The MIPS Trap-VECtor base-address register is a programmable base address for custom
machine mode exceptions for MIPS Technologies implementations of RISC-V. An alignment
constraint of HART.vectored_int_align bytes is imposed on writes to mipstvec when setting
the register to vectored mode. That is, the corresponding number of lower bits of the BASE
value are zeroed out by the hardware when bit zero of the written value equals 1.

Figure 6.78 MIPS Trap Vector Base Address Register Bit Assignments
63 32

BASE[61:30]

31 2 1 0

BASE[29:0] MODE

\}\<M I PS Copyrigr:ti‘g;:?;nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.82 MIPS Trap Vector Base Address Register Bit Descriptions

0: Direct. All MIPS technologies custom machine mode
exceptions set the PC to CSR.mipstvec.BASE << 2.

1: Vectored. MIPS technologies custom machine mode
exceptions . set pc to (CSR.mipstvec.BASE << 2) +4 *
cause

2 - 3: Reserved.

Name Bits Description R/W Reset State

BASE 63:2 Base address for MIPS Technologies custom machine R/W 0
mode exceptions.

MODE 1:0 The MODE field is encoded as follows: R/W 0

6.18.2 MIPS Cache Error Register (mipscacheerr) — offset = 0x7C5

This register is implemented per-core register indicating the cause of cache errors. This reg-
ister is R/W in the Machine and Hypervisor modes only. It is RO in Virtual Supervisor mode.

This behavior applies only when the MIPS_BCACHE define is present.

Figure 6.79 MIPS Cache Error Register Bit Assignments

31 30 29 26 25

20 19 17 16

STATE ARRAY

ERROR_BITS WAY INDEX

WORD

Table 6.83 MIPS Cache Error Register Bit Descriptions

F2|F|P|S

Name

Bits

Description

Reset State

STATE

31:30

Cache error state. This field is encoded as follows:
00: None. No Error

01: Corrected. Corrected Error (includes recovery by
invalidating a clean line with uncorrectable error)

10: Uncorrectable error

11: Reserved

R/W

0

ARRAY

29:26

Identifies the part of the cache that encountered the error.

This 4-bit field is encoded as follows:

0x0: L1 I-cache Tag. Alias = ICTag

0x1: L1 I-cache Data. Alias = ICData

0x2: L1 D-cache Tag. Alias = DCTag

0x3: L1 D-cache Data. Alias = DCData

0x4: FTLB tag. Alias = FTLB Tag.

0x5: FTLB data. Alias = FTLB Data.

0x6: L2Tag (also includes RRB bus parity). Alias = L2Tag
0x7: L2Data (also includes MCP bus parity). Alias =
L2Data.

0x8: DSPRAM

0x9: ISPRAM

OxA - OxF. Reserved.

R/W

SMIPS

a GlobalFoundries company

111
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.83 MIPS Cache Error Register Bit Descriptions (continued)

Name

Bits

Description

RW

Reset State

ERROR_BITS

25:20

For correctable errors, this field encodes the bit position
of the detected error within the RAM word. Encoding:

0x00 - 0x3E: Bit position of error within RAM word.

0x3F: Bit position cannot be determined (when a double-
bit error was “corrected” by invalidating a clean line) - cor-
rected by invalidating the whole line.

R/W

0

23

F2. For uncorrectable errors: Second fatal error detected
while CachekErr still holds details of a previous uncorrect-
able/unrecoverable error (does not include cases where a
double-bit error was “corrected” by invalidating a clean
line).

R/W

22

F. For uncorrectable errors: Fatal - Memory silently cor-
rupted (ECC clean) (tag error on dirty replacement victim
is currently the only Fatal case). Corrupted data may be
present in the cache/memory subsystem with valid/clean
ECC.

R/W

21

P. For uncorrectable errors: Persistent error detected. A
correctable (single-bit) error remained in the RAM after
correction was attempted.

R/W

20

S. For uncorrectable errors: Scapegoat error detected.
Signaled if error was signaled on Scapegoat VP or if a
second uncorrectable/unrecoverable error was detected.

The error details recorded in the CacheErr register may
not correspond to the instruction or thread that took the
Cache Error exception. This can occur when a second
uncorrectable error is detected while the CacheErr regis-
ter still contains details of a previous uncorrectable error,
or when an error is detected on a RAM access that can-
not be attributed to a specific instruction (such as a
capacity replacement).

R/W

WAY

19:17

Indicates the cache or FTLB way where error was
detected.

R/W

INDEX

16:4

Indicates the cache or FTLB index where error was
detected.

R/W

WORD

3.0

Indicates the word in the cache line (for D-cache data
RAM error) where the error occurred.

R/W

In the table above, the R/W column indicates the behavior in Machine mode. However, this
behavior can change if the MIPS_BCACHE define is present as shown in Table 6.84.

Table 6.84 Access Behavior based on MIPS_BCACHE Define Present

MIPSCACHEERR Hypervisor/ Virtual Supervisor
Fields Machine Mode Supervisor Mode Mode User Mode
All R/W R/W RO None
\{k . 112
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

If the MIPS_BCACHE define is present, the exception permissions for this register as shown
in Table 6.85.

Table 6.85 Exception Permissions Based on MIPS_BCACHE Define Present

MIPSCACHEERR Hypervisor/ Virtual Supervisor
Fields Machine Mode Supervisor Mode Mode User Mode
All No exception Virtual exception Virtual exception None
on write lllegal exception

6.18.3 MIPS Error Control Register (mipserrctrl) — offset = 0x7C6
MIPS Error Control register. This is a per-core CSR controlling bus and parity error handling.

Figure 6.80 MIPS Error Control Register Bit Assignments

31 30 20 19 10 9 0

PE RSVD BUSTIMEOUT RSVD

Table 6.86 MIPS Error Control Register Bit Descriptions

Name Bits Description R/W Reset State
PE 31 Parity enable. This bit enables or disables ECC protection R /R/W 0
for the L1 I-cache, L1 D-cache, and FTLB.
RSVD 30:20 |Reserved RO
BUSTIMEOUT 19:10 | Timeout count. This timer can only be programmed in R/W

increments of 1024 cycles. Thus, the field available to
software for programming is 19:10. If this field is written
with 0, the timeout detection is disabled.

RSVD 9:0 Reserved RO 0

113

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

6.18.4 MIPS Diagnostic Data Register (mipsdiagdata) — offset = 0x7C8

63

Figure 6.81 MIPS Diagnostic Data Register Bit Assignments

MIPSDIAGDATA

Table 6.87 MIPS Diagnostic Data Register Bit Descriptions

Name

Bits Description

Reset State

MIPSDIAGDATA

63:0 This register stores the value to be written by the

the MDIAGR instruction.

MDIAGW instruction, of the value that has been read by

R/W

Undefined

6.18.5 MIPS Buffer Cache Configuration Register (mipsbcconfig) — offset = 0x7C9

Figure 6.82 MIPS Buffer Cache Configuration Register Bit Assignments

63 16 15 8 7 1 0
RSVD SEGBSY RSVD SEGCFG
Table 6.88 MIPS Buffer Cache Configuration Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:16 | Reserved. R 0
SEGBSY 15:8 Segment Busy. This field is a per-segment flag indicating RO in M, 0
that a flush is active for that segment. HS, and VS
modes
RSVD 7:2 Reserved. R
SEGCFG 1:0 Segment configuration. This field contains the encoded R/Win M
segment configuration as num_segments = 2ASegCfg. and HS
modes, RO
00: 1 segment in VS mode
01: 2 segments
10: 4 segments
11: 8 segments

The R/W column for the above table changes based on the operating mode as shown in Table

6.89.

Table 6.89 Access Behavior based on MIPS_BCACHE Define Present

MIPSBCCONFIG Hypervisor/ Virtual Supervisor
Fields Machine Mode Supervisor Mode Mode User Mode
SEGCFG R/W R/W RO None
SEGBSY RO RO RO None
\{k . 114
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

The exception permissions for this register as shown in Table 6.90.

Table 6.90 Exception Permissions Based on MIPS_BCACHE Define Present

MIPSCACHEERR
Fields

Machine Mode

Hypervisor/
Supervisor Mode

Virtual Supervisor
Mode

User Mode

All

No exception

Virtual exception
on write

Virtual exception
lllegal exception

None

6.18.6 MIPS Buffer Cache Active Segment Register (mipsbcactvseg) — offset =

0x7CA

This register is selectively available in VS mode and raises an exception when accessed in

VU/U mode.

Note: This CSR is present only if the MIPS_BCACHE configuration is defined.

Figure 6.83 MIPS Buffer Cache Active Segment Register Bit Assignments

63 62 13 12 5 4 3 2 0
FLUSH RSVD SEGBMASK SD | SE SEG
Table 6.91 MIPS Buffer Cache Active Segment Register Bit Descriptions
Name Bits Description R/W Reset State
FLUSH 63 Flush in progress for current active segment. Flag RO 0
will only be set if En bit is set. MSB used for effi-
cient testing with BLTZ/BGEZ instructions.
RSVD 62:13 |Reserved. RO
SEGBMASK 12:4 8-bit bit-mask for segments. R/Win M and HS
modes only
SD 4 Speculation Disable. When set, prohibit speculative | R/W in M, HS, and 0
bus requests for buffer cache accesses (CCA = 1) VS modes
from the corresponding hart.
SE 3 Speculation Enable. When set, allow speculative R/Win M, HS, and 0
bus requests for buffer cache accesses (CCA= 1) VS modes
from the corresponding hart. Simultaneously set-
ting both the SE and SD bits is a software error.
SEG 2.0 Segment currently selected as active, up to 8 maxi-| R/Win M and HS 0
mum. modes. R/W only if
the corresponding
segbmask is set in
VS mode.
\{k . 115
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

The R/W column for the above table changes based on the operating mode as shown in Table

6.92.
Table 6.92 Access Behavior based on MIPS_BCACHE Define Present
MIPSBCCATVSEG Hypervisor/ Virtual Supervisor

Fields Machine Mode Supervisor Mode Mode User Mode

FLUSH RO RO RO None

SD R/W R/W R/W None

SE R/W R/W R/W None

SEG R/W R/W R/W (with segment None

permissions)
SEGBMASK R/W RO RO None

The exception permissions for this register as shown in Table 6.93.

Table 6.93 Exception Permissions Based on MIPS_BCACHE Define Present

MIPSBCCATVSEG Hypervisor/ Virtual Supervisor
Fields Machine Mode Supervisor Mode Mode User Mode
All No exception No exception Virtual exception None
lllegal exception

6.18.7 MIPS Interrupt Control Register (mipsintctl) — offset = 0x7CB

MIPS Interrupt Control Register. This register is instantiated on a per-hart basis. Setting bits
of this register causes the routing of selected interrupts.

Figure 6.84 MIPS Interrupt Control Register Bit Assignments

31 6 5 4 3 2 1 0
0 MEI | MSI | MTI | SEI | STI |VSEI
Table 6.94 MIPS Interrupt Control Register Bit Descriptions
Name Bits Description R/W Reset State
0 30:6 Reserved. R 0
MEI 5 When this bit is set, MIPS hardware interrupt #5 routes to R/W Undefined
mip.MEIP. Otherwise it routes to custom interrupt bit
mip[20].
MSI 4 When this bit is set, MIPS hardware interrupt #4 routes to R/W Undefined
mip.MSIP. Otherwise it routes to custom interrupt bit
mip[19].
MTI 3 When this bit is set, MIPS hardware interrupt #3 routes to R/W Undefined
mip.MTIP. Otherwise it routes to mip.VSTIP.
SEI 2 When this bit is set, MIPS hardware interrupt #2 routes to R/W Undefined
mip.SEIP. Otherwise it routes to custom interrupt bit
mip[18].

116

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.94 MIPS Interrupt Control Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
STI 1 When this bit is set, MIPS hardware interrupt #1 routes to R/W Undefined
mip.STIP. Otherwise it routes to custom interrupt bit
mip[17].
VSEI 0 When this bit is set, MIPS hardware interrupt #0 routes to R/W Undefined
mip.VSEIP. Otherwise it routes to custom interrupt bit
mip[16].

6.18.8 MIPS DSPRAM Base Register (mipsdsprambase) — offset = 0x7CC

MIPS DSPRAM Base Register. Per-core register containing the base address of MIPS Technol-
ogies DSPRAM.

Figure 6.85 MIPS DSPRAM Base Register Bit Assignments

63 62 61 44 43 32
SO | SLF RSVD MIPSDSPRAMBASE[43:32]
31 121 5 1.0
MIPSDSPRAMBASE[31:12] RSVD SIZE EN
Table 6.95 MIPS DSPRAM Base Register Bit Descriptions
Name Bits Description R/W Reset State
SO 63 | Set this bit to enforce strict ordering. R/W 0
SLF 62 | Set this bit to enable the Store-to-Load facility. R/W 0
RSVD 61:44 |Reserved. R 0
MIPSDSPRAMBASE 43:12 | Contains MIPS DSPRAM Base address in memory. R/W 0
Base_address[47:16] must be aligned to max (size,
64KB) minimum window is 64KB.
RSVD 11:6 |Reserved. R
SIZE 5:1 Size of the device. This field is encoded as 2*SIZE RO
bytes. This value is preset at build time.
For a 64 KB DSPRAM, the SIZE field should be 5'h10.
EN 0 Enables special access address. R/W 0

6.18.9 MIPS ISPRAM Base Register (mipsisprambase) — offset = 0x7CD

MIPS ISPRAM Base Register. Per-core register containing the base address of MIPS Technolo-

gies ISPRAM.

63

Figure 6.86 MIPS ISPRAM Base Register Bit Assignments

44 43

32

RSVD

MIPSISPRAMBASE[47:36]

SMIPS

a GlobalFoundries company

117
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

31 12 1 6 5 1 0

MIPSISPRAMBASE[35:16] RSVD SIZE EN

Table 6.96 MIPS ISPRAM Base Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:44 |Reserved. R 0
MIPSISPRAMBASE 43:12 | Contains bits 47:16 of MIPS ISPRAM base address in R/W 0
memory.
RSVD 11:6 |Reserved. R
SIZE 5:1 Size of the device. This field is encoded as 2*SIZE RO

bytes. This value is preset at build time.
For a 64 KB DSPRAM, the SIZE field should be 5'h10.

EN 0 Write 1 to enable ISPRAM access. Read gives the cur- R/W 0
rent value of the bit.

6.18.10 MIPS Configuration 1 Register (mipsconfig1) — offset = 0x7D1

MIPS Configuration register 1. Per-core register containing collection of bitfields showing cus-
tom capabilities and status for the MIPS Technologies implementation of the RISCV standard.

Figure 6.87 MIPS Configuration 1 Register Bit Assignments

31 30 25 24 2 21 19 18 16 15 13 12 10 9 7 6 0

L2C RSVD IS IL 1A DS DL DA RSVD

Table 6.97 MIPS Configuration 1 Register Bit Descriptions

Name Bits Description R/W Reset State
L2C 31 When this bit is set, the L2 cache exists and its size can be RO From
found via the L2_CONFIG GCR. configuration

An L3 cache may also exist and its size can be found via the
L3_CONFIG GCR.

RSVD 30:25 |Reserved. RO 0

IS 24:22 | Number of I-cache sets. Number of |-cache sets is 2**(IS+6) if RO From
IS =7, else 32. configuration
000:2*6=12
001: 2 * (6+1) = 14. etc.

IL 21:19 |l-cache line size. This field encodes the I-cache line size in RO From
bytes. is 0 if IL == 0 else 2**(IL+1) configuration
000: 0 bytes

001: 2 * 2 =4 bytes
010: 2 * 3 = 6 bytes
011: 2 * 4 = 8 bytes
100: 2 * 5 =10 bytes

118

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.97 MIPS Configuration 1 Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
IA 18:16 | l-cache Associativity. Number of I-cache ways is IA + 1. RO From
000: 1-way configuration
001: 2-way
010: 3-way
011: 4-way
100: 5-way
101: 6=way
110: 7-way
111: 8-way
DS 15:13 | D-cache Sets. Number of D-cache sets is 2**(DS+6) if DS 1= 7 RO From
else 32. configuration
DL 12:10 |D-cache Line size. D-cache line size in bytes is 0 if DL =0, RO From
else 2**(DL+1). configuration
DA 9:7 D-cache Associativity. Number of D-cache ways is DA + 1. RO From
configuration
0 6:0 Reserved. RO 0

NOTE: the mipsconfig2 (0x7D2) and mipsconfig3 (0x7D3) registers are not implemented in
the I8500 Multiprocessing System.

6.18.11 MIPS Configuration 4 Register (mipsconfig4) — offset = 0x7D4

MIPS Configuration register 4. Per-core register containing collection of bit-fields showing
custom capabilities and status for the MIPS Technologies implementation of the RISC-V stan-

dard.
Figure 6.88 MIPS Configuration 4 Register Bit Assignments
31 10 9 8 7 2 1 0
RSVD TANDEM_CTU | TANDEM_ALU RSVD TLB_SHARE | RTG_PREF
Table 6.98 MIPS Configuration 4 Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 31:10 |Reserved. RO 0
TANDEM_CTU 9 Setting this bit enables Control Transfer Unit (CTU) instruc- R/W 1
tions to execute in tandem.
TANDEM_ALU 8 Setting this bit enables Arithmetic Logic Unit (ALU) instructions R/W 0
to execute in tandem.
RSVD 7:2 Reserved. RO
TLB_SHARE 1 Allows sharing of FTLB and VTLB entries across harts (as long R/W
as all other attributes match).
RTG_PREF 0 Forces the NSPREF instruction (prefetch to non-speculative R/W 0
region) to use the safer but slower RTG mechanism.

119

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
6.18.12 MIPS Configuration 5 Register (mipsconfig5) — offset = 0x7D5

MIPS Configuration register 5. Per-hart register containing collection of bit fields showing
custom capabilities and status for the MIPS Technologies implementation of the RISCV stan-

dard.

63

Figure 6.89 MIPS Configuration 5 Register Bit Assignments

16 15 14 7 6 5 4

RSVD

T™W RSVD PGVA |MDIAGL| MPPV | MPPPS

MTW| MPTW |ERL

Table 6.99 MIPS Configuration 5 Register Bit Descriptions

Name

Bits

Description

R/W

Reset State

RSVD

63:16

Reserved.

RO

T™W

15

When TW is set to 1, writes to the mipswfe CSR take an ille-
gal instruction exception when the hart is not in M-mode.

R/W

RSVD

14:7

Reserved. Write as zero.

RO

PGVA

6

Previous Guest Physical Address. This bit is copied from
mstatus.GVA on M-mode exceptions using the mipstvec
exception vector, or M-mode exceptions when
mipsconfigb.MTW = 1.

When PGVA is set, MRET behavior is modified to set msta-
tus.GVA to 1 instead of 0. Implemented on H-extension cores
with software table walker only.

R/W

MDIAGL

MDIAG lock. Software can write this bit to 1 to permanently
disable the MDIAGR/MDIAGW instructions. Can only be
unlocked by a CPU reset.

R/W

MPPV

Machine Previous-Previous Virtualization Mode - Set to 1 on
mipstvec exceptions if mstatus.MPV is 1, or on other M-mode
exceptions if mipsconfigb.MTW is 1 and mstatus.MPV is 1.
When MPPV is set, MRET behavior is modified to set msta-
tus.MPV to 1 instead of 0. Implemented on H-extension cores
with software table walker only.

R/W

MPPPS

Machine Previous-Previous Privilege Supervisor - Setto 1 on
mipstvec exceptions if mstatus.MPP is 1 (supervisor), or on
other M-mode exceptions when mipsconfigs.MTW=1 and
mstatus.MPP is 1.

When MPPPS = 1, MRET behavior is modified to set msta-
tus.MPP to 1 instead of 0. Implemented on cores with soft-
ware table walker only.

R/W

MTW

Machine Table Walk. Setting this bit forces M-mode loads and
stores to execute with table walker mapping and privilege.

Cleared by M-mode traps and restored from MPTW by

MRET. Implemented on cores with software table walker only.

R/W

MPTW

Machine Previous Table Walk. This bit contains the value of
the mipsconfigs.MTW bit prior to the most recent M-mode
trap, restored to MTW by MRET.

Implemented on cores with software table walker only.

R/W

SMIPS

a GlobalFoundries company

120
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.99 MIPS Configuration 5 Register Bit Descriptions (continued)

Name

Bits

Description

R/W

Reset State

ERL

0 Error Level. This bit is set on NMI and Cache Error excep-
tions. Cleared by MRET and SRET instructions. Forces all
memory accesses to be uncached and disables all interrupts

except for Reset and NMI.

R/W

0

6.18.13 MIPS Configuration 6 Register (mipsconfig6) — offset = 0x7D6

MIPS Configuration register 6. Per-hart register containing collection of bit fields showing
custom capabilities and status for the MIPS Technologies implementation of the RISCV stan-

dard.
Figure 6.90 MIPS Configuration 6 Register Bit Assignments
63 4 3 2 0
RSVD AMO_TRAP | AMO._II RSVD PRI
Table 6.100 MIPS Configuration 6 Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 31:4 Reserved R 0
AMO_TRAP 3 If this bit is 0, hardware executes AMOs. R/W 0

If this bit is 1, then the hardware looks at the amo_ii
bit to determine whether we do an illop trap or a fast-
trap to MIPSTVEC.

AMO_II 2 Atomic Memory Operation lllegal Instruction. When R/W 0
set, executing one of the AMO* instructions on a (W when AMO_TRAP
“no_amo” core gives an illegal instruction exception. | is 1 or will be assigned
Otherwise, cases where the AMO instruction does not | to 0) ; AMO_TRAP =0
generate any addressing related exceptions (page and AMO_II = 1 is not
faults, TLB misses or access faults) give a custom an allowed
mipstvec exception with mcause set to the lllegal configuration
Instruction value, allowing for fast emulation of the
atomic memory operation. LR/SC instructions are not
affected by this bit.

RSVD Reserved. R

PRI 0 When set, the hart has priority for MCP accesses. R/W

6.18.14 MIPS Configuration 7 Register (mipsconfig7) — offset = 0x7D7

MIPS Configuration register 7. Per-hart register containing collection of bit fields showing
custom capabilities and status for the MIPS Technologies implementation of the RISC-V stan-

dard.

As bit-fields in this register affect all running threads, software should use the following safe
sequence to modify the register:

DVP
SYNC

CSR.mipsconfig7

EVP

SMIPS

a GlobalFoundries company

121
mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Figure 6.91 MIPS Configuration 7 Register Bit Assignments

31 30 29 28 25 24 23 22 21 20 19 18 17 16
HCI |RSVD| DIVA RSVD DSBPK| DSMBR| DSM | DSUTLB | FTLB64 FTLBP DSSM | DSLM
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VTLB_-
FULL_POT_| RSVD |DSBND|DLBND| DSLD |RSVD|DMALN| TL | DHTW|DDWP|DIWP| DJRC|DGHR| DDBP | DBP | DRPS
EN
Table 6.101 MIPS Configuration 7 Register Bit Descriptions
Name Bits Description R/W Reset State
HCI 31 When set by hardware, Hardware Cache Initialization is pres- RO From
ent. configuration
1: Indicates that a cache does not require initialization by soft-
ware. This bit will most likely only be set on simulation-only
cache models and not on real hardware.
RSVD 30 Reserved. RO
DIVA 29 Disable Instruction Virtual Aliasing. Setting this bit disables the R/W
hardware alias removal on the instruction cache. If this bit is
cleared, alias removal is not disabled.
RSVD 28:25 |Reserved. RO
DSBPK 24 Disable Branch/Jump Prediction in translation = BARE mode. R/W
DSMBR 23 When this bit is set, disable Sleep Mode when a long bus R/W
transaction is pending. The core won't go into sleep mode if a
long bus transaction is pending.
0: Enabled
1: Disabled
DSM 22 When this bit is set, disable Sleep Mode. The core won't go R/W 0
into sleep mode if this bit is set.
0: Enabled
1: Disabled
DSUTLB 21 When this bit is set, disable speculative handling of uTLB R/W 0
misses.
0: Enabled
1: Disabled
\{k . 122
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.101 MIPS Configuration 7 Register Bit Descriptions (continued)

Name

Bits

Description

RW

Reset State

FTLB64

20

FTLB holds 64KB pages. In implementations where the FTLB
cannot hold 4KB pages and 64KB pages simultaneously, soft-
ware can set this bit to 1 to indicate that 64KB pages are
expected to be more common and should be stored in the
FTLB (with 4KB pages stored in the VTLB).

In such implementations, if this bit is zero (the reset value)
4KB pages will be stored in the FTLB and 64KB pages will be
stored in the VTLB. In implementations where the FTLB can
hold 4KB and 64KB pages simultaneously, this bit is reserved.

0: 64KB pages stored to FTLB, 4 KB pages stored to VTLB.
1: 64KB pages stored to VTLB, 4 KB pages stored to FTLB.

R/W

0

FTLBP

19:18

FTLB probability. This field allows some TLBWR instruction to
go to the VTLB instead of the FTLB whenever the PageMask
register matches the FTLB page size. If the contents of the
PageMask register do not match the FTLB page size, the
TLBWR instruction always goes to the VTLB.

This field is encoded as follows:

00 - FTLB:VTLB = 63:1. For every 64 TLBWR instructions, 63
go to the FTLB and 1 goes to the VTLB.

01 - FTLB:VTLB = 31:1. For every 32 TLBWR instructions, 31
go to the FTLB and 1 goes to the VTLB.

10 - FTLB:VTLB = 15:1. For every 16 TLBWR instructions, 15
go to the FTLB and 1 goes to the VTLB.

11 - FTLB only. All TLBWR instructions go to the FTLB.

R/W

DSSM

17

When this bit is set, disable speculative bus fetch requests for
a store miss. A speculative fetch implies that the core is
allowed to issue a bus request for instructions that won't nec-
essarily complete.

R/W

DSLM

16

When this bit is set, disable speculative bus fetch requests for
a load miss.

R/W

VTLB_FULL_POT_EN

15

For svnapot extension, if set, all power of two * 4KB page
sizes are supported. Otherwise, only xxxx 1000: 64KB is sup-
ported.

R/W

RST

14

Reset TAGE. A 0 -> 1 transition of this bit causes the TAGE
branch prediction unit to be reset. To reset TAGE again, re-
write this bit to 0, then set it to 1 again.

R/W

DSBND

13

When this bit is set, store bonding is disabled.
0: Enabled
1: Disabled

R/W

DLBND

12

When this bit is set, load bonding is disabled.
0: Enabled
1: Disabled

R/W

SMIPS

a GlobalFoundries company

123
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.101 MIPS Configuration 7 Register Bit Descriptions (continued)

Name

Bits

Description

RW

Reset State

DSLD

11

When this bit is set, disable the speculative issue of instruc-
tions that consume the result of a load.

0: Enable speculative issue of load-consumer instructions.
1: Stall load-consumer instructions until the load result is con-
firmed to be available.

R/W

0

Reserved.

R/W

DMALN

Disable misaligned load/store. When set, all misaligned
accesses generate an address misaligned exception.

R/W

TL

When this bit is set, MIPS Trace Logic is implemented.
0: Not implemented
1: Implemented

RO

From
configuration

DHTW

When this bit is set, disable the hardware table walker (if both
hardware and software table walkers are implemented)

R/W

DDWP

When this bit is set, disable data cache way prediction.

R/W

D1WP

When this bit is set, disable instruction cache way prediction.

R/W

DJRC

When this bit is set, disable the Jump Register Cache.

When this bit is set, the instruction fetch unit waits for the exe-
cution unit to redirect for all JR instructions except JR $31.

R/W

DGHR

0: Enable branch history table. When this bit is cleared,
dynamic branch history prediction is performed.
1: Disable branch history table.

When this bit is set, dynamic branch history reduction is dis-
abled. In this case, unconditional branches are always taken,
branch backward branches are always taken, and branch for-
ward branches are not taken.

R/W

DDBP

When this bit is set, disable dynamic branch prediction.
When DDBP = 1 and DBP = 0:

- Unconditional Branches are always taken

- Conditional branches are always not taken

R/W

DBP

When this bit is set, disable branch prediction. In this case, the
execution unit performs the branch resolution.

R/W

DRPS

When this bit is set, disable the return prediction stack. In this
case, the instruction fetch unit waits for the execution unit to
redirect when JR $31 is fetched.

R/W

6.18.15 MIPS Wait For Event Register (mipswfe) — offset = 0x800

It is a Read Only 0 CSR. Writes to this CSR will put the thread to halt until a system defined
event or interrupt comes. Unlike WFI , the instruction sequence will only resume and not

jump to a tvec register. Like the TW field in mstatus for WFI, a TW bit (bit 15) in the configh
register is used to limit its access in non-M mode.

Figure 6.92 MIPS Wait for Event Register Bit Assignments

31 0
NI
\\<M I PS mips.c102r:11
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 6.102 MIPS Wait for Event Register Bit Descriptions

Name Bits Description

Reset State

specific value is written.

NI 318 Not Implemented. This CSR is used to detect only a write, no

RO

0

6.18.16 PMA Configuration Registers

The I8500 contains 2 PMA configuration registers that store a total of 16 PMA configurations.
Each PMAXCFG configuration listed below is represented by an 8-bit field.

Table 6.103 shows the address mapping for each of these 16 registers.

In the RV64 format, the PMACFGO register is 64 bits and contains fields PMA7CFG -
PMAOCFG. In this case PMA3CFG - PMAOCFG are in the lower 32 bits, and PMA7CFG -

PMA4CFG are in the upper 32 bits.

Table 6.103 PMA Configuration Register Address Mapping

Address Offset Register Name RV64
O0x7EO PMACFGO PMA7CFG - PMAOCFG
Ox7E2 PMACFG2 PMA15CFG - PMASCFG

6.18.17 PMA Configuration 0 Register (PMACFGO0) — offset = 0x7E0

PMA Configuration register 0.

Figure 6.93 PMA Configuration 0 Register Bit Assignments

63 56 55 48 47 49 39 32
PMA7CFG PMAGBCFG PMA5CFG PMA4CFG
31 24 23 16 15 8 7 32
PMA3CFG PMA2CFG PMA1CFG PMAOCFG
Table 6.104 PMA Configuration 0 Register Bit Descriptions
Name Bits Description R/W Reset State
PMA7CFG 63:56 |PMAY configuration field in the RV-64 format. R/W Undefined
PMAG6CFG 55:48 | PMAG configuration field in the RV-64 format. R/W Undefined
PMA5CFG 47:40 |PMADS configuration field in the RV-64 format. R/W Undefined
PMA4CFG 39:32 | PMA4 configuration field in the RV-64 format. R/W Undefined
PMA3CFG 31:24 | PMAS3 configuration field in the RV-64 format. R/W Undefined
PMA2CFG 23:16 | PMAZ2 configuration field in the RV-64 format. R/W Undefined
PMA1CFG 15:8 | PMA1 configuration field in the RV-64 format. R/W Undefined
PMAOCFG 7:0 | PMAO configuration field in the RV-64 format. R/W Undefined
\{k . 125
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

6.18.18 PMA Configuration 2 Register (PMACFG2) — offset = 0x7E2
PMA Configuration register 2.

Figure 6.94 PMA Configuration 2 Register Bit Assignments

63 56

55

48 47

49 39

32

PMA15CFG

PMA14CFG

PMA13CFG

PMA12CFG

31 24

23

16 15

32

PMA11CFG

PMA10CFG

PMASCFG

PMA8BCFG

Table 6.105 PMA Configuration 2 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State
PMA15CFG 63:56 |PMA15 configuration field in the RV-64 format. R/W Undefined
PMA14CFG 55:48 | PMA14 configuration field in the RV-64 format. R/W Undefined
PMA13CFG 47:40 | PMA13 configuration field in the RV-64 format. R/W Undefined
PMA12CFG 39:32 | PMA12 configuration field in the RV-64 format. R/W Undefined
PMA11CFG 31:24 | PMA11 configuration field in the RV-64 format. R/W Undefined
PMA10CFG 23:16 | PMA10 configuration field in the RV-64 format. R/W Undefined
PMA9CFG 15:8 | PMA9 configuration field in the RV-64 format. R/W Undefined
PMABCFG 7:0 PMAS8 configuration field in the RV-64 format. R/W Undefined

{L 126
\\M I PS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

6.19 Debug Control and Status Register — offset = 0x7B0

There is one Debug Control and Status register (DCSR) in the I8500 as described below.

31 28 27

16

Figure 6.95 Debug Control and Status Register Bit Assignments

15

14 13 12 1" 10 9 8 6

4 3 2 10

XDEBUGVER 0

EBREAKM| 0 | EBREAKS|EBREAKU|STEPIE CAUSE

STOP | STOP
COUNT| TIME

MPRVEN | NMIP | STEP| PRV

Table 6.106 Debug Control and Status Register Bit Descriptions

Name

Bits

Description

R/W Reset State

XDEBUGVER

31:28

Debug version. This field is encoded as follows. All values
not shown are reserved.

0x0: There is no external debug support.

0x4: External debug support exists as it is described in this
document.

OxF: There is external debug support, but it does not con-
form to any available version of this spec.

R Preset

0

27:16

Reserved.

EBREAKM

15

EBREAK instruction in machine mode. This field is encoded
as follows:

0: EBREAK instructions in M-mode behave as described in
the privileged spec.
1: EBREAK instructions in M-mode enter Debug mode.

R/W

0

14

Reserved.

EBREAKS

13

EBREAK instruction in supervisor mode. This field is
encoded as follows:

0: EBREAK instructions in S-mode behave as described in
the privileged spec.
1: EBREAK instructions in S-mode enter Debug mode.

R/W

EBREAKU

12

EBREAK instruction in user mode. This field is encoded as
follows:

0: EBREAK instructions in U-mode behave as described in
the privileged spec.
1: EBREAK instructions in U-mode enter Debug mode.

R/W 0

STEPIE

11

Single step interrupt enable. This bit is encoded as follows:

0: Interrupts are disabled during single stepping.
1: Interrupts are enabled during single stepping.

Implementations may hard wire this bit to 0. In that case
interrupt behavior can be emulated by the debugger. The
debugger must not change the value of this bit while the hart
is running.

R From
configuration

SMIPS

a GlobalFoundries company

127
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.106 Debug Control and Status Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
STOPCOUNT 10 Stop count incrementing. This bit is encoded as follows: R Undefined

0: Increment counters as usual.
1: Don't increment any counters while in Debug

Mode or on ebreak instructions that cause entry into Debug
Mode. These counters include the cycle and instret CSRs.
This is preferred for most debugging scenarios.

An implementation may hard wire this bit to 0 or 1.

STOPTIME 9 Stop hart timers from incrementing. This field is encoded as R 0
follows:

0: Increment timers as usual.
1: Don't increment any hart-local timers while in Debug
Mode.

An implementation may hard wire this bit to 0 or 1.

CAUSE 8:6 | This field explains why debug mode was entered and is R 0
encoded as follows. When there are multiple reasons to
enter debug mode in a single cycle, hardware should set
cause to the cause with the highest priority as defined
below. All values not shown are reserved.

0x1: An ebreak instruction was executed. (priority 3)

0x2: The trigger module caused a breakpoint exception.
(priority 4, highest)

0x3: The debugger requested entry to debug mode using
haltreq. (priority 1)

0x4: The hart single stepped because step was set.
(priority 0, lowest)

0x5: The hart halted directly out of reset due to resethaltreq.
It is also acceptable to report 3 when this happens.

(priority 2)
0 5 Reserved. R
MPRVEN 4 Machine mode status. R

0: MPRYV in mstatus is ignored in debug mode.
1: MPRYV in mstatus takes eect in debug mode.

Implementing this bit is optional. It may be tied to either 0 or
1.

NMIP 3 Non-Maskable-Interrupt Pending (NMIP) for the hart. R 0
Since an NMI can indicate a hardware error condition, rel
able debugging may no longer be possible once this bit
becomes set. This is implementation-dependent.

STEP 2 When set and not in Debug Mode, the hart will only execute R 0
a single instruction and then enter debug mode. If the
instruction does not complete due to an exception, the hart
will immediately enter Debug Mode before executing the
trap handler, with appropriate exception registers set. The
debugger must not change the value of this bit while the hart
is running.

128

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 6.106 Debug Control and Status Register Bit Descriptions (continued)

Name

Bits

Description

R/W

Reset State

PRV

1:0

Contains the privilege level the hart was operating in when
debug mode was entered. This field is encoded as follows:

00: User/Application
01: Supervisor

10: Reserved

11: Machine

A debugger can change this value to change the hart's privi-
lege level when exiting Debug Mode. Not all privilege levels
are supported on all harts. If the encoding written is not sup-
ported or the debugger is not allowed to change to it, the
hart may change to any supported privilege level.

R

0

SMIPS

a GlobalFoundries company

129
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

Chapter 7

Exceptions and Interrupts

The I8500 core receives exceptions from a number of sources, misses in the translation loo-
kaside buffer (TLB), I/O interrupts, and environment calls. When the CPU detects an excep-
tion, the normal sequence of instruction execution is suspended and the processor enters
machine mode, disables interrupts, loads the Exception Program Counter (mepc) register with the
location where execution can restart after the exception has been serviced, and forces execu-
tion of a software exception handler located at a specific address.

The software exception handler saves the context of the processor, including the contents of
the program counter, the current operating mode, and the status of the interrupts (enabled
or disabled). This context is saved so it can be restored when the exception has been ser-
viced.

Exceptions may be precise or imprecise. Precise exceptions are those for which the mepc can
be used to identify the instruction that caused the exception. For precise exceptions, the
restart location in the mepc register is the address of the instruction that caused the excep-
tion. LDA are examples of precise exceptions.

Imprecise exceptions, on the other hand, are those for which the instruction that caused the
exception cannot be identified. Bus error exceptions are examples of imprecise exceptions.
Imprecise exceptions are normally attached to the next instruction PC to be graduated. Basi-
cally uses the PC (program counter) of very next instruction to graduate as the return
address. The instructions which caused imprecise exception may get graduated even before
processing the exception, hence these are imprecise exceptions. STA related bus errors are
imprecise exceptions.

7.1 Exception Conditions

When an exception condition occurs, the instruction causing the exception and all those that
follow it in the pipeline are cancelled. Accordingly, any stall conditions and any later exception
conditions that may have referenced this instruction are inhibited.

The term epc in RISC-V can be DEPC, SEPC, or MEPC, where D = Debug, S = Supervisor, and
M = Machine.

When the exception condition is detected on an instruction fetch, the CPU aborts that instruc-
tion and all instructions that follow. When the instruction graduates, the exception flag
causes it to write various CSR registers with the exception state, change the current program
counter (PC) to the appropriate exception vector address, and clear the exception bits of ear-
lier pipeline stages.

For most types of exceptions, this implementation allows all preceding instructions to com-
plete execution and prevents all subsequent instructions from completing. Thus, the value in
the DPC/SEPC/MEPC is sufficient to restart execution. It also ensures that exceptions are

\}\<M I PS Copyrigr:tiF();.Zc(}ZE

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

taken in program order. An instruction taking an exception may itself be aborted by an
instruction further down the pipeline that takes an exception in a later cycle.

The Error PC or Exception PC of the instruction which raised the exception is updated to one
of the mepc registers available, based on the mode in which exception is being processed.

Imprecise exceptions are taken after the instruction that caused them has completed and
potentially after following instructions have completed.

7.2 Selecting the Exception Address

In the baseline MIPS implementation, the exception vector address for several types of
exceptions are provided by the trap vector address CSR. The processor mode (Machine,
Supervisor, Hypervisor) in which exceptions or interrupts are processed will decide the trap
vector address CSR. It could be from mtvec CSR, stvec CSR or vstvec CSR.

MIPS custom exception trap vector address is provided by mipstvec CSR.

The exception vector for several types of exceptions is constrained to the lower 512MB of
memory. The mtvec, stvec, vstvec, or mipstvec CSR registers can be used to position the
base address anywhere in the 256TB 48-bit address space. The GCR.HART.RESET_BASE reg-
ister also supports specifying a separate reset vector for each thread.

\}\<M I PS Copyrigr::g;&:r:;

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

Chapter 8

Coherence Manager

The Coherence Manager (CM) communicates with all cores and other devices in the 18500
Multiprocessing System (MPS), as well as coherent devices external to the I8500 MPS, to
achieve system-wide coherence. In a multi-cluster system, the CM also interfaces to an

external Network-on-Chip (NOC) controller, which facilitates communication between clus-
ters.

The CM includes an integrated low-latency shared L2 cache. A directory-based coherence
protocol is used to efficiently maintain coherence among the L1 data caches of each 18500

core, with up to eight I/O coherence units (IOCUs), providing the I/O subsystem coherent
access to the L1 Data and L2 caches.

This chapter provides an overview of the CM register ring bus and associated table that lists
each device ID on the bus. The programmer uses this information to access these devices. An
overview of the CM register address space is also provided. In addition, the chapter describes
how to program the CM to perform various functions, including setting the base addresses in
memory, accessing another hart in the same core, accessing a hart in another core, accessing
the Advanced Interrupt Architecture (AIA) Controller, Cluster Power Controller (CPC), and/or
Debug Unit (DBU) registers via the CM, and setting the clock ratios between the various

18500 system components. For the exact revision number of the Coherence Manager, refer to
the Release Notes.

8.1 CM Overview

This section provides an overview of the CM and describes information necessary for pro-

gramming, including the register ring bus and device ID information, and the CM register
map.

8.1.1 Modes of Operation
The Coherence Manager supports the following modes:

e Single non-coherent cluster: The CM ensures local coherence among directly attached
cores and IOCUs. CM connects to the system via a non-coherent AXI-4 interface.

e One or multiple coherent clusters: The CM ensures coherence between directly attached
cores and IOCUs and other coherent agents in the system via a fully-coherent ACE sys-
tem interface to a coherent NoC.

In all modes, the CM maintains coherence between the L2 cache and all directly attached

coherent agents. For Shogun cores, the CM provides full cache coherence between L1 and L2
caches.

\}\<M I PS Copyrigr:tiF();.ché

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

8.1.1.1 I0CU Coherence

For IOCUs, the CM provides I/O coherence with a coherent view of L2, and snooping caches
on behalf of IOCU requests. However, the CM assumes that the IOCUs do not have caches
themselves.

8.1.1.2 Custom Instructions

The CM also provides support for:

e LR/SC for atomic accesses for both cacheable and uncacheable memory, on a 64B reser-
vation granule. For more information on the atomic extension, refer to Section 1.18.4.3,
A Extension in Chapter 1.

e MIPS custom instructions for cross-cluster fences and invalidations
e MIPS custom instructions for cache maintenance and "globalized" L2 cache operations

8.1.1.3 Multi-Cluster Mode

In multi-cluster mode, the CM manages coherence across multiple clusters and system-level

coherent agents via its ACE connection to an external coherent interconnect. In this mode,

the CM also extends software cache maintenance requests to all CMs in the coherent domain.
8.1.1.4 External GCR Slave Access

CM also supports an external GCR slave access port (REGTC), and 0 to 4 non-coherent AXI-4
auxiliary ports for access to a non-coherent system level fabric.

8.1.2 CM Interface — Register Ring Bus and Device ID’s

The CM communicates with the various system devices via a register ring bus. The devices
connected to the CM are shown in Figure 8.1. The I8500 Multiprocessing System can have up
to 6 cores per cluster.

133

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Figure 8.1 Interface Ports and Register Ring Bus Interface to the CM
From 1/O From 1/0

Register ACE/AXI4 ACE/AX14

Ring Bus
|
I
I

Core 0 Core 5 I0CU 0O 10CU 7

GCR <—®
I
| /l\':
@—y Coherence Manager (CM)

@4— Debug
| Unit
| @-» (DBU)
L - $ - $ _____ $ - $ -

Legend: Interrupt Custom
M = Master up Memory NOC u

Controller GCR
S =Slave

SMIPS

-
|
|
I
@—» CPC
MCPI ® 6 o IMCP MCPI ® O O IMCP |

Certain devices such as the cores and IOCU’s connect to the CM via an internal proprietary
bus called the MIPS Coherence Protocol (MCP) bus. This bus consists of three unidirectional
channels used to maximize throughput. The bus implements a credit-based protocol to allow
multiple simultaneous in-flight operations. In the above figure, note that the 18500 MPS sup-
ports up to a total of eight cores and IOCUs together. For example, if there are four cores,
there can only be up to four IOCUs.

The CM accesses the registers of the various devices shown in Figure 8.1 using a register ring
bus, indicated by the dotted line. As shown above, the CM and DBU can function as both
Master (M) and Slave (S). All other devices, including the cores, are slave devices. Each
device on the ring bus is assigned a 6-bit ID value stored in the destination ID (dest_id) or
source ID (src_id) fields of the packet being sent. When a device initiates an access to the
registers of another device, the corresponding ID is attached to the packet. Only the device
whose ID number matches that in the packet accepts the transaction. Table 8.1 lists the ID
values for each logic block shown in Figure 8.1. These values are used to write to registers in
these blocks as described in the following subsections. All values not shown are reserved.

Table 8.1 Register Ring Bus Device ID Values

dest_id / src_id dest_id / src_id
(Decimal value) (Hexadecimal value) Device Accessed
0 0x00 Core 0
1 0x01 Core 1
2 0x02 Core 2
3 0x03 Core 3
4 0x04 Core 4
5 0x05 Core 5
16 0x10 IOCU0

134

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.1 Register Ring Bus Device ID Values (continued)

dest_id / src_id dest_id / src_id
(Decimal value) (Hexadecimal value) Device Accessed
17 0x11 IOCU1
18 0x12 I0CU2
19 0x13 IOCU3
20 0x14 IOCU4
21 0x15 IOCU5
22 0x16 IOCUG6
23 0x17 IOCU7
24 0x18 AIA
25 0x19 User Defined GCR'’s
26 Ox1A Memory
32 0x20 CM
33 0x21 CPC
34 0x22 GCR
35 0x23 DBU Master
36 0x24 DBU dmxseg_normal
37 0x25 DBU dmxseg_debug
40 0x28 AUX 0
41 0x29 AUX 1
42 0x2A AUX 2
43 0x2B AUX 3
62 0x3E No Destination Error
63 0x3F No Destination OK

The following example shows the path taken in order for core 0 to read a register from the
AIA controller. The data path for this access is shown in Figure 8.2. This figure is similar to
Figure 8.1, except only those devices involved in the example transaction are shown. The red
color indicates the access request path, and the blue color indicates the data return path. The
following sequence is enumerated in Figure 8.2. In this example the following actions would
occur.

1. Core 0 sends a request to the CM over the MCP ‘Request’ bus. Note that Core 0 cannot access the
AlA controller registers directly because it is only a Slave on the ring bus as indicated.

2. The CM processes this request, assigns the appropriate ID number as defined in Table 8.1, and drives
this request onto the register ring bus through its Master port.

3. The AlA controller decodes the ID on the bus and gets a match.
4. The AIA controller then fetches the requested data and drives the data onto the ring bus.

5. Data is returned to the CM through its dedicated register ring bus Slave port.
135

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

6. The CM sends the requested data back to Core 0 over the dedicated MCP ‘Response’ bus.
Figure 8.2 Data Path of Core 0 Access of IOCUO Registers

Register Ring Bus

Legend:

S = Slave
M = Master

Interrupt
Conroller

3-channel
MCP bus @ MCP

Coherence Manager 3.7 —

8.1.3 Cluster to Cluster Accesses

In addition to facilitating core-to-core and hart-to-hart accesses within the same cluster, the
I8500 also allows for cluster-to-cluster accesses. This allows a core or hart (VP) in one clus-
ter to access the registers in a core or hart of another cluster through the Network-On-Chip
(NOC) interface. This interface is shown in Figure 8.3.

Figure 8.3 Cluster-to-Cluster Register Accesses Using the NOC

Cluster 1 Cluster 2

Core Core Core Core

|Hart||Hart|| | [Hart| Hart|

I I I I

CM3.7 CM3.7

A 4 \ 4

Network on Chip (NoC)

For example, a hart within a core in Cluster 1 can access and update a register in a hart in
Cluster 2 as shown. The access is processed by the CM and driven onto the NOC. The NOC
then routes the request to the appropriate cluster where the access is scheduled by the CM in
the destination cluster.

If a register access is within a given cluster as shown above, the NOC is not used and the
access is placed onto the Register Ring Bus (RRB) described in the section entitled CM

136

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Interface — Register Ring Bus and Device ID’s. If the register access is to another cluster, the
NOC is used to transfer the access request where it is placed onto the RRB of the destination
cluster. There are dedicated unidirectional AXI bus interfaces that move the access from the
cluster to the NOC, and from the NOC to the cluster. A separate bidirectional bus is used to
manage coherence as shown above.

8.2 Verifying Overall System Configuration

At IP configuration time, the customer selects the number of cores and the number of I/O
coherency units (IOCU’s) in the system. When the device is built, these values are hard wired
into the Global Configuration register at offset address 0x0000. All of these fields are read-only
and allow kernel software to quickly determine the system configuration.

CM GCR Register Interface
Reading the Global Configuration register provides the following information:
e Bits 7:0 — Number of cores in the system (up to 6)
e Bits 11:8 — Number of IOCU’s (up to 8)
e Bits 19:16 — Number of MMIO address regions
e Bits 22:20 — Number of auxiliary memory ports
e Bits 29:23 — Number of clusters in the system

e Bits 39:32 — Indicates the ID number for the current cluster. Each cluster has a
unique ID number.

e Bit 40 — Indicates if a Debug Unit is present

137

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

8.3 Programming the Base Addresses in Memory

This section describes how to set the base address of the CM logic.

8.3.1 CM GCR Register Interface

The address map is programmable through the GCR_BASE register as summarized in Table

8.2.
Table 8.2 Setting the Base Address for the GCR_BASE Register
Offset
Block Register Name Address Field Name Bits Description
GCR GCR_BASE 0x0008 | GCR_BASE_ADDR | 47:12 | GCR Base Address register. Sets the

base address of the GCR registers.
Note that this region must reside on a
512 KB boundary.

8.4 CM Register Access Permissions

A requestor can request access to selected CM registers. A requestor can be either a core or
an IOCU. The CM allows up to eight requestors in a system in any combination of cores and
IOCU’s, from 8 cores and no IOCU’s, to 8 IOCU’s and no cores, or anywhere in between.

8.4.1 Enabling Access Permissions

Access permissions to the CM GCR registers follows the memory access permission rules as
defined in the Physical Memory Protection (PMP) section of the RISC-V Privileged Architecture
Manual. Privileged code can program the PMP registers to control which CM registers are
accessible from each privileged mode on each hart.

8.5 Coherency Enable

The 18500 Multiprocessing System allows each power domain to be placed in either a coher-
ent or non-coherent mode. Because the 18500 implements a directory-based coherence pro-
tocol, MIPS recommends that each domain be placed in coherent mode during normal
operation. The non-coherent mode should only be used during boot-up and power-down.
Software should not execute any cacheable memory accesses (instruction fetch or load/
store) while coherence is disabled.

In the CM, coherency is either enabled or disabled using the Coherence Enable (COH_EN) register.
There is one of these registers per core. Each register can be accessed at address:
0x020f8 + 0x100 * CORENUM + GCR_BASE for Core 0 through 7.

8.6 L2 Cache Prefetch

The coherence manager in the I8500 MPS contains an L2 prefetcher used to enhance L2 per-
formance. The L2 prefetcher is managed using two CM GCR registers.

e L2 Prefetch Control register (GCR_L2_PFT_CONTROL) at offset 0x0300
e L2 Prefetch 2nd Control register (GCR_L2_PFT_CONTROL_B) at offset 0x0308

\}\<M I PS Copyrig?tirg;(}:nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
These registers control the following L2 capabilities:
e Minimum operating system page size (supports 4K - 64K pages in multiples of two)
e Prefetch enable
e Coherent invalidate requests
e Code prefetch enable

e L2 prefetching port ID. Each bit corresponds to a CM port ID. If the bit is set, the corre-
sponding CM port is monitored for prefetching.

8.6.1 Prefetch Enable

The number of prefetch units implemented in the I8500 Multiprocessing System is deter-
mined by the user during IP configuration. This value is programmed by hardware into the
NPFT field (bits 7:0) of the L2 Prefetch Control register (GCR_L2_PFT_CONTROL) located at
offset address 0x0300 in the GCR Global register space. This read-only field allows kernel
software a convenient way to determine the number of prefetch units implemented.

CM GCR Register Interface

Prefetching is enabled by setting the PFTEN bit in the GCR_L2_PFT_CONTROL register. Note
that the number of prefetch units implemented as described above must be greater than 0 in
order for this bit to have meaning.

8.6.2 Select Ports for L2 Prefetching

The CM allows up to 8 ports to be selected for L2 prefetching. These ports correspond to the
(up to) six cores and (up to) eight IOCU’s as shown in Figure 8.1. L2 prefetching can be
selected for some of all of these ports using the 8-bit PORT_ID field in the GCR_L2_PFT_-
CONTROL_B register. Each bit of this field corresponds to a single port. There can be any
number of cores and IOCU’s up to the maximum or eight. For example, if there are 8 cores,
then there must be 0 IOCU’s to make a total or 8, or 4 cores and 4 IOCU’s, etc. If a given bit
is set, L2 prefetching is monitored for that port. If the bit is cleared, L2 prefetching does not
occur.

The field is organized as cores followed by IOCU’s starting from bit 0. So in a 4-core and 2-
IOCU system, bits 0 - 3 of the field would represent cores 0 - 3 respectively. Bits 4 - 5 of the
field would represent IOCU 0 - 1 respectively. Bits 6 - 7 would not be used in this example.

8.6.3 Enabling Code Prefetch

In addition to data prefetching, the CM allows prefetching of the code stream. Code prefetch-
ing is enabled by setting the CEN bit in the GCR_L2_PFT_CONTROL_B register.

8.7 CM Uncached Semaphore Management

The I8500 CM provides a mechanism for managing uncached semaphores. This mechanism
is managed by the Global CM Semaphore (GCR_SEM) register located at offset address
0x0640.

A write to this register with write data bit 31 = 1 is inhibited if the SEM_LOCK bit is already 1.
A write to this register proceeds normally if the write data has bit 31 = 0 or if the SEM_LOCK
bit is currently 0.

CM GCR Register Interface

\}\<M I PS Copyrigr:tiF();.Zc(}znz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

To acquire the semaphore:
1. Write this register with bit 31 = 1 and the lower bits with the threads VPID.

2. Read the register.

3. If the value read in step #2 is the same as the value as written in step #1, then a semaphore has been
acquired, else go to step #1.

To release the semaphore:

1. Write the register with bit 31 = 0.

For more information, refer to the CM GCR Semaphore Lock register (GCR_SEM) at offset
0x0640 in the I8500 Registers companion document.

8.8 Custom GCR Implementation

The CM provides the ability for the system designer to implement a 64 KB block of custom
registers that can be used to control system level functions. These registers are defined by
the system designer and then instantiated into the design.

The existence of a custom GCR implementation in the system is selected during IP Configura-
tion. If this option is selected, the GGU_EX bit is set in the Global Custom Status register at offset
address 0x0068 in GCR Global address space. This bit indicates that a custom GCR block is
connected to the CM.

CM GCR Register Interface

The CM provides two global registers to handle the implementation of custom registers: the
GCR Base register at offset 0x0008, and the Giobal Custom Status register located at offset
0x0068. If a custom block is implemented, the starting address in memory of the 64 KB
block by adding the value in GCR_BASE[47:32] to 0x10000. Note that the GCR_BASE field
does not have a default base address and this field is undefined at reset. Therefore, it is pro-
grammer’s responsibility to program the base address into this field during boot time if a cus-
tom GCR block is implemented.

In addition, the selected address region where the registers will reside must be enabled by
setting the GGU_EN bit in the Global Custom Base register. Note that the accessibility of this bit
depends on the state of the GGU_EX bit. If GGU_EX is cleared (zero), indicating that no custom
GCR is connected to the CM, then the GGU EN bit becomes RO and is not accessible by the
kernel. If this bit is set, indicating that a custom GCR is connected to the CM, then the
GGU_EN bit becomes R/W and is accessible by kernel software.

This concept is described in Figure 8.4.

\}\<M I PS Copyrig':tirg.zc(}:nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Figure 8.4 Relationship Between the CM_Present Signal and the GGU_EX and GGU_EN Bits at Reset
CM3 GCR

GGU_EX bit GGU_EN bit

State Access State Access

GU_Present Logic 0 @ @

(Hardwired to 0) No custom GCR block.

Bit has no meaning.

CM3 GCR

GGU_EX bit GGU_EN bit
GU_Present .
Custom GCR — Logic 1 - State Access State Access

Block Custom GCR block present.

Enable/disable custom
GCR address region.

8.9 Error Processing

The CM detects, reports, and handles several types of hardware and software errors. When
an error is detected, information that may be useful in debugging the error is captured in the
Global CM Error Cause Register and the Global CM Error Address Register. The encoding of these regis-
ters is determined by the type of error. For more information, refer to Section

8.14.4.7 “Global CM3 Error Cause Register (GCR_ERR_CAUSE): Offset 0x0048” and Section
8.14.4.8 “Global CM3 Error Address Register (GCR_ERR_ADDR): Offset 0x0050”.

CM GCR Register Interface

When an error occurs, hardware updates the read-only ERR_TYPE field (bits 63:58) of the
Global CM Error Cause register with one of the values listed in Table 8.3. When this field is writ-
ten, hardware also updates the 58-bit ERROR_INFO field that provides additional information
about the error. The organization of this field varies depending on the value in the ERR_TYPE
field. When an error occurs, kernel software can read this register to determine the type of
error and take the appropriate actions.

If a second error is detected, it is captured in bits 63:58 of the CM Error Multiple Register.
The only exception is if the first error was an L2 RAM correctable error (MP_CORRECT-
ABLE_ECC_ERR). In this case, the second error overwrites the first error stored in the Global
CM Error Cause register. Note that for the second error, only the error type is captured, not the
associated error address.

The GCR_ERROR_CAUSE.ERR _TYPE field and the GCR_ERROR _MULT.ERR_TYPE fields can be
cleared by either a reset or by writing the current value of GCR_ERROR_CAUSE.ERR_TYPE to
the GCR_ERROR_CAUSE. ERR_TYPE register.

When the Global CM Error Cause Register is loaded, an interrupt may be generated if the corre-
sponding bit for that type of error is set in the Global CM Error Mask Register located at offset
address 0x0040 (physical address Ox1FBF_8040).

Note that in the CM, the error response is independent of the mask setting, which is different
from the previous generation CM2. If the normal response should be an ERROR, then an
ERROR response is returned regardless of the Error Mask Register setting. The mask setting con-
trols whether an interrupt is generated in addition to the normal error response.

Table 8.3 lists the errors detected by the CM. The following subsections describe each type of
error in more detail and provides the encoding of the ERR_INFO field for each error type. For

141

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

a detailed description of each error type and the encoding of each error code field, refer to
the I8500 Technical Reference Manual.

Table 8.3 CM Error Types

Error
Type Error Name Description Action

0 - Reserved -

1 MP_CORRECTABLE _ECC_ERR | A correctable ECC error The error is corrected
occurred during an L2 cache |Signal an interrupt if CM_ER-
access. ROR_MASK[1] =1

2 MP_REQUEST_DECODE_ERR | A decoding error was Respond with an error to the origi-
detected in the request. nal requestor.

Signal an interrupt if CM_ER-
ROR_MASK]2] = 1
3 MP_UNCORRECTABLE _ An uncorrectable ECC error | Signal an interrupt if
ECC _ERR occurred during an L2 cache | CM_ERROR_MASK]|3] =1
access.

4 MP_PARITY_ERR A parity error was detected in | Signal an interrupt if
the L2 data coming from CM_ERROR_MASK[4] =1
either the core of the mem-
ory.

5 MP_FNL_ERR If an L2 fetch and lock (FNL) | Signal an interrupt if
cacheop is processed when |CM_ERROR_MASK[5] =1
only one or zero ways of the
cache are unlocked, including
pseudo-locks, then the FNL
fails.

6 CMBIU_REQUEST_ A decoding error was Signal an interrupt if

DECODE_ERR detected during a request on | CM_ERROR_MASK][6] =1
the BIU.

7 CMBIU_PARITY_ERR The BIU detected a parity Signal an interrupt if
error. CM_ERROR_MASK[7] =1

8 CMBIU_AXI_RESP_ERR The BIU detected a response | Signal an interrupt if
error was detected on the AXI | CM_ERROR_MASK]|8] =1
bus.

9 CMBIU_WID _ERR Signal an interrupt if

CM_ERROR_MASK[9] =1
10 RBI_BUS_ERR An error occurred on the Signal Interrupt if
Register Ring Bus during a CM_ERROR_MASK[10] =1
register access.
11 I0C_REQUEST _ERR An error occurred during an | Signal Interrupt if
AXI request. CM_ERROR_MASK[11] =1
12 I0OC_PARITY_ERR The IOCU detected a parity | Signal Interrupt if

error. CM_ERROR_MASK[12] =1
13 IOC_RESP_ERR The IOCU detected a Signal Interrupt if

response error. CM_ERROR_MASKJ[13] =1

\}\<M I PS Copyrigr:ti‘g;:;):nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.3 CM Error Types (continued)

Error
Type Error Name Description Action
14 HALF PIPE ERR The main pipeline received | Signal Interrupt if
an error from the half-pipe. CM_ERROR_MASK[14] =1
15 RBI_REGTC_REQ_ERR An illegal request was Signal Interrupt if
received by the REGTC. CM_ERROR_MASKJ[15] =1

8.10 1/0O Coherence Unit (IOCU)

The I/O Coherence Unit provides an I/O coherent AXI-4 request interface to the CM.

I/O coherent read requests see the most recently written data. 1/0O coherent write requests invalidate, with
writeback if needed, copies of data held in L1 data caches. I/O coherent devices are otherwise outside the
coherent domain. The CM assumes I/O coherent devices do not cache data, and therefore does not send
interventions to IOCUs.

8.10.1 I0CU Features

IOCU supports the following features for easier integration:

* AXIINCR bursts up to 256 beats (128 bits/beat). IOCU translates AXI-4 burst transactions into a
sequence of cache-line sized requests within the CM.

¢ Ordered coherent writes. IOCU issues coherent writes to CM in the order it receives them.

The IOCU uses the AXI signals AXCACHE[3:2] and AXUSER][0] to determine coherence, allocation, and
prefetch attributes of each request. These signals are defined as follows:

+ AxCACHE[3:2]
— 2'b00: Uncached request. Bypasses caches and coherency directory.
— 2'b10, 'b01, or 'b11: Coherent request. Consults L2 cache and coherence directory.
+ ARCACHEJ2]:
— 1’b0: Do not allocate in L2.
— 1'b1: Read-allocate in L2. (Coherent requests only.)
+ AxUSER[O]:
— 1'b0: Not eligible for L2 prefetch.
— 1'b1: Eligible for L2 prefetch. (Coherent requests only.)
The IOCU does not support an IOMMU.

8.10.2 10CU Control

The I8500 CM contains up to eight I/O Coherency Units (IOCU) for managing cache coher-
ency between the CM and external devices. The IOCU is a hardware block and is not directly
programmable. However, the IOCU can be indirectly controlled using the following register
fields:

\}\<M I PS Copyrigr::g;&:rrz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

e The read-only NUMIOCU field in bits 11:8 of the Global Config register (GCR_CONFIG)
located at offset 0x0000 of CM GCR address space and indicates the number of IOCUs
instantiated in the design. This field is filled by hardware during IP configuration.

e IOCU requests are prevented from being issued to MMIO regions by setting the bit 13 of
the Global CM Control register (GCR_CONTROL) at offset 0x0010 in CM GCR address
space.

e IOCU requests to external devices are counted toward the outstanding request limit when
bit 12 of the Global CM Control register (GCR_CONTROL) at offset 0x0010 in CM GCR
address space. If this bit is set, IOCU accesses to MMIO regions are blocked once the
MMIO outstanding limit is reached. Note that bit 13 of this register must be 0 for this bit
to have meaning as described above.

e Software can select which IOCUs are allowed to access the CM GCR registers by program-
ming bits 23:16 of the Global CSR Access Privilege register (GCR_ACCESS) at offset
0x0120 in CM GCR address space. Each bit corresponds to one of eight IOCUs. If the cor-
responding bit is set, accesses from that IOCU are allowed to write the GCR and Cluster
Power Controller (CPC) registers.

8.11 MMIO Address Regions

As described in the section entitled Verifying Overall System Configuration, the number of
MMIO address regions is determined at IP configuration time. The I8500 supports up to four
MMIO regions. Each region is assigned an upper and lower address bound.

The MMIO regions are intended to be used for communicating with external PCle devices.
The MMIO registers allow for counting of number of non-speculative code fetches of
uncached requests in order to avoid potential deadlock condition by having too many
requests outstanding. This is accomplished by programming the MMIO_REQ_LIMIT field.

8.11.1 CM GPR Register Interface

Software can set the number of MMIO requests that can be in-flight at any given time by pro-
gramming the MMIO_REQ_LIMIT field of the MMIO Request Limit register (GCR_M-
MIO_REQ_LIMIT) at offset Ox6F8.

In addition, the address range of each MMIO region is defined using the Upper and Lower
Bound MMIO region registers. A pair of registers are used for each MMIO region, with each
register containing a 32-bit address bound value. These registers are located at:

e Lower bound of MMIO region 0 (GCR_MMIOO0_BOTTOM) at offset 0x0700
e Upper bound of MMIO region 0 (GCR_MMIOO0O_TOP) at offset 0x0708
e Lower bound of MMIO region 1 (GCR_MMIO1_BOTTOM) at offset 0x0710
e Upper bound of MMIO region 1 (GCR_MMIO1_TOP) at offset 0x0718
e Lower bound of MMIO region 2 (GCR_MMIO2_BOTTOM) at offset 0x0720
e Upper bound of MMIO region 2 (GCR_MMIO2_TOP) at offset 0x0728
e Lower bound of MMIO region 3 (GCR_MMIO3_BOTTOM) at offset 0x0730
e Upper bound of MMIO region 3 (GCR_MMIO3_TOP) at offset 0x0738

144

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
8.11.2 MMIO Region Control

Each of the four MMIO regions listed above can be enabled or disabled by programming the
MMIQO_EN bit that resides in the Lower Bound register for each MMIO region (GCR_MMIO[0-
3]_BOTTOM). If the MMIO region is enabled, then the request address and CCA are used to
determine if the request falls into an MMIO Region. The decoded address is used to deter-
mine if the access is to a MMIO region as shown in the following equation:

MMIO_BOTTOM_ADDR[47:16] <= phys_address[47:16] <= MMIO_TOP_ADDR[47:16]

If bits 47:16 of the physical address fall between the value in MMIO_BOTTOM_ADDR[47:16]
and MMIO_TOP_ADDR[47:16], then the access is to the corresponding MMIO region.

If MMIO_CCA is set to 0x0, just the request address is used to determine whether the
request is to an MMIO region as shown above. If MMIO_CCA is set to 0x01, then the address
comparison above is further qualified by whether the request has CCA = UC. In other words,
only UC requests will be considered eligible to hit the MMIO region. If MMIO_CCA is set to
0x2, then the request is qualified by CCA = UCA. If MMIO_CCA = 0x3, then the request is
qualified by CCA = UC or CC = UCA. In other words, either UC or UCA requests can match
the MMIO region.

If an address hits in multiple MMIO register address regions, then the lowest-numbered
enabled MMIO region hit takes precedence for determining which MMIO region the request
matches. Once a request is determined to reside in an MMIO region, that region MMIO_PORT
field in the Lower Bound register determines where the request will be routed. Options are
the main memory port or an Auxiliary interface. See section 5.13.

The user can limit the total nhumber of MMIO requests issued by the CM, which can be useful
to avoid deadlock when accessing PCle bridges that also service incoming coherent requests.
The limit is defined by the MMIO_REQ_LIMIT field in bits 7:0 of the MMIO Request Limit
(GCR_MMIO_REQ_LIMIT) register at offset 0x06F8 in GCR address space. Once the limit is
reached, the CM stops serializing uncached and code fetches until a response to an MMIO
request has been received. For example, a value of 0x01 in this field indicates one outstand-
ing MMIO request is permitted. Setting this value to 0x00 disables the MMIO limiting feature,
allowing any amount of outstanding requests to occur. The MMIO_DISABLE_REQ_LIMIT bit in
the region's Lower Bound Register can be set to indicate that requests to the particular MMIO
region should not be limited.

By default, IOCU uncached requests are never considered part of the MMIO limit (to allow for
forward progress). However, this is controllable via the GCR_CONTROL.CM_MMIO_IOCU_EN-
ABLE_REQ_LIMIT. When this bit is set, IOCU uncached requests are counted as outstanding

MMIO requests. In this case, IOCU uncached requests are blocked if the MMIO request limit

has been reached.

8.12 Auxiliary Interfaces

The CM supports up to four non-coherent Auxiliary AXI4 buses, called AUX0 - AUX3. The AUX
master ports are intended to be used for lower latency access to peripherals or instruction
SRAM. Each cluster supports up to four AUX ports. Each AUX interface has a configurable
data width. Values of 32, 64, 128, 256 and 512 are supported. The data width is determined
during IP configuration. Each AUX address width is 48 bits. The number of AUX ports is
stored in the 3-bit NUMAUX field of the Global Configuration register (GCR_CONFIG) at offset
0x0000 in GCR address space.

The clock for each AUX interface can be provided internally by the cluster or provided exter-
nally from outside the cluster. Each internally provided AUX clock can have an independent
clock ratio. An externally provided clock can be provided on the external AUX clock pin. An

\}\<M I PS Copyrigr:tiF();.Zc(}:nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

externally provided clock is assumed to be asynchronous to the cluster. Selection between an
internal versus external clock is done during IP configuration.

The AUX ports are memory mapped by the MMIO GCR control registers. There are up to 4
MMIO regions. Each GCR_MMIO<x>_BOTTOM register listed above contains an MMIO_PORT
field in bits 5:2 that indicates which auxiliary port the request should be routed to. This field
is encoded as shown in Table 8.4.

Table 8.4 Encoding of MMIO_PORT Field

Field Name Register Bits Encoding Port Accessed
MMIO_PORT 5:2 0x0 Main memory
0x8 AUX port 0
0x9 AUX port 1
OxA AUX port 2
0xB AUX port 3

8.13 Error Processing

The CM detects, reports, and handles several types of errors that may be caused by errant
software or hardware soft or hard errors. When an error is detected, information that may be
useful in debugging the error is captured in the Global CM Error Cause Register and Global CM Error
Address Register.

When an error occurs, hardware updates the read-only ERR_TYPE field in bits 63:58 of the
Global CM Error Cause register with one of the values listed in Table 8.3 above. When this field is
written, hardware also updates the 58-bit ERROR_INFO field that provides additional infor-
mation about the error. The organization of this field varies depending on the value in the
ERR_TYPE field.

**Below text may be removed. Waiting on Darshan to reply.

When a second error is detected, it will overwrite the first error if the first error was an L2
ram correctable error (MP_CORRECTABLE_ECC_ERR). Otherwise, the second error is cap-
tured in the CM Error Multiple Register. Note that for the second error, only the error type is
captured, not the associated error address or error information.

When a second error is detected, the CM Error Cause (GCR_ERR_CAUSE) register should be
overwritten if the previous error was a correctable error. The CM Error Multiple (GCR ERR_-
MULT) register traps the error information if the previous error is not correctable. Note that
for the second error, only the error type is captured, not the associated error address or error
information.

The GCR_ERROR_CAUSE.ERR _TYPE field and the GCR_ERROR_MULT.ERR_TYPE fields can be
cleared by either a reset or by writing the current value of GCR_ERROR_CAUSE.ERR_TYPE to
the GCR_ERROR_CAUSE. ERR_TYPE register.

\}\<M I PS Copyrigr::g;&:rrz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

When the Global CM Error Cause Register is loaded, an interrupt may be generated if the corre-
sponding bit for that type of error is set in the Global CM Error Mask Register located at offset
address 0x0040.

One distinction between error management in the CM and the previous generation CM2-
based products is in error responses when the Error Mask register is set. In CM2-based prod-
ucts;

e If the error was generated by a request that requires a response and the corresponding
Global CM2 Error Mask Register bit is 0, then the CM2 issues an ERROR response.

e If the corresponding Global CM2 Error Mask Register bit is 1, then the CM2 issues a normal
response and an interrupt is generated instead.

In the CM version in the 18500, the error response is independent of the mask setting. If the
normal response should be an ERROR, then an ERROR response is returned regardless of the
Error Mask Register setting. The mask setting controls whether an interrupt is generated in addi-
tion to the normal error response.

Table 8.3 lists the errors detected by the CM. The following subsections describe each type of
error in more detail and provide the encoding of the ERR_INFO field for each error type.

Table 8.5 CM Error Types

Error
Type Error Name Description Action

0 - Reserved -

1 MP_CORRECTABLE ECC _ERR |A correctable ECC error occurred | The error is corrected.
during an L2 cache access. Signal an interrupt if CM_ER-

ROR_MASK][1] = 1

2 MP_REQUEST_DECODE_ERR |A decoding error was detected in | Respond with an error to the

the request. original requestor.
Signal an interrupt if CM_ER-
ROR_MASK]2] = 1
3 MP_UNCORRECTABLE _ An uncorrectable ECC error Signal an interrupt if
ECC ERR occurred during an L2 cache CM_ERROR_MASK|3] =1
access.

4 MP_PARITY_ERR A parity error was detected in the | Signal an interrupt if
L2 data coming from either the CM_ERROR_MASK[4] =1
core or the memory.

5 MP_FNL_ERR If an L2 fetch and lock (FNL) Signal an interrupt if
cacheop is processed when only | CM_ERROR_MASK|[5] =1
one or zero ways of the cache are
unlocked, including pseudo-locks,
then the FNL fails.

6 CMBIU_REQUEST _ A decoding error was detected Signal an interrupt if

DECODE _ERR during a request on the BIU. CM_ERROR_MASK]6] = 1

7 CMBIU_PARITY_ERR The BIU detected a parity error. Signal an interrupt if

CM_ERROR_MASK[7] =1

8 CMBIU_AXI_RESP_ERR The BIU detected a response Signal an interrupt if
error was detected on the AXI CM_ERROR_MASK[8] = 1
bus.

SMIPS

147

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.5 CM Error Types (continued)

Error
Type Error Name Description Action
9 CMBIU_WID_ERR Signal an interrupt if
CM_ERROR_MASK|[9] =1
10 RBI_BUS _ERR An error occurred during a register | Signal Interrupt if
ring bus during a register access. | CM_ERROR_MASK[10] =1
11 I0C_REQUEST_ERR An error occurred on an IOCU Signal Interrupt if
request on the AXI bus. CM_ERROR_MASK[11] =1
12 I0OC_PARITY_ERR The IOCU detected a parity error. | Signal Interrupt if
CM_ERROR_MASK[12] =1
13 IOC_RESP_ERR The IOCU detected a response Signal Interrupt if
error. CM_ERROR_MASK[13] =1
14 HALF PIPE _ERR The main pipeline received an Signal Interrupt if
error from the half-pipe. CM_ERROR_MASK[14] =1
15 RBI REGTC REQ ERR An illegal request was received by | Signal Interrupt if
the REGTC bus during a NOC CM_ERROR_MASK[15] = 1
access.

8.13.1 Error Codes 1 and 3 — Tag ECC Error

If the decimal value in the ERR_TYPE field is either 1 or 3 and there is a Tag ECC error, the
ERROR_INFO field in the Global CM Error Cause register is organized as shown in Table 8.6

Table 8.6 State of ERR_INFO Field for Tag Error Types 1 or 3

Bit

Meaning

57

Error type
0: Tag error
1: Data error

56:45

Reserved

44:29

Indicates the way of the cache that caused the error. There is one bit per way as follows:

Bit 29: way 0
Bit 30: way 1
Bit 31: way 2

Bit 44: way 15

28

Bank in which the error occurred.
0: Bank O
1: Bank 1

SMIPS

a GlobalFoundries company

148
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 8.6 State of ERR_INFO Field for Tag Error Types 1 or 3 (continued)

Bit Meaning
27:22 | Core ID value.

The first IOCU encoding is always directly after the last core encoding. For example, in a system with
four cores and two I0CU’s, the cores would occupy encoding 0x0 - 0x3, and the IOCU’s would
occupy encoding 0x4 - 0x5.

So 0x0 - 0x[n] = cores, and 0x[n+1] - 0x[m] = IOCU’s. The following example shows the encoding for
a system with six cores and two IOCU'’s.

0x0: core O
0x1: core 1
0x2: core 2
0x3: core 3
0x4: core 4
0x5: core 5
0x6: IOCU 0
0x7: 10CU 1

21:18 |[Hart ID value.
0x0: hart 0
0x1: hart 1
0x2: hart 2
0x3: hart 3

17:14 | Command. This field indicates the command type. Refer to Table 8.8 through Table 8.11 for the
encoding of this field.

13:11 Command Group. This field indicates the command group. Refer to Table 8.7 for the encoding of this
field.

10:8 Cache Coherency Attribute (CCA) value. This field indicates the CCA value corresponding to the
transaction. Refer to Table 8.12 for the encoding of this field.

75 MCP bus transfer size. Indicates the size of the transfer on the bus. This field is encoded as 2(MCP
size).
0x0: 1 byte
0x1: 2 bytes
0x2: 4 bytes
0x3: 8 bytes
0x4: 16 bytes
0x5: 32 bytes (Reserved. Not used in the 18500)
0x6: 64 bytes
0x7: 128 bytes (Reserved. Not used in the 18500)

4:1 Transaction type. This field indicates the type of bus transaction that caused the error. Refer to Table
8.13 for the encoding of this field.

0 Scheduler. The 18500 core can be configured at build time with either 1 or 2 pipeline schedulers. If

the build is configured with one scheduler, this bit is always 0. If configured with two schedulers, this
bit can be either 0 or 1 and indicates the scheduler involved in the error.

\}\<M I PS Copyrigr:ti‘g;:?:nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

8.

13.1.1 Command Group Field Encoding

Bits 13:11 indicate the type of command group. The command group is used along with the
command to specify the operation to be performed. Memory reads and writes (cacheable as
well as non-cacheable) usually use the "NORM" command group. Some special cache mainte-
nance operations (L1I, L1D, L2, L3) must be able to target a specific cache level as well as
specify the operation to be performed. The encoding for the different values is given in the
table below.

This field is decoded as shown in Table 8.7. The encoding table for each of these command
group types are described in the following subsections.

Table 8.7 Command Group Field Encoding

Encoding Mnemonic Description Usage

0 NORM Normal loads and stores use this space. Normal loads and stores

1 REGS Register reads / writes and sync operations. Register access and
sync

2 GBL Globalized (to local and other clusters) I-cache and TLB Global instruction cache

invalidates. and TLB maintenance
3 Reserved N/A
4 L1l The command is targeted at the level 1 instruction cache. | Cache maintenance
. operations.

5 L1D The command is targeted at the level 1 data cache.

6 L3 The command is targeted at the level 3 cache.

7 L2 The command is targeted at the level 2 cache.

NORM Command Field Encoding

Bits 17:14 in Table 8.7 indicate the type of command to be performed. When the Command
Group field in bits 13:11 is set to 3'b000, indicating the NORM field encoding, the Command
field in bits 17:14 is decoded as shown in Table 8.8.

Table 8.8 NORM Command Field Encoding

Encoding Mnemonic Description

0 Read Legacy read.

1 Write Legacy write.

2 CohReadOwn Requests an exclusive copy of the cache line.

3 CohReadShare Requests a shared copy of the cache line.

4 CohReadDiscard | Request the latest copy of the cache line and is leaving the coherent domain.

5 CohEvict The line has been evicted from the cache without a change. The directory can
be updated.

6 CohUpgrade Request ownership of a shared cache line.

7 CohUpgradeSC Request ownership of a shared cache line for the purpose of executing a Store
Conditional instruction.

SMIPS

150

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.8 NORM Command Field Encoding (continued)

Encoding

Mnemonic

Description

8

CohWriteBack

Transfers ownership of a cache line back to the next level along with the new
copy of the line data.

CohWritelnvali-
date

Injects new, possibly sub cache line data into a coherent system. This com-
mand is only valid from the L1 to the L2 and is also called a Commit to L2.

10

CohReadDiscar-
dAlloc

Request the latest copy of the cache line and is leaving the coherent domain.
The next level cache should allocate the line if no present. This command is
expected to be used for cacheable instruction fetches.

11

CohPrefOwn

This command attempts to pre-fetch the specified line in to the L2 cache in the
“exclusive” state. If the line already exists in the cache in the exclusive or modi-
fied states, then this command does not change the line. Otherwise, a com-
mand needs to get sent to the next level to gain ownership of the line. No data
is returned to the requestor.

12

CohPrefShr

This command attempts to pre-fetch the specified line in to the L2 cache in the
“shared” state. If the line already exists in the cache, then this command does
not change the line. Otherwise, a command needs to get sent to the next level
to obtain a shared copy of the line. No data is returned to the requestor.

13

CohPrefWritelnv

This prefetch command is similar to the CohPrefOwn command but in addition
to bringing the cache line in to the L2 in one of the ‘exclusive’ states, it makes
sure that the line is not currently owned by any L1. This command is not
expected to be issued by a core but can be used by the L2 prefetcher within the
CM main pipeline.

14

CohGetOwn

This command is used to get ownership of the cache line from the next level
without asking for the data. This command can only be issued when the entire
cache line is being overwritten and is not expected to be issued by the core.

15

TagErr

This command is used to indicate that a tag error has been detected by the
requestor as it tried to send out a command. This command is typically used on
a write type command where the data has already been sent out on the WID
channel and an error is detected while trying to generate the address for the
request. This command is sent to the next level so that the SDB Id is not left
hanging. The receiver just frees up the resources as it processes the command
sending back a response without data.

REGS Command Field Encoding

Bits 17:14 in Table 8.7 indicate the type of command to be performed. When the Command
Group field in bits 13:11 is set to 3'b001, indicating the REGS field encoding, the Command
field in bits 17:14 is decoded as shown in Table 8.9.

Table 8.9 REGS Command Field Encoding

Encoding

Mnemonic

Description

0

DbgRead

Debug Read. This is used by the core (and CM to CMBIU) for debug register
reads (DMXSEG, DRSEG and CSR).

SMIPS

a GlobalFoundries company

151

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.9 REGS Command Field Encoding

Encoding Mnemonic Description

1 DbgWrite Debug Write. This is used by the core (and CM to CMBIU) for debug register
writes (DMXSEG, DRSEG and CSR).

2 RegRead Register Read. This is used by the core for Fast Debug Channel (FDC) reads.
This is used by CM to CMBIU for both FDC reads and memory mapped register
reads.

3 RegWrite Register Write. This is used by the core for Fast Debug Channel (FDC) writes.
This is used by CM to CMBIU for both FDC writes and memory mapped regis-
ter writes.

4-7 Reserved.

8 MemSyncO0 This is used for memory synchronization operations and has a type of 0. This
value does not correspond to the "stype" field of a SYNC instruction.

9 MemSync1 This is used for memory synchronization operations and has a type of 1. This
value does not correspond to the "stype" field of a SYNC instruction.

10 MemSync2 This is used for memory synchronization operations and has a type of 2. This
value does not correspond to the "stype" field of a SYNC instruction.

11 MemSync3 This is used for memory synchronization operations and has a type of 3. This
value does not correspond to the "stype" field of a SYNC instruction.

12-15 Reserved.

GBL Command Field Encoding

Bits 17:14 in Table 8.7 indicate the type of command to be performed. When the Command
Group field in bits 13:11 is set to 3’'b010, indicating the GBL field encoding, the Command
field in bits 17:14 is decoded as shown in Table 8.10.

Table 8.10 GBL Command Field Encoding

Encoding Mnemonic Description

0 GBL_HIT_INVI Invalidate the specified Physical Address (PA) in all I-caches.

1 GBL_ONE_INVI | Invalidate all addresses in one I-cache, selected by the General Number Regis-
ter (GNR).

2 GBL_ALL_INVI Invalidate all addresses in all I-cache.

3 Reserved

4 GBL_GINVGT Guest invoked, Invalidate one or many lines except for wired in matching Guest
TLB.

5 GBL_RINVGT Root invoked, Invalidate one or many lines including wired in matching Guest
TLB

6 GBL_INVT Invalidate one or many lines in Root TLB, except for wired entries.

\}\<M I PS Copyrigr:ti‘g;:;)z

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.10 GBL Command Field Encoding

Encoding Mnemonic Description
7 GBL_SYNC Sync and return only when all previous Global group commands have com-
pleted their tasks.
8-15 Reserved.

Cache Maintenance (L11l, L1D, L2, L3) Command Field Encoding

Bits 17:14 in Table 8.7 indicate the type of command to be performed. When the Command
Group field in bits 13:11 is set to 3'b100 through 3’b111, indicating the Cache Maintenance

encodings, the Command field in bits 17:14 is decoded as shown in Table 8.11.

The first set of encodings correspond to the encoding of bits [20:18] of the CACHE instruc-
tion. The last encoding is only valid for the L1I command group.

Table 8.11 Cache Maintenance Command Field Encoding

Encoding Mnemonic

Description

0 l[dxWhblnval

This command corresponds to the "Index invalidate / Index write-
back invalidate" CacheOp. Write-back caches flush out the data to
the next level if the line was dirty. All caches invalidate the line at the
end of the operation.

1 ldxLdTag

This command corresponds to the "Index load tag / data" type
CacheOp. The tag and data RAMs are read out at the location spec-
ified by the index and returned with the response.

IdxLdTag (0x1) loads both Tag RAM and Data RAM into the L2
GCR's.

2 ldxStTag

This command corresponds to the "Index store tag/data" type
CacheOp. This command is accompanied with write data that con-
tains the tag/data bits to be written.

IdxStTag (0x2) stores both Tag RAM and Data RAM into the L2
GCR’s.

3 Impl / Reserved

This command corresponds to the "Implementation Dependent”
CacheOp. This command is currently unsupported and considered
reserved.

4 Conlnvalidate / Hitlnvl

This command corresponds to the "Hit invalidate" type CacheOp or
the "Coherent Invalidate" command on the OCP 3.0 bus protocol. It
indicates that the addressed line needs to be invalidated irrespec-
tive of its ownership status.

5 CohCopyBackinval / Hit-
Whblnvl

This command corresponds to the "Hit Write Back Invalidate" type
CacheOp or the "Coherent Copy Back Invalidate" command on the
OCP 3.0 bus protocol. It indicates to the system that the addressed
line needs to be flushed from the system if in a dirty state and invali-
dated.

SMIPS

153
mips.com
Copyright © 2025

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.11 Cache Maintenance Command Field Encoding (continued)

Encoding Mnemonic Description

6 CohCopyBack / HitWb This command corresponds to the "Hit Write Back" type CacheOp
or the "Coherent Copy Back" command on the OCP 3.0 bus proto-
col. It indicates that the addressed line needs to be written out to
memory if in a dirty state. The line can continue to stay valid in the
caches if already present.

7 FetchNLock This command corresponds to the "Fetch and Lock" type CacheOp.
The line should be brought in to the cache and locked so that it does
not get evicted due to random replacement.

8-15 Reserved.

8.13.1.2 CCA Field Encoding
Bits 10:8 indicate the cache coherency attribute. This field is decoded as shown in Table 8.12.

Table 8.12 Cache Coherency Attributes Field Encoding

CCA[10:8] Attribute
3'b000 Mapped to ‘3b101 (Cached Coherent Read-Share).
3'b001 Mapped to ‘3b101 (Cached Coherent Read-Share).
3'b010 Uncached.
3'b011 Mapped to ‘3b101 (Cached Coherent Read-Share).
3'b100 Mapped to ‘3b101 (Cached Coherent Read-Share).
3’b101 Cached Coherent Read-Share.
3'b110 Mapped to ‘3b101 (Cached Coherent Read-Share).
3’b111 Uncached Accelerated.

8.13.1.3 Type Field Encoding

Bits 4:1 indicate the type of transaction when the error occurred. This field is decoded as
shown in Table 8.12.

Table 8.13 Type Field Encoding

Encoding Mnemonic Description
0 ReqNoData Normal request with no associated data. Used for most requests.
1 Reserved
2 ReqWData Normal request with associated data. Used for stores & write back requests.
3 Reserved
4 IRegNoResp |Intervention request with no response required.
5 IReqWResp |Intervention request with a response required.

154

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.13 Type Field Encoding

Encoding Mnemonic Description

6 IRegNoRespDat |Intervention request with associated data and no response required.

7 IReqWRespDat |Intervention request with associated data and response required.

8 RespNoData [Normal response with no data returned.

9 RespDataFol |Normal response with data to follow on a different transaction.

10 RespWData [Normal response with data being returned (3 clocks later).

11 RespDataOnly |Normal response with data being returned (3 clocks later) as a consequence of
a "data-to-follow" response.

12 IRespNoData |Intervention response with no data returned.

13 IRespDataFol |Intervention response with data to follow on a different transaction.

14 IRespWData |Intervention response with data being returned (3 clocks later).

15 IRespDataOnly |Intervention response with data being returned (3 clocks later) as a conse-
quence of a "data-to-follow" response.

8.13.2 Error Codes 1 and 3 — Data ECC Error

If the decimal value in the ERR_TYPE field is either 1 or 3 and there is a Data ECC error, the
ERROR_INFO field in the Global CM Error Cause register is organized as shown in Table 8.14

Table 8.14 State of ERR_INFO Field for Data Error Types 1 or 3

Bit

Meaning

57

Error type
0: Tag error
1: Data error

56:49

DWORD with error. This field indicates the DWORD that caused the error.

48:45

Indicates the way of the cache that caused the error. This field is encoded as follows. Note that this
field is handled differently from the Tag error shown in Table 8.6, where the field is one bit per way.

0x0: way 0
0x1: way 1
0x2: way 2

OxF: way 15

44:29

Indicates which one of up to 8K sets of the cache that caused the error. This field is encoded as fol-

lows:

0x0000: set 0
0x0001: set 1
0x0002: set 2

Ox1FFE: set 8,190
Ox1FFF: set 8,191

28

Bank in which the error occurred.

0: Bank O
1: Bank 1

SMIPS

a GlobalFoundries company

155
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 8.14 State of ERR_INFO Field for Data Error Types 1 or 3 (continued)

Bit Meaning
27:22 | Core ID value.

The first IOCU encoding is always directly after the last core encoding. For example, in a system
with four cores and two IOCU’s, the cores would occupy encoding 0x0 - 0x3, and the IOCU’s would
occupy encoding 0x4 - 0x5.

So 0x0 - 0x[n] = cores, and 0x[n+1] - 0x[m] = IOCU'’s. The following example shows the encoding for
a system with six cores and two IOCU'’s.

0x0: core O
0x1: core 1
0x2: core 2
0x3: core 3
0x4: core 4
0x5: core 5
0x6: core 6
Ox7: core 7
0x8: 10CU 0
0x9: I0CU 1
0xA: 10CU 2
0xB: 10CU 3
0xC: IOCU 4
0xD: IOCU 5
OxE: IOCU 6
OxF: 10CU 7

21:18 |Hart ID value.
0x0: hart 0
0x1: hart 1
0x2: hart 2
0x3: hart 3

17:14 | Command. This field indicates the command type. Refer to Table 8.8 for more information.

13:11 | Command Group. This field indicates the command group. Refer to Table 8.7 for the encoding of
this field.

10:8 | Cache Coherency Attribute (CCA) value. This field indicates the CCA value corresponding to the
transaction. Refer to Table 8.12 for the encoding of this field.

75 MCP bus transfer size. Indicates the size of the transfer on the bus. This field is encoded as 2(MCP
size).

0x0: 1 byte

0x1: 2 bytes

0x2: 4 bytes

0x3: 8 bytes

0x4: 16 bytes

0x5: 32 bytes (Reserved. Not used in the 18500)

0x6: 64 bytes

0x7: 128 bytes (Reserved. Not used in the 18500)

4:1 Transaction type. This field indicates the type of bus transaction that caused the error. Refer to
Table 8.13 for the encoding of this field.

\}\<M I PS Copyrigr:ti‘g;:?z'z

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.14 State of ERR_INFO Field for Data Error Types 1 or 3 (continued)

Bit Meaning
0 Scheduler. The 18500 core can be configured at build time with either 1 or 2 pipeline schedulers. If
the build is configured with one scheduler, this bit is always 0. If configured with two schedulers, this
bit can be either 0 or 1 and indicates the scheduler involved in the error.
8.13.3 Error Code 2 — Request Decode Error

If the decimal value in the ERR_TYPE field is 2, indicating a decode request error, the

ERROR_INFO field in the Global CM Error Cause register is organized as shown in Table 8.15.

Table 8.15 State of ERR_INFO Field for Data Error Type 2

Bit Meaning

57 Reserved.

56 AlA access error. Hardware sets this bit to indicate a code fetch was sent to AlA address
space.

55 Non-Coherent MMIO error. Hardware sets this bit to indicate if an invalid MMIO access
was made to MMIO address space.

54 Coherent MMIO error. Hardware sets this bit to indicate that coherent access was made to
MMIO address space.

53 Reserved.

52 CCA or LL/SC error. Hardware sets this bit to indicate that the error occurred in the decod-
ing of the CCA field, either a register access with CCA not equal to UC was attempted, or
or an LLSC request was made to a register.

51 Size error. Hardware sets this bit to indicate that the error occurred in the decoding of the
Size field. A register access with size not equal to 4 or 8 bytes was attempted.

50 Multiple regions error. Hardware sets this bit to indicate that the error occurred in the
decoding of multiple regions.

49 Coherency request or redirect error. Hardware sets this bit to indicate that a coherent
request was made to either a register-mapped address, or a redirect access was made to
a block redirect that does not exist.

48 Debug register access error. Hardware sets this bit to indicate a Debug register access.

47 FDC Register Access. Hardware sets this bit to indicate a Fast Debug Channel (FDC)
access.

46 Normal Register Access. Hardware sets this bit to indicate a normal register mapped
access.

45 GCR Hit. Hardware sets this bit to during a hit to the GCR registers.

44 User GCR Hit. Hardware sets this bit to during a hit to the User GCR registers.

43 CPC Hit. Hardware sets this bit to during a hit to the Cluster Power Controller (CPC).

42 AlA Hit. Hardware sets this bit to during a hit to the Advanced Interrupt Architecture (AIA).

41 IOCU Hit. Hardware sets this bit to during a hit to the I/O Coherence Unit (IOCU).

40:37 |Decode CMD. This field indicates the command sent to memory on a register request.

This field has the same encoding as the Command field. The bit orientation of this field
depends on the type of error as listed in Table 8.7 through Table 8.11.

SMIPS

a GlobalFoundries company

157

mips.com
Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.15 State of ERR_INFO Field for Data Error Type 2 (continued)

Bit

Meaning

36:34

Decode CMD Group. This field indicates the indicates the Command Group sent to mem-
ory on a register request. The field has the same encoding as Table 8.7.

33:28

Decode Destination ID. This field indicates the destination ID sent to memory on a register
request.

27:22

Core ID value.

The first IOCU encoding is always directly after the last core encoding. For example, in a
system with four cores and two IOCU’s, the cores would occupy encoding 0x0 - 0x3, and
the IOCU’s would occupy encoding 0x4 - 0x5.

So 0x0 - Ox[n] = cores, and 0x[n+1] - Ox[m] = IOCU’s. The following example shows the
encoding for a system with six cores and two IOCU’s.

0x0: core 0
0x1: core 1
0x2: core 2
0x3: core 3
0x4: core 4
0x5: core 5
0x6: I0CU 0
0x7: 10CU 1

21:18

Hart ID value.
0x0: hart 0
0x1: hart 1
0x2: hart 2
0x3: hart 3

17:14

Command. This field indicates the command type. Refer to Refer to Table 8.8 for the
encoding of this field.

13:11

Command Group. This field indicates the command group. Refer to Table 8.7 for the
encoding of this field.

10:8

Cache Coherency Attribute (CCA) value. This field indicates the CCA value corresponding
to the transaction. Refer to Table 8.12 for the encoding of this field.

7:5

MCP bus transfer size. Indicates the size of the transfer on the bus. This field is encoded
as 2(MCP size).

0x0: 1 byte

0x1: 2 bytes

0x2: 4 bytes

0x3: 8 bytes

0x4: 16 bytes

0x5: 32 bytes (Reserved. Not used in the 18500)
0x6: 64 bytes

0x7: 128 bytes (Reserved. Not used in the 18500)

4:1

Transaction type. This field indicates the type of bus transaction that caused the error.
Refer to Table 8.13 for the encoding of this field.

SMIPS

a GlobalFoundries company

158

mips.com
Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.15 State of ERR_INFO Field for Data Error Type 2 (continued)

Bit

Meaning

Scheduler. The 18500 core can be configured at build time with either 1 or 2 pipeline
schedulers. If the build is configured with one scheduler, this bit is always 0. If configured
with two schedulers, this bit can be either O or 1 and indicates the scheduler involved in the
error.

8.13.4 Error Code 4 — Parity Error

If the decimal value in the ERR_TYPE field is 4, indicating a parity error, the ERROR_INFO
field in the Global CM Error Cause register is organized as shown in Table 8.16.

Table 8.16 State of ERR_INFO Field for Data Error Type 4

Bit

Meaning

57:36

Reserved.

35:28

DWORD with error. This field indicates the DWORD that caused the error.

27:22

Port ID value. This field indicates the port ID value of all cores and IOCU’s in the system.

The first IOCU encoding is always directly after the last core encoding. For example, in a system
with four cores and two IOCU’s, the cores would occupy encoding 0x0 - 0x3, and the IOCU’s
would occupy encoding 0x4 - 0x5.

So 0x0 - 0x[n] = cores, and Ox[n+1] - Ox[m] = IOCU’s. The example below shows the encoding for
a six core and two IOCU system.

0x0: core 0
0x1: core 1
0x2: core 2
0x3: core 3
0x4: core 4
0x5: core 5
0x6: 10CU 0
0x7:10CU 1

21:18

Hart ID value.
0x0: hart 0
0x1: hart 1
0x2: hart 2
0x3: hart 3

17:14

Command. This field indicates the command type. The encoding of this field depends on the type
of error. Refer to Table 8.8 through Table 8.11 for the encoding of this field.

13:11

Command Group. This field indicates the command group. Refer to Table 8.7 for the encoding of
this field.

10:8

Cache Coherency Attribute (CCA) value. This field indicates the CCA value corresponding to the
transaction. Refer to Table 8.12 for the encoding of this field.

SMIPS

a GlobalFoundries company

159

mips.com
Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 8.16 State of ERR_INFO Field for Data Error Type 4 (continued)

Bit Meaning

7:5 MCP bus transfer size. Indicates the size of the transfer on the bus. This field is encoded as
2(MCP size).

0x0: 1 byte

0x1: 2 bytes

0x2: 4 bytes

0x3: 8 bytes

0x4: 16 bytes

0x5: 32 bytes (Reserved. Not used in the 18500)

0x6: 64 bytes

0x7: 128 bytes (Reserved. Not used in the 18500)

4:1 Transaction type. This field indicates the type of bus transaction that caused the error. Refer to
Table 8.13 for the encoding of this field.

0 Scheduler. The 18500 core can be configured at build time with either 1 or 2 pipeline schedulers. If
the build is configured with one scheduler, this bit is always 0. If configured with two schedulers,
this bit can be either 0 or 1 and indicates the scheduler involved in the error.

8.13.5 Error Code 5 — Fetch and Lock Error

If the decimal value in the ERR_TYPE field is 5, indicating a fetch and lock error, the
ERROR_INFO field in the Global CM Error Cause register is organized as shown in Table 8.17.

Table 8.17 State of ERR_INFO Field for Data Error Type 5

Bit Meaning
57:29 |Reserved.

28 Bank in which the error occurred.
0: Bank O
1: Bank 1

27:22 |Port ID value. This field indicates the port ID value of all cores and IOCU’s in the system.

The first IOCU encoding is always directly after the last core encoding. For example, in a system
with four cores and two IOCU’s, the cores would occupy encoding 0x0 - 0x3, and the IOCU’s
would occupy encoding 0x4 - 0x5.

So 0x0 - 0x[n] = cores, and Ox[n+1] - 0x[m] = IOCU’s. The example below shows the encoding for
a six core and two IOCU system.

0x0: core O
0x1: core 1
0x2: core 2
0x3: core 3
0x4: core 4
0x5: core 5
0x6: 10CU 0
0x7:10CU 1

\}\<M I PS Copyrigr:ti‘g;:?:nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.17 State of ERR_INFO Field for Data Error Type 5 (continued)

Bit Meaning
21:18 |Hart ID value.
0x0: hart 0
0x1: hart 1
0x2: hart 2
0x3: hart 3

17:14 |Command. This field indicates the command type. The encoding of this field depends on the type
of error. Refer to Table 8.8 through Table 8.11 for the encoding of this field.

13:11 | Command Group. This field indicates the command group. Refer to Table 8.7 for the encoding of
this field.

10:8 | Cache Coherency Attribute (CCA) value. This field indicates the CCA value corresponding to the
transaction. Refer to Table 8.12 for the encoding of this field.

75 MCP bus transfer size. Indicates the size of the transfer on the bus. This field is encoded as
2(MCP size).

0x0: 1 byte

0x1: 2 bytes

0x2: 4 bytes

0x3: 8 bytes

0x4: 16 bytes

0x5: 32 bytes (Reserved. Not used in the 18500)

0x6: 64 bytes

0x7: 128 bytes (Reserved. Not used in the 18500)

4:1 Transaction type. This field indicates the type of bus transaction that caused the error. Refer to
Table 8.13 for the encoding of this field.
0 Scheduler. The 18500 core can be configured at build time with either 1 or 2 pipeline schedulers. If

the build is configured with one scheduler, this bit is always 0. If configured with two schedulers,
this bit can be either 0 or 1 and indicates the scheduler involved in the error.

8.13.6 Error Codes 6, 7, 8 — Bus Interface Unit (BIU) Errors

If the decimal value in the ERR_TYPE field is between 6 and 8, the ERR_INFO field in the
Global Error Cause register is organized as shown in Table 8.18.

Table 8.18 State of ERR_INFO Field for Error Types 6 through 8

Bit Meaning

57:54 | Subcode. This field indicates the type of bus error and is encoded as follows:

0: Internal MCP request decode error

1: AXI parity error

2: Internal MCP parity error

3: AXI xRESP error (SLVERR or DECERR)
4: Unexpected AXI RID

5: Unexpected AXI BID

6: Reserved

7: AXI CD parity error

8: MMIO port error

9: NOC_REG_ACCESS error

53:49 |Reserved

\}\<M I PS Copyrigr:ti‘g;:?:r:;

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 8.18 State of ERR_INFO Field for Error Types 6 through 8 (continued)

Bit Meaning

48:41 |AXI ID value. Valid if TYPE = 8. This value applies to subcodes 1, 3, 4, and 5 in bits 57:54 above.
Refer to Table 8.3 for a list of error types.

40:37 |RRESP/BRESP. Valid if TYPE = 8. This value applies to subcodes 1, 3, 4, and 5 in bits 57:54 above.
Refer to Table 8.3 for a list of error types.

36 Request data buffer lock (rdb_lock). This field is valid for subcodes 0 - 3, 6, 8 and 9.
35:31 | Request data buffer thread ID (req_thrd_id). This field is valid for subcodes O - 3, 6, 8 and 9.
30:27 |Request port (req_port). This field is valid for subcodes 0 - 3, 6, 8 and 9. See the table below for

encoding.

26 Request data buffer write (rdb_wr). This field is valid for subcodes 0 - 3, 6, 8 and 9.

25 Request data buffer uncached accelerated (rdb_uca). This field is valid for subcodes 0 - 3, 6, 8 and
9.

24 Request data buffer uncached (rdb_uc). This field is valid for subcodes 0 - 3, 6, 8 and 9.
23:0 Reserved.

Table 8.19 BIU Error Request Port (req_port) Field Encoding — Bits 30:27

Bits 30:27 Output Channel
0x0 C_MEM_AR (memory read)
0x1 C_MEM_AW (memory write)
0x2 AUXO_AR (Aux port 0 read)
0x3 AUX0_AW (Aux port 0 write)
0x4 AUX1_AR (Aux port 1 read)
0x5 AUX1_AW (Aux port 1 write)
0x6 AUX2_AR (Aux port 2 read)
0x7 AUX2_AW (Aux port 2 write)
0x8 AUX3_AR (Aux port 3 read)
0x9 AUX3_AW (Aux port 3 write)
0x10 - 0x11 | Reserved
0x12 ITU_AR (ITU read)
0x13 ITU_AW (ITU write)
0x14 Reserved
0x15 RBI local registers read and write

\}\<M I PS Copyrigr:ti‘g;:';)z

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
8.13.7 Error Code 10 — Ring Bus Error

If the decimal value in the ERR TYPE field is 10, the ERR _INFO field in the Global CM Error Cause
register is organized as shown in Table 8.20.

Table 8.20 State of ERR_INFO Field for Error Type 10

Bit

Meaning

57:54

Sub-code

0: reserved

1: Master endpoint response error (see CMDI[1:0] field for error type)
2: Register ring bus error

3. Byte enable error

53:48

Reserved

47

cmd[3]. In the 18500, this bit is always 0.
0: Standard packets
1: Extended packets (reserved for future implementations)

46

cmd[2]. Identifies the packet as a read or write packet. This field is encoded as follows:
0: Read
1: Write

45:44

cmd[1:0]

0: No error (packet is valid)

1: Endpoint not available. When an endpoint is powered down or in the clock-off state, the slave
node responds with an "Endpoint Unavailable Error".

2: Destination not found or byte enable error on MCP/REGTC requests. If the master acting as the
request terminator finds an unclaimed request, it turns the packet into a response packet swapping
the src/dest ID’s and signal a "Destination Not Found Error". This error can also indicate that a byte
enable error has occurred attempting to not write all bytes of the word or double-word transaction
3: Parity error on RRB. If a bus parity error occurs, the endpoint responds with a "Bus Parity Error".
Normal request packets created by the master endpoints set this field to zero.

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

163

mips.com

025

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 8.20 State of ERR_INFO Field for Error Type 10 (continued)

Bit Meaning

43:38 |Destination ID. Indicates the destination of the operation when the error occurred. This field is
encoded in decimal as follows:

0 - 5: Core 0 through Core 5. Values 6 - 7 are reserved
8 - 15: Reserved

16 - 23: IOCU 0 through IOCU 7
24: GIC

25: User-defined GCR block
26: Memory

27 - 31: Reserved

32: CM master

33: CPC

34: GCR block

35: DBU master

36: DBU dmxseg normal
37: DBU dmxseg debug

38 - 39: Reserved

40: AUX 0

41: AUX 1

42: AUX 2

43: AUX 3

44 - 61: Reserved

62: No destination error

63: No destination OK

The values 36-37 accommodate DBU dmxseg normal and debug mode accesses. The slave node
connected to the Debug Unit slave block allows multiple dest_id's to match the slave node and be
forwarded to the Debug Unit slave interface. This allows access the Debug Unit dmxseg block
memory mapping using two modes of operation (normal and debug/privileged).

The values 62-63 allow the address decode block of the CM to indicate to the register bus interface
that there is no destination for an enabled memory mapped register area or that a write from a
requestor has been blocked by global access control. The register bus interface returns a
response packet to the initiator without sending a packet over the register bus. If the register bus
interface decodes a dest _id of "No Dest Err", an error response packet is returned. If the register
bus interface decodes a dest_id of "No Dest OK", a normal response packet is returned. Read
responses for dest_ids of "No Dest Err" and "No Dest OK" will return data that is all zeros.

37:32 | Destination cluster ID.

This field indicates the destination ID number of the cluster where the error occurred. Each register
bus cluster request node and cluster response node is enumerated with a CLUSTER _ID. The
CLUSTER _ID input is hardwired to its associated identifier when it is instantiated. This value of the
CLUSTER_ID is compared against the value in this field to determine if the register bus cluster
node should send the packet along its own cluster ring or sent it to the multi-cluster ring.

31:24 | Shared data buffer ID (sbd_id)
This identifier is used to match the response to the original request. This field is determined by the
originating master of the transaction, i.e. CM or Debug Unit, and will be returned to that master.

23:18 | Source ID. Indicates the source of the operation when the error occurred. This field is encoded the
same as the destination ID field in bits 43:38.

\}\<M I PS Copyrigr::g;ézrg

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 8.20 State of ERR_INFO Field for Error Type 10 (continued)

Bit Meaning

17:12 | Source cluster ID.

This field indicates the source ID number of the cluster where the error occurred. Each register bus
cluster request node and cluster response node is enumerated with a CLUSTER _ID. The CLUS-
TER_ID is hardwired to its associated identifier when it is instantiated. This value of the CLUS-
TER_ID is compared against the value in this field to determine if the register bus cluster node
should send the packet along its own cluster ring or sent it to the multi-cluster ring.

11:6 Address (reads only)
This field gives the byte address for the register bus transaction.

5:3 Size (reads only).

The data byte length is interpreted as 2512 The protocol supports 1 to 64 bytes of data in powers
of two. For register transactions only 32-bit (4 byte) and 64-bit (8-byte) sizes are supported. This
field is encoded as follows:

3’b000: Byte

3’b001: Half -word (2 bytes)
3’'b010: Word (4 bytes)
3’b011: Double-word (8 bytes)
3’b100: Quad-word (16 bytes)
3'’b101: Reserved (32 bytes)
3’b110: Cache line (64 bytes)
3’b111: Reserved (128 bytes)

2:0 Reserved

8.13.8 Error Code 11 — IOCU Request Error

If the decimal value in the ERR TYPE field is 11, the ERR _INFO field in the Global CM Error Cause
register is organized as shown in Table 8.21.

Table 8.21 State of ERR_INFO Field for Error Type 11

Bit Meaning

57:54 | Sub-code

0x0: FIXED mode. AXI burst is set to FIXED mode. This mode is not supported by the IOCU.

0x1: WRAP mode. On a read request, if burst mode is set to WRAP, then the LEN field must be
either 0 or 3. If the LEN field is neither 0 or 3, an error is generated.

0x2: LEN > 0 and SIZE < 128. If the LEN field is greater than 0 and the SIZE field is <128, an error
is generated.

0x3: For a write request with the Burst mode set to WRAP and the LEN field set to 3, the starting
offset must be 0. If the offset is non-zero, an error is generated.

0x4 - OxF: Reserved

53:0 Reserved

165

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
8.13.9 Error Code 12 — IOCU Parity Error

If the decimal value in the ERR TYPE field is 12, the ERR _INFO field in the Global CM Error Cause
register is organized as shown in Table 8.22.

Table 8.22 State of ERR_INFO Field for Error Type 12

Bit Meaning
57:56 |Reserved

55:54 |10CU command
0: Reserved

1: Write

2: Read

3: Reserved

53:52 |IOCU Cache coherency attribute
0: Reserved

1: Coherent

2: Non-coherent

3: Reserved

51:50 |Reserved
49:44 | AXl device ID. This field is configurable and can be any value up to a maximum of 64 device ID’s.

49:44 = 6’b000000: AXI device ID 0

49:44 = 6'b111111: AXI device ID 63
43 Reserved

42:39 | AXl request ID. This field is configurable and can be any value up to a maximum of 16 request
ID’s. Note that there can be up to 16 read requests and 16 write requests.

42:39 = 0x0: AXl request ID 0

42:39 = OxF: AXl request ID 15
38:0 Reserved

8.13.10 Error Code 13 — IOCU Response Error

If the decimal value in the ERR TYPE field is 13, the ERR INFO field in the Global CM Error Cause
register is organized as shown in Table 8.23.

Table 8.23 State of ERR_INFO Field for Error Type 13

Bit Meaning

57:56 | Error type.

0: No RIN error
1: Bus error

2. Cache error

55:54 |10CU command
0: Reserved

1: Write

2: Read

3: Reserved

166

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 8.23 State of ERR_INFO Field for Error Type 13 (continued)

Bit Meaning
53:52 |10CU Cache coherency attribute
0: Reserved
1: Coherent
2: Non-coherent
3: Reserved

51:50 |Reserved
49:44 | AXl device ID. This field is configurable and can be any value up to a maximum of 64 device ID’s.

49:44 = 6’b000000: AXI device ID 0

49:44 = 6'b111111: AXI device ID 63
43 Reserved

42:39 | AXlrequest ID. This field is configurable and can be any value up to a maximum of 16 request ID’s.
Note that there can be up to 16 read requests and 16 write requests.

42:39 = 0x0: AXl request ID 0

42:39 = OxF: AXl request ID 15
38:0 Reserved

8.13.11 Error Code 15 — RBI REGTC Bus Request Error

If the decimal value in the ERR_TYPE field is 15, the ERR_INFO field in the Global CM Error Cause
register is organized as shown in Table 8.24.

Table 8.24 State of ERR_INFO Field for Error Type 15

Bit Meaning

57:56 | Subcode.

0: Burst error
1: Size error

2. Length error

53 Reserved
52:42 | AxID. This field stores the REGTC AxID of the REGTC request that generated the error.

41 Read/write.
0: Write
1: Read

40:20 |AxUSER. This field stores the AXUSER of the REGTC request that generated the error.
19:0 |AxADDR. This field stores the AXADDR of the REGTC request that generated the error.

167

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

8.14 CM3 General Control Registers

The General Control Registers (GCR) address space contains control/status registers for the
entire Coherent Processing System cluster and for the individual Core-CPUs in the cluster.
The GCR address space has a total size of 32 KB in the 512KB block of memory. The location
of GCR block in the system address map is controlled by the GCR_BASE register. Physically,
the registers are located within the GCR block of the Coherence Manager (CM) and are
accessed by the Core-CPUs using load/store instructions, or via the I/O Coherence Unit
(IOCU), using read/write instructions.

At reset, GCR_BASE is set to the first naturally aligned 512KB block of memory below the
reset PC of the cluster's core number 0, unless the GCR_BASE reset value has been overrid-
den in the system configuration. GCR_BASE can be reprogrammed by writing to the
GCR_BASE register within the GCR block.

8.14.1 Accessing the GCR’s

The diagram illustrates a typical setup for a single cluster register ring. The MIPS register bus
interface connects to both a master and a slave node on the register bus. The GCR block is
linked to the register bus slave node. This example system includes 8 register bus slave
nodes, each connected to a different slave endpoint. Traffic on the register ring moves clock-
wise through point-to-point connections. Masters can send read and write requests to any
slave. When a slave node receives a request for its endpoint, it processes the request and
sends a response back. For read requests, the response includes data; for write requests, it's
just an acknowledgment. The slave node then forwards the response to the next node.

Other CM and
CORE blocks

CM3_RBI

Figure 8.5 GCR Accesses on the Register Ring Bus

\}\<M I PS Copyrigr:ti‘g;:?:nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Requests to access GCRs can come from either of the two master nodes connected to end-
points at CM3_DBU or CM3_RBI in CM3_BIU. If the destination ID matches a GCR register
endpoint, the request is sent there. If not, the packet continues to the network adapter or
memory interface.

8.14.2 Controlling the GCR’s

The CM3_BIU receives MCP requests from the CM3_MAINPIPE. If the request is for register
bus address space, then the transaction is translated to the Register Bus Interface (RBI) for-
mat and sent onto the Register Ring Bus (RRB).

The CM3 design allows the GCR blocks to have a write access control to their register
regions. This is controlled by using the Global CSR Access Privilege Register (GLOBAL_AC-
CESS_REG Offset 0x0120) within the GCR block this register is a 24-bit register.

The lower 8-bits [7:0] correspond to each core requestor. Bit 0 corresponds to Core0; Bit 1
corresponds to Corel, and so on. The upper 8-bits [23:16] corresponds to each IOCU
requestor. Bit 16 corresponds to IOCUO; Bit 17 corresponds to IOCU 1 and so on.

The default value for the GLOBAL_ACCESS_REG 0s 0xFFOOFF, which allows all the requesters
in the system to have write access to both GCR and CPC registers. To disable write access to
the GCR and CPC registers, software needs to clear the corresponding requestor's bit. This
will prevent the corresponding requester from writing to the GCR and CPC registers.

8.14.3 CM3 GCR Group Offsets

The GCR address space is divided into two types; a Global address space that contains per-
cluster CM registers that are accessible by all cores, and a Core address space that contains
the per-core CM registers. The offset locations of these registers relative to GCR_BASE is

shown in Table 8.25.

Table 8.25 CM GCR Register Group Offsets

Offset from GCR_BASE Size Register Block Type Description
0x0_0000 - Ox0_1FFF 8,192 bytes GCR.Global Per-cluster CM registers
0x0_2000 - 0x0_5FFF 16,384 bytes GCR.Core Per-core CM registers
0x0_6000 - Ox0_7FFF 8,192 bytes -——- Reserved

8.14.4 GCR Global Registers

The GCR.Global region contains the following registers, which are described in detail in the
subsequent per-register descriptions. These registers are accessible by all cores in the sys-
tem. A map of the global register is shown in Table 8.26.

Table 8.26 CM GCR Global Registers

Offset from
GCR_BASE Register Name Description
0x0_0000 GCR_CONFIG CM global configuration
0x0_0008 GCR_BASE Base address of GCR block
0x0_0010 GCR_CONTROL Control bits for the Coherence Manager
0x0_0030 GCR_REV RevisionID for the GCR hardware
0x0_0038 GCR_ERR_CONTROL Controls Error Checking/Correct logic within the CM3

SMIPS

a GlobalFoundries company

169

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.26 CM GCR Global Registers (continued)

Offset from
GCR_BASE Register Name Description

0x0_0040 GCR_ERR_MASK Controls what Errors are reported as Interrupts

0x0_0048 GCR_ERR_CAUSE Captures info when an error occurs within the CM3

0x0_0050 GCR_ERR_ADDR Captures address which caused the CM3 error.

0x0_0058 GCR_ERR_MULT Captures information for subsequent CM3 errors.

0x0_0068 GCR_CUSTOM_STATUS Existence and status of the custom user-defined GCR

0x0_00D0 GCR_AIA_STATUS Existence and status of AIA

0x0_00EO GCR_CACHE_REV Revision of cache attached to the coherent Cluster

0x0_O0O0FO0 GCR_CPC_STATUS Existence and status of CPC

0x0_0120 GCR_ACCESS Controls which Cores/IOCUs can modify the GCR and
CPC Registers

0x0_0130 GCR_L2 CONFIG Provides L2 cache configuration

0x0_0160 GCR_SDB_CONFIG Defines the Memory, Intervention, PFU and total SDB for
the cluster

0x0_0200 GCR_IOCU_REV Revision of IOCU

0x0_0208 GCR_DBU_REV Revision of Debug Unit

0x0_0210 GCR_AIA_REV Revision of AIA

0x0_0240 GCR_L2 RAM_CONFIG Configuration of the L2 cache and control the dynamic L2
RAM low power states

0x0_0280 GCR_SCRATCHO General Purpose Read/Write Register

0x0_0288 GCR_SCRATCH1 General Purpose Read/Write Register

0x0_0300 GCR_L2 PFT_CONTROL Controls the L2 prefetcher

0x0_0308 GCR_L2 PFT_CONTROL_B L2 prefetch 2nd control register

0x0_0600 GCR_L2_TAG_ADDR Holds Address Portion of CACHE L2 Load or Store Tag &
Data CACHE instruction

0x0_0608 GCR _L2 TAG_STATE Holds State Portion of CACHE L2 Load or Store Tag &
Data instruction

0x0_0610 GCR_L2 DATA Holds Results Portion of CACHE L2 Load or Store Tag &
Data instruction

0x0_0618 GCR_L2 ECC Holds ECC Portion of CACHE L2 Load or Store Tag &
Data instruction

0x0_0620 GCR_L2SM_COP Holds CMD, TYPE, MODE, RESULT and PRESENT bit
info of L2 Cache Op State machine

0x0_0628 GCR_L2SM_TAG_ADDR_COP |Holds Tag address details L2 CacheOp State Machine

0x0_0640 GCR_SEM Provides Uncached Semaphore

0x0_0650 GCR_TIMEOUT_TIMER_LIMIT | Timeout limit for transaction timeout timer in number of
CM clocks. This register is only available if MIPS_FUSA_-
TIMER is implemented.

0x0_06F8 GCR_MMIO_REQ_LIMIT Number of MMIO requests that the CM3 will allow to be in
flight.

SMIPS

a GlobalFoundries company

170

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.26 CM GCR Global Registers (continued)

Offset from

GCR_BASE Register Name Description
0x0_0700 GCR_MMIOO_BOTTOM Lowest address of MMIO Region 0
0x0_0708 GCR_MMIOO_TOP Highest address of MMIO Region 0
0x0_0710 GCR_MMIO1_BOTTOM Lowest address of MMIO Region 1
0x0_0718 GCR_MMIO1_TOP Highest address of MMIO Region 1
0x0_0720 GCR_MMIO2_BOTTOM Lowest address of MMIO Region 2
0x0_0728 GCR_MMIO2_TOP Highest address of MMIO Region 2
0x0_0730 GCR_MMIO3_BOTTOM Lowest address of MMIO Region 3
0x0_0738 GCR_MMIO3 _TOP Highest address of MMIO Region 3
0x0_0740 GCR_MMIO4_BOTTOM Lowest address of MMIO Region 4
0x0_0748 GCR_MMIO4_TOP Highest address of MMIO Region 4
0x0_0750 GCR_MMIO5 BOTTOM Lowest address of MMIO Region 5
0x0_0758 GCR_MMIO5 TOP Highest address of MMIO Region 5
0x0_0760 GCR_MMIO6_BOTTOM Lowest address of MMIO Region 6
0x0_0768 GCR_MMIO6_TOP Highest address of MMIO Region 6
0x0_0770 GCR_MMIO7_BOTTOM Lowest address of MMIO Region 7
0x0_0778 GCR_MMIO7_TOP Highest address of MMIO Region 7
0x0_0900 GCR_DB_PC CTL Controls starting/stopping of Performance Counters
0x0_0920 GCR_DB _PC OV Indicate which performance counters have overflowed
0x0_0930 GCR_DB_PC_EVENT Select event type of each CM3 performance counter
0x0_0980 GCR_DB_PC_CYCL Count Cycles
0x0_0990 GCR_DB_PC _QUALO Performance counter 0 event qualifiers.
0x0_0998 GCR_DB_PC _CNTO Performance Counter a value.
0x0_09A0 GCR_DB_PC_QUAL1 Performance counter 0 event qualifiers.
0x0_09A8 GCR_DB_PC_CNT1 Performance Counter a value.
0x0_1000 GCR_DB_PC _HIST CTL Histogram Performance Counter Enable bits.
0x0_1008 GCR_DB PC HIST_GRAN Used to set the granularity of counters.
0x0_1010 GCR_DB_PC_HIST_CNT[0-63] |64-bit histogram performance counter [0-15]
0x0_1018
0x0_1208

SMIPS

a GlobalFoundries company

171
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

8.14.4.1 Global Config Register (GCR_CONFIG): Offset 0x0000

This register provides information on the overall system configuration. These fields are read-
only and their reset state is determined at IP configuration time.

Figure 8.6 Global Config Register Bit Assignments

63 44 43 42 41 40 39 32
CLUS- REGTC
RSVD TER_COH_CA- - RSVD DBU_PRESENT| CFG_CLUSTER_ID
PRESENT
PABLE
31 30 29 23 22 20 19 16 15 2 1 9 8 7 0
ITU_PRESENT |RSVD| NUM_CLUSTERS | NUMAUX | ADDR_REGIONS RSVD NUMIOCU PCORES
Table 8.27 Global Config Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:44 |Reserved. RO 0
CLUSTER_COH_ 43 Set to 1 if the cluster supports ACE coherent intercon- RO Config
CAPABLE nect.
REGTC_PRESENT 42 Set to 1 if REGTC is present in this cluster. RO Config
RSVD 41 Reserved RO 0
DBU_PRESENT 40 Set to 1 if Debug Unit (DBU) is present in this cluster. RO Config
CFG_CLUSTER_ID 39:32 | Indicates the cluster ID of the current cluster. RO Cluster_ID
ITU_PRESENT 31 Setto 1if ITU is present in this cluster. This bit is always 0 RO Config
as the ITU is not implemented in the 18500.
RSVD 30 Reserved. RO Config
NUM_CLUSTERS 29:23 |Indicates total number of clusters present in the design. RO Config
NUMAUX 22:20 | Number of auxiliary memory ports in this cluster. RO Config
ADDR_REGIONS 19:16 | Number of MMIO address region registers. This value is RO Config
determined by the IP configuration.
RSVD 15:12 |Reserved. RO 0
NUMIOCU 11:8 Total number of IOCUs in this cluster. RO Config
PCORES 7:0 Total number of CPU Cores - 1 in this cluster, not includ- RO Config
ing the IOCUs.

8.14.4.2 GCR Base Register (GCR_BASE): Offset 0x0008

Within the physical address space, the location of the GCR is set by the GCR_BASE register.
The MIPS default power-up value produces the physical address 0x1FB8_0000. A different
default value may be specified at IP configuration time.

Figure 8.7 GCR Base Register Bit Assignments

63 48 47 32

RSVD GCR_BASE[47:32]

31 15 14 0

GCR_BASE[31:15] RSVD

\}\<M I PS Copyrigr:ti‘g;:?:nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.28 GCR Base Register Bit Descriptions

Name

Bits

Description

Reset State

RSVD

63:48

Reserved.

RO

0

GCR_BASE

47:15

This field sets the base address of the 32KB GCR block.
When writing this register with a 64b write the register
acts normally and all bits are updated immediately. How-
ever, when this register is written with 32b writes, then bits
47:32 must be written first, followed by the write to the
lower 32b.

A 32b write to the upper portion of the register does not
immediately change the GCR_BASE value. Instead, the
write data is stored in an internal shadow register. A sub-
sequent 32b write to the lower portion of this register
causes updates GCR_BASE[47:32] to be loaded with the
value stored in the internal shadow register and
GCR_BASE[31:15] to be loaded with the value being writ-
ten.

Note that GCR[47:32] is only updated on a 32b write if
there was a previous 32b write to the GCR_BASE[47:32].

R/W

Config

RSVD

14:0

Reserved.

RO

8.14.4.3 Global CM3 Control Register (GCR_CONTROL): Offset 0x0010
This register contain the control bits for the CM3.

63

Figure 8.8 Global CM3 Control Register Bit Assignments

40 39

32

RSVD MEM_UC_PORT_READ_WRITE_UNORDER
31 30 25 24 23 22 21 20 18 17 16
ARB_PRI_ | MEM_CACHED| MEM_UC MEM_UCA MEM_UC_- |y;ev AXPROT1_|DISABLE WR
RSVD| RAISE CNT| BUFFERABLE | BUFFERABLE| BUFFERABLE | R°VP FORCE—SPPEND—RE ROOT SECURE| ORDER |"SVP
15 14 13 12 11 9 8 7 6 5 0
I0CU_RD_ | CORE_RD_ CMD?;EI\AAEAE_IL?CCU Cl\ér?\)l_Al\Q\l_Arlzoﬁlggu RSVD CII\R’/IEC,\:I-I_A?I\]G IOC_FIFOS- | MEM_FIFOS- | - oo/
ALLOC_OWN| OWN ~ U Reas | T umm - E_PENDING _1_1_DISABLE |_1_1_DISABLE
Table 8.29 Global CM3 Control Register Bit Descriptions
Reset
Name Bits Description R/W State
RSVD 63:40 |Reserved. Must be written with a value of 0. RO 0
\{k . 173
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.29 Global CM3 Control Register Bit Descriptions (continued)

Reset
Name Bits Description RW State
MEM_UC_PORT_READ_ 39:32 | When this bit is cleared (0), UC requests enforce order R/W 0
WRITE_UNORDER by reusing an AxID in each read/write channel, and
between reads and writes by waiting for request
responses on AXI before issuing the next request.
When this bit is set (1), all UC requests are allowed to be
issued on AXI independent from each other. This may
cause Write-Write, Read-Write, or Write-Read order
errors unless order is protected elsewhere in the sys-
tem. Bits 0 to (n-1) for n cores, n to (n+m-1) for m iocus
RSVD 31 Reserved. RO 0
ARB_PRI_RAISE_CNT 30:25 | Determines how main arbiter treats low priority requests. R/W 0x20
Normally high priority requests are always selected for
serialization ahead of low priority requests. However,
setting ARB_PRI_RAISE_CNT to a non-zero value will
ensure that a low priority will be serviced after waiting
ARB_PRI_RAISE_CNT cycles.
MEM_CACHED_BUFFERABLE 24 Sets the BUFFERABLE bit on the memory AXI port for R/W 0
cached requests.
MEM_UC_BUFFERABLE 23 Sets the BUFFERABLE bit on the memory AXI port for R/W 0
uncached requests.
MEM_UCA_BUFFERABLE 22 Sets the BUFFERABLE bit on the memory AXI port for R/W 0
uncached accelerated requests.
RSVD 21 Reserved. RO
MEM_UC_FORCE_ 20 Setting this bit causes UC requests not be issued on the R/W
PEND_RESP AXI bus until previous UC response has been received.
MEM_AXPROT1 _ 19 When set, causes AXPROT([1] to be 0 (secure) for any R/W 0
ROOT_SECURE access from a zero guestID.
\{k . 174
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.29 Global CM3 Control Register Bit Descriptions (continued)

Name

Bits

Description

Reset
R/W State

DISABLE_WR_ORDER

18:17

The DISABLE_WR_ORDER field controls how coherent
writes are handled by the CM. Coherent writes can be
issued though the IOCU’s and by the cores.

The DISABLE_WR_ORDER field changes the behavior
of the CM in two ways. First, it determined if the CM
ensures that coherent writes are globally visible in order
or not. Second, it determines the type of request issued
to the ACE bus when a coherent write misses the L2
cache. Type of requests include:

DISABLE_ ENSURE ACE
WR_ WRITE REQUEST
ORDER ORDER TYPE

00 YES CleanUnique
01 Reserved Reserved

10 NO CleanUnique
11 NO MakeUnique

When DISABLE_WR_ORDER is 10 or 11, the CM does
not ensure that coherent writes are globally visible in
order. In the case of IOCU coherent writes, if ordering is
required then the 10 subsystem must ensure the order
itself by not issuing a subsequent write until it has
received a response from the previous one.

If DISABLE_WR_ORDERis 10, a full line coherent write
that misses the L2 cache causes the CM to issue an
ACE CleanUnique command, which forces the network
to writeback data to memory if another cluster has the
line in a MODIFIED state.

If DISABLE_WR_ORDER is 11, afull line coherent write
that misses the L2 cache causes the CM to issue an
ACE MakeUnique command, which does not require the
network to writeback data to memory.

R/W Config

RSVD

16

Reserved.

RO 0

SMIPS

a GlobalFoundries company

175
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.29 Global CM3 Control Register Bit Descriptions (continued)

Name

Reset
Bits Description RW State

IOCU_RD_ALLOC_OWN

15 If IOCU_RD_ALLOC_OWN is 0, when a Read with L2 R/W Config
Allocation is issued through the IOCU, then the CM
issues a read to the coherent directory without request-
ing ownership of the line. If the line is in the MODIFIED
state in another cluster, the coherent network may write
the data to memory prior to providing the data to the
requesting cluster.

If IOCU_RD_ALLOC_OWN is 1, when a Read with L2
Allocation is issued through the IOCU, then the CM
issues a read for ownership to the coherent directory.

If the line is in the MODIFIED state in another cluster,
then coherent network is not required to write the data to
memory, thereby providing a performance improvement.
However, in this mode, the change in ownership may
cause reduced system level performance in the case of
read-only sharing involving the IOCU.

CORE_RD_OWN

14 If CORE_RD_OWN is 0, when the Core executes a load R/W Config
instruction that misses the L1 and L2 caches, then the
CM issues a read to the coherent directory without
requesting ownership of the line. If the line is in the
MODIFIED state in another cluster, the coherent direc-
tory may write the data to memory prior to providing the
data to the requesting cluster.

If CORE_RD_OWN is 1, when a Core executes a load
instruction that misses the L1 and L2 caches, then the
CM issues a read for ownership to the coherent direc-
tory.

If the line is in the MODIFIED state in another cluster,
then coherent network is not required to write the data to
memory, thereby providing a performance improvement.
However, in this mode, the change in ownership may
cause reduced system level performance in the case of
read-only sharing.

CM3_MMIO_IOCU_
DISABLE_UC_REQS

13 Incoming IOCU UC requests will be prevented from R/W 0
being issued to MMIO regions and will receive a BUS-
ERR response. (This can be enabled by software to
assist in MMIO debugging if required).

CM3_MMIO_IOCU_
ENABLE_REQ_LIMIT

12 Enables IOCU UC requests to be counted in MMIO out- R/W 0
standing request limit and to have its UC requests
blocked if the MMIO outstanding request limit is
reached. This field only has an effect if CM3_MMIO_IO-
CU_DISABLE_UC_REQS = 0.

RSVD

11:9 Reserved. RO

MEM_GCR_CHANGE_PENDING

8 Indicates that a change to one of the MEM_* bits RO
changed it that CM has not yet observed the change.

IOC_FIFOS_1_1_DISABLE 7 When set this disables the ioc clock crossing fifos ability R/W 0
to use 1:1 mode. Typically this should be programmed to
0.
\{k . 176
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.29 Global CM3 Control Register Bit Descriptions (continued)

Reset
Name Bits Description RW State
MEM_FIFOS_1_1_DISABLE 6 When set this disables the mem clock crossing FIFOs R/W 0
ability to use 1:1 mode. Typically this should be pro-
grammed to 0.
RSVD 5:0 Reserved. RO 0

8.14.4.4 GCR Revision Register (GCR_REV): Offset 0x0030

This register provides the revision number of the CM3, with major and minor revision.

Figure 8.9 GCR Revision Register Bit Assignments

63 32

RSVD

31 16 15 8 7 0

RSVD MAJOR_REV MINOR_REV

Table 8.30 GCR Revision Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:16 | Reserved. Must be written with a value of 0. RO 0
MAJOR_REV 15:8 CM3 Major revision number. This field reflects the major RO Config

revision of the GCR block. A major revision might reflect
the changes from one product generation to another. This
value changes based on the processor revision. Refer to
the errata sheet for the exact value of this field.

MINOR_REV 7:0 CM3 Minor revision number. This field reflects the minor RO Config
revision of the GCR block. A minor revision might reflect
the changes from one release to another. This value
changes based on the processor revision. Refer to the
errata sheet for the exact value of this field.

8.14.4.5 GCR Error Control Register (GCR_REV): Offset 0x0038
This register control the error control functions for the L2 cache.

Figure 8.10 GCR Error Control Register Bit Assignments

63 32

RSVD

31 2 1 0

RSVD L2_ECC_EN| L2_ECC_SUPPORTED

Table 8.31 GCR Error Control Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:2 Reserved. RO 0

\}\<M I PS Copyrigr:ti‘g;:?:i

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.31 GCR Error Control Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
L2 ECC_EN 1 Setting this bit enables L2 ECC checking and error report- R/W 1
ing.
L2_ECC_SUPPORTED 0 This bit is set by hardware if L2 ECC is supported. Cur- RO 1
rently L2 ECC is always available.

8.14.4.6 Global CM3 Error Mask Register (GCR_ERR_MASK): Offset 0x0040

Controls what errors are reported as interrupts.This register is used in conjunction with the

Global CM3 Error Cause and Global CM3 Error Address registers to determine
error and the address which caused the error.

Figure 8.11 Global CM3 Error Mask Register Bit Assignments
63

the type of

32

ERR_MASK[63:32]

31

ERR_MASKI[31:0]

Table 8.32 Global CM3 Error Mask Register Bit Descriptions

Name Bits Description R/W

Reset State

ERR_MASK 63:0 CM3 Error Mask field. Each bit in this field represents an R/W
Error Type. If the bit is set, an interrupt is generated if an
error of that type is detected. For a list of error codes,
refer to Table 8.5.

If the bit is set, the transaction for Read-Type Errors com-
pletes with OK response to avoid double reporting of the
error.

0

8.14.4.7 Global CM3 Error Cause Register (GCR_ERR_CAUSE): Offset 0x0048

This register captures info when an error occurs within the CM3. This register is used in con-
junction with the Global CM3 Error Mask and Global CM3 Error Address registers to determine

the type of error and the address which caused the error.
NOTE: this register is reset on a cold reset only.

Figure 8.12 Global CM3 Error Cause Register Bit Assignments
63 58 57

32

ERR_TYPE ERR_INFO

SMIPS

178
mips.com
Copyright © 2025

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

31 0

ERR_INFO

Table 8.33 Global CM3 Error Cause Register Bit Descriptions

Name Bits Description R/W Reset State

ERR_TYPE 63:58 | Indicates type of error detected. When ERROR_TYPE is R/W 0
zero, no errors have been detected. When ERROR_-
TYPE is non-zero, another error will not be reloaded until
a power-on reset or this field is written to the current value
of ERR_TYPE.

ERR_INFO 57:0 Information about the error. Refer to Section 8.13 “Error RO 0
Processing” for more information.

8.14.4.8 Global CM3 Error Address Register (GCR_ERR_ADDR): Offset 0x0050

This register captures address which caused the CM3 error. This register is used in conjunc-
tion with the Global CM3 Error Mask and Global CM3 Error Address registers to determine the
type of error and the address which caused the error.

NOTE: this register is reset on a cold reset only.

Figure 8.13 Global CM3 Error Address Register Bit Assignments

63 48 47 32

RSVD ERR_ADDR

31 0

ERR_ADDR

Table 8.34 Global CM3 Error Address Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:48 |Reserved RO 0
ERR_INFO 47:0 Request address which caused error. Loaded when the RO Undefined
Global Error Cause Register is loaded.

8.14.4.9 Global CM3 Error Multiple Register (GCR_ERR_MULT): Offset 0x0058

This register captures information for subsequent CM3 errors. The Global CM3 Error Cause,
Global CM3 Error Address, and Global CM3 Error Mask registers described above provide
information on the type of error, and the address which caused the error. This register is used
to log the type of secondary error.

NOTE: this register is reset on a cold reset only.

Figure 8.14 Global CM3 Error Multiple Register Bit Assignments

63 58 57 32

ERR_2ND RSVD

31 0

RSVD

179

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 8.35 Global CM3 Error Multiple Register Bit Descriptions

Name Bits Description R/W Reset State

ERR_2ND 63:58 | Type of second error. Loaded when the Global CM3 Error RO 0
Cause Register has valid error information and a second
error is detected.

When ERR_2ND is zero, a second error has not been
detected. When ERR_2ND is non-zero, this field will not
be reloaded until a power-on reset or this field is written to
current value of ERR_TYPE.

RSVD 57:.0 Reserved RO 0

8.14.4.10 GCR Custom Status Register (GCR_CUSTOM_STATUS): Offset 0x0068
This register determines the existence and status of the custom user-defined GCR block.

Figure 8.15 GCR Custom Status Register Bit Assignments

63 32

RSVD

31 1 0

RSVD GCU_EX

Table 8.36 GCR Custom Status Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:1 Reserved RO 0
GCU_EX 0 If this bit is set, the Custom GCR is connected to the RO 0

CM3. The state of this bit is set based on whether or not
this block is implemented at build time as determined by
the state of the GU_Present signal.

If a Custom GCR block is not present, the GU_Present
pin is driven to 0. If there is a custom GCR block present,
then the user must drive GU_Present = 1 inside their cus-
tom GCR module.

8.14.4.11 GCR AIA Status Register (GCR_AIA_STATUS): Offset 0x00D0
This register determines the existence and status of the AIA interrupt architecture block.

Figure 8.16 GCR AIA Status Register Bit Assignments

63 32

RSVD

31 1 0

RSVD AlIA_EX

180

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.37 GCR AIA Status Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:1 Reserved RO 0
AlIA_EX 0 If this bit is set, the AlA is present in the CM3. RO 1

8.14.4.12 Cache Revision Register (GCR_CACHE_REV): Offset 0x00EQ
This register determines the revision of the cache attached to the coherent cluster.

Figure 8.17 Cache Revision Register Bit Assignments
63

32

RSVD

31 16 15 8 7

RSVD

MAJOR_REV MINOR_REV

Table 8.38 Cache Revision Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:16 | Reserved RO 0
MAJOR_REV 0 This field reflects the major revision of the Cache block RO Config
inside the CM3.
MINOR_REV 0 This field reflects the minor revision of the Cache block RO Config
inside the CM3.

8.14.4.13 GCR Cluster Power Controller Status Register (GCR_CPC_STATUS): Offset 0x00F0
This register determines the existence and status of the CPC power control block.

Figure 8.18 GCR CPC Status Register Bit Assignments
63

32
RSVD
31 1 0
RSVD CPC_EX
Table 8.39 GCR CPC Status Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:1 Reserved RO 0
AIA_EX 0 This bit is always 1 as the CPC is always connected to the RO 1
CM3.

SMIPS

Copyright © 2025
a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

8.14.4.14 Global CSR Address Privilege Register (GCR_ACCESS): Offset 0x0120

This register controls which Cores/IOCUs can modify the GCR and CPC Registers. This regis-
ter can be used to inhibit specific cores or IOCUs from writing GCR and CPC registers. Each
bit in this register controls the access from a particular requestor. Bits 7:0 control access for
cores 7-0 and bits 23:16control access from IOCU7 to IOCUOQ.

If the bit is set, the corresponding requester is able to write to the GCR and CPC registers.
This includes all registers within the Global and Global Debug control blocks. If the bit is
clear, any write request from that requestor to the GCR registers will be dropped.

NOTE: Care must be taken to not write a 0 to all fields in this register. Writing all zeros inhib-
its writes from all requestors to all registers until the CM3 is reset.

**T don’t think we have CORE-LOCAL and CORE_OTHER anymore. I removed these
references from the second paragraph above. Needs technical review by the SME.
Siddharth to review second paragraph.

Figure 8.19 Global CSR Access Privilege Register Bit Assignments

63 24 23 22 21 20
RSVD ACCESS_EN| ACCESS_EN |ACCESS_EN_| ACCESS_EN
_IoCU_7 | _I0OCU6 | 10CU5 | _IOCU_4
19 18 17 16 15 8 7 0
ACCESS_EN | ACCESS_EN | ACCESS_EN | ACCESS_EN
_10CU_3 1I0CU 2 | _lOocU_1 _I0CU_0 RSVD ACCESS_EN

Table 8.40 Global CSR Access Privilege Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:24 |Reserved RO 0
ACCESS_EN_IOCU_7 23 When this bit is set (1), accesses from IOCU7 (if imple- RO 1

mented) are enabled to write the GCR and CPC registers.
When this bit is cleared (0), accesses from IOCU7 (if
implemented) are inhibited.

ACCESS _EN_IOCU_6 22 When this bit is set (1), accesses from IOCUB (if imple- R/W 1

mented) are enabled to write the GCR and CPC registers.
When this bit is cleared (0), accesses from IOCUG (if
implemented) are inhibited.

ACCESS_EN_IOCU_5 21 When this bit is set (1), accesses from IOCUS5 (if imple- R/W 1

mented) are enabled to write the GCR and CPC registers.
When this bit is cleared (0), accesses from IOCUS5 (if
implemented) are inhibited.

ACCESS EN IOCU 4 20 When this bit is set (1), accesses from IOCU4 (if imple- R/W 1

mented) are enabled to write the GCR and CPC registers.
When this bit is cleared (0), accesses from IOCU7 (if
implemented) are inhibited.

ACCESS EN I0OCU_3 19 When this bit is set (1), accesses from IOCU3 (if imple- R/W 1

mented) are enabled to write the GCR and CPC registers.
When this bit is cleared (0), accesses from IOCU3 (if
implemented) are inhibited.

SMIPS

182

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.40 Global CSR Access Privilege Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

ACCESS_EN_IOCU_2 18 When this bit is set (1), accesses from IOCU2 (if imple- R/W 1
mented) are enabled to write the GCR and CPC registers.
When this bit is cleared (0), accesses from IOCU2 (if
implemented) are inhibited.

ACCESS_EN_IOCU_1 17 When this bit is set (1), accesses from IOCU1 (if imple- R/W 1
mented) are enabled to write the GCR and CPC registers.
When this bit is cleared (0), accesses from IOCU1 (if
implemented) are inhibited.

ACCESS _EN _IOCU_0 16 When this bit is set (1), accesses from IOCUO (if imple- R/W 1
mented) are enabled to write the GCR and CPC registers.
When this bit is cleared (0), accesses from IOCUO (if
implemented) are inhibited.

RSVD 15:8 Reserved. RO 0

ACCESS_EN 7:0 Access enables for each core, where bit 0 corresponds to R/W OxFF
Core0, and bit 7 corresponds to Core7.

When a given bit is set (1), accesses from the Core (if
implemented) are enabled to write the GCR and CPC reg-
isters. When the bit is cleared (0), accesses from the Core
(if implemented) are inhibited.

8.14.4.15 GCR L2 Configuration Register (GCR_L2_CONFIG): Offset 0x0130

This register provides the L2 cache configuration. The L2 cache size (in bytes) can be com-
puted as associativity * line_size * sets_per_way.

For example, if SET_SIZE = 4 (1K), LINE_SIZE = 5 (64 Bytes), and ASSOC = 15 (16-ways),
the L2 cache is 1024 * 64 * 16 = 1MB.

Figure 8.20 GCR L2 Configuration Register Bit Assignments

63 32 31 30 27 26 25 24
COP_-
REG_ COP_ COP_TAG_ =
RSVD exisTs | RSVP LRU WE | ECC_WE DATA_EC-
C_WE
23 21 20 19 16 15 12 1 8 7 0
RSVD L2_BYPASS RSVD SET_SIZE LINE_SIZE ASSOC
Table 8.41 GCR L2 Configuration Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:32 |Reserved RO 0
REG_EXISTS 31 This bit is hardwired to '1' to indicate the presence of the RO 1
Config2 register.
RSVD 30:27 | Reserved. RO 0

\}\<M I PS Copyrigr:ti‘g;:inz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.41 GCR L2 Configuration Register Bit Descriptions (continued)

Name

Bits

Description

RW

Reset State

COP_LRU_WE

26

When set to 1, the TAG_LRU field of the
GCR_L2_TAG_STATE field is written into the L2 LRU
RAM when an L2 Store Tag and Data Cache Op is exe-
cuted.

When set to 0, the L2 LRU RAM is not updated when an
L2 Store Tag and Data Cache Op is executed.

R/W

1

COP_TAG_ECC_WE

25

When set to 1, the TAG_ECC field of GCR_L2_ECC reg-
ister is written into the ECC portion of the L2 Tag RAM
when an L2 Store and Data Tag Cache Op is executed.

When set to 0, the ECC written is computed for the values
in GCR_L2_TAG_ADDR and GCR_L2_TAG_STATE
when the L2 Store Tag and Data Cache Op is executed.

R/W

COP_DATA_ECC_WE

24

When set to 1, the DATA_ECC field of GCR_L2_ECC reg-
ister is written into the ECC portion of the L2 Data RAM
when an L2 Store Tag and Data Cache Op is executed.

When set to 0, the ECC written is computed for the values
in GCR_L2_DATA and GCR_L2_ when the L2 Store Tag
and Data Cache Op is executed.

R/W

RESERVED

23:21

Reserved.

RO

L2_BYPASS

20

When set to 1, the L2 cache is placed in bypass mode.

R/W

RSVD

19:16

Reserved.

RO

SET _SIZE

15:12

Set Size. This field sets the L2 cache number of sets per
way and is encoded as follows:

0x2: 256 sets per way
0x3: 512 sets per way
0x4: 1024 sets per way
0x5: 2048 sets per way
0x6: 4096 sets per way
0x7: 8192 sets per way
0x8: 16K sets per way
0x9: 32K sets per way
0xA: 64K sets per way

RO

Config

LINE_SIZE

11:8

L2 data cache line size. 0x5 indicates a 64 byte cache line
size.

RO

0x5

ASSOC

7:0

L2 cache associativity. OxF indicates 16-way associativity.

RO

Config

8.14.4.16 System SDB Configuration Register (GCR_SDB_CONFIG): Offset 0x00160
This register determines the existence and status of the CPC power control block.

Figure 8.21 System SDB Configuration Register Bit Assignments

63

56 55

48 47 40 39

32

RSVD

CM3_SDB_NUM_
ENT_REQUIRED

CM3_PFU_SDB_COUNT CM3_PFU_BASE_SDB_ID

SMIPS

a GlobalFoundries company

184
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

31 24 23 16 15 8 7 0
CM3_INTV_SDB_COUNT CMB3_INTV_BASE_SDB_ID CM3_MEM_SDB_COUNT | CM3_MEM_BASE_SDB_ID
Table 8.42 GCR System SDB Configuration Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:56 |Reserved RO 0
CM3_SDB_NUM_ 55:48 | Provides total number of SDBs required. RO Config
ENT_REQUIRED
CM3_PFU_SDB_COUNT 47:40 |Provides SDB count for PFU. RO Config
CM3_PFU_BASE_SDB_ID 39:32 | Provides BASE_SDB_ID for PFU SDBs. RO Config
CM3_INTV_SDB_COUNT 31:24 | Provides SDB count for Intervention. RO Config
CM3_INTV_BASE_SDB_ID 23:16 | Provides BASE_SDB_ID for Intervention SDBs, RO Config
CM3_MEM_SDB_COUNT 15:8 | Provides SDB count for memory. RO Config
CM3_MEM_BASE_SDB_ID 7:0 Provides BASE_SDB_ID for memory SDBs, RO Config

8.14.4.17 10CU Revision Register (GCR_IOCU_REV): Offset 0x0200
This register determines the revision of the IOCU device attached to the coherent cluster.

63

Figure 8.22 I0CU Revision Register Bit Assignments

32

RSVD
31 16 15 8 7 0
RSVD MAJOR_REV* MINOR_REV
Table 8.43 IOCU Revision Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:16 | Reserved RO 0
MAJOR_REV 0 This field reflects the major revision of the IOCU attached RO Config
to the CM3. A major revision might reflect the changes
from one product generation to another. The value of 0x0
means that no IOCU is attached.
MINOR_REV 0 This field reflects the minor revision of the IOCU attached RO Config
to the CM3. A minor revision might reflect the changes
from one release to another.

8.14.4.18 DBU Revision Register (GCR_DBU_REV): Offset 0x0208
This register determines the revision of the DBU device attached to the coherent cluster.

63

Figure 8.23 DBU Revision Register Bit Assignments

32

RSVD

SMIPS

a GlobalFoundries company

185
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

31 16 15 8 7 0

RSVD MAJOR_REV' MINOR_REV

Table 8.44 DBU Revision Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:16 |Reserved RO 0
MAJOR_REV 0 This field reflects the major revision of the DBU attached RO Config

to the CM3. A major revision might reflect the changes
from one product generation to another. The value of 0x0
means that no DBU is attached.

MINOR_REV 0 This field reflects the minor revision of the DBU attached RO Config
to the CM3. A minor revision might reflect the changes
from one release to another.

8.14.4.19 AIA Revision Register (GCR_AIA_REV): Offset 0x0210
This register determines the revision of the AIA device attached to the coherent cluster.

Figure 8.24 AIA Revision Register Bit Assignments

63 32

RSVD

31 16 15 8 7 0

RSVD MAJOR_REV' MINOR_REV

Table 8.45 AIA Revision Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:16 |Reserved RO 0
MAJOR_REV 0 This field reflects the major revision of the AlA attached to RO Config

the CM3. A major revision might reflect the changes from
one product generation to another. The value of 0x0
means that no AlA is attached.

MINOR_REV 0 This field reflects the minor revision of the AlA attached to RO Config
the CM3. A minor revision might reflect the changes from
one release to another.

8.14.4.20 L2 RAM Configuration Register (GCR_L2_RAM_CONFIG): Offset 0x0240

Provides information about the configuration of the L2 cache and controls the dynamic L2
RAM low power states.

Figure 8.25 L2 RAM Configuration Register Bit Assignments

63 62 61 60 59 56 55 48 47 32
GCR_L2 DYN_ GCR_L2 _DYN_SLEEP
RSVD SLEEP_MODE RSVD _WAKEUP_DELAY RSVD

186

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

31 30 29 28 0 9 8 7 6 5 4 3 2 1 0
HCI_ L2_TAGRAM L2_WSRAM L2 _DATARAM
PRESENT | HCI_DONE SUPPORTED RSVD _STALLS RSVD _STALLS RSVD _STALLS
Table 8.46 L2 RAM Configuration Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:62 |Reserved. RO 0
GCR_L2 DYN_ 61:60 | This field controls the L2 cache RAM low power mode R/W Config
SLEEP_MODE entered when all cores are in "sleep” mode and the
IOCUs are idle. This field is encoded as follows:
00: No low power mode
01: Light Sleep
10: Reserved
11: Reserved
RSVD 59:56 |Reserved. RO 0
GCR_L2 DYN_SLEEP_ 55:48 | Indicates number of CM clock cycles it takes to wake up R/W Config
WAKEUP_DELAY the L2 Cache RAMs upon wakeup.

RSVD 47:32 |Reserved. RO 0
PRESENT 31 This bit is always 1 to indicate this register exists. RO 1
HCI_DONE 30 Hardware sets this bit to indicate that hardware cache ini- RO 1

tialization is complete.
HCI_SUPPORTED 29 When set, this bit indicates that hardware cache initializa- RO 0
tion is supported.

RSVD 28:10 |Reserved. RO 0

L2 TAGRAM_STALLS 9:8 Indicates the number of wait states assumed when RO Config
accessing the L2 Tag RAMs.

RSVD 7:6 Reserved. RO 0

L2 WSRAM_STALLS 5:4 Indicates the number of wait states assumed when RO Config
accessing the L2 Way Select RAMs.

RSVD 3:2 Reserved. RO 0

L2 _DATARAM_STALLS 1:0 Indicates the number of wait states assumed when RO Config
accessing the L2 Data RAMs
\{k . 187
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
8.14.4.21 ScratchO Register (GCR_SCRATCHO0): Offset 0x0280

Figure 8.26 Scratch0 Register Bit Assignments

63 32

SCRATCHO

31 0

SCRATCHO

Table 8.47 Scratch0 Register Bit Descriptions

Name Bits Description R/W Reset State
SCRATCHO 63:0 General purpose scratch register 0. R/W 0

8.14.4.22 Scratch1 Register (GCR_SCRATCH1): Offset 0x0288

Figure 8.27 Scratch1 Register Bit Assignments

63 32

SCRATCH1

31 0

SCRATCH1

Table 8.48 Scratch0 Register Bit Descriptions

Name Bits Description R/W Reset State
SCRATCH1 63:0 General purpose scratch register 1. R/W 0

8.14.4.23 L2 Prefetch Control Register (GCR_L2_PFT_CONTROL): Offset 0x0300
This register controls the L2 hardware prefetcher.

Figure 8.28 L2 Prefetch Control Register Bit Assignments

63 32

RSVD

31 12 1" 9 8 7 0

PAGE_MASK RSVD PFTEN NPFT

Table 8.49 L2 Prefetch Control Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:32 | Reserved. RO 0

188

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.49 L2 Prefetch Control Register Bit Descriptions (continued)

Name Bits Description R/W Reset State
PAGE_MASK 31:12 | This field is a mask that indicates the minimum operating R/W Config
system page size. Address bits larger than 31 default to a
bit mask of 1. The following settings are supported:
4K page = OxFFFFF
8K page = OxFFFFE
16K page = OxFFFFC
32K page = OxFFFF8
64K page = OxFFFFO
RSVD 11:9 Reserved. RO 0
PFTEN 8 Prefetch enable. This bit should be set by software only if R/W Config
the number of prefetch units in the NPFT field is greater
than zero.
NPFT 7:0 Number of prefetch units. Note that if this field contains a RO Config
value greater than 0, the PFTEN bit must be set in order
for prefetching to occur.

8.14.4.24 L2 Prefetch Control Register 2 (GCR_L2_PFT_CONTROL_B): Offset 0x0308

This register controls the L2 hardware prefetcher along with the L2_PFT_CONTROL register
described above.

Figure 8.29 L2 Prefetch Control Register 2 Bit Assignments

63 32
RSVD
31 14 13 12 1 10 9 8 7 0
PFU_ PFU_ WRI_
RSVD PAUSED | IDLE RSVD MODE CEN PORT_ID

Table 8.50 L2 Prefetch Control Register 2 Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:14 |Reserved. RO 0
PFU_PAUSED 13 When set, indicates that the L2 Prefetcher is paused. RO 0
PFU_IDLE 12 When set, indicates that all Prefetch trackers have aged RO 0
out and the Prefetcher is idle.
RSVD 11 Reserved. RO 0
WRI_MODE 10:9 Determines how the Prefetch unit handles Coherent Write R/W 0x2
Invalidate requests.
00: No prefetch
01:Prefetch by reading memory data.
10: Prefetch optimized for ownership when possible, else
read memory data
11: Reserved.
CEN 8 Code Prefetch enable. R/W Config
\{k . 189
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.50 L2 Prefetch Control Register 2 Bit Descriptions (continued)

Name Bits Description R/W Reset State

PORT_ID 7:0 Enable port ID for L2 prefetching. Each bit in this field cor- R/W OxFF
responds to a CM3 port ID. Each bit of this field is
encoded as follows:

0: Requests from the corresponding CM3 port are not
monitored for L2 prefetching.

1: Requests from the corresponding CM3 port are moni-
tored for L2 prefetching.

8.14.4.25 L2 Tag RAM Cache Op Address Register (GCR_L2_TAG_ADDR): Offset 0x0600

This register is loaded with the address information from the L2 Tag RAMs when the L2 Load
Tag and Data CACHE instruction is executed. The value of this register is written to the
address portion of L2 Tag RAM when an L2 Store Tag and Data CACHE instruction is exe-

cuted.
Figure 8.30 L2 Tag RAM Cache Op Address Register Bit Assignments
63 48 47 32
RSVD TAG_ADDR
31 15 14 0
TAG_ADDR RSVD
Table 8.51 L2 Tag RAM Cache Op Address Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:48 |Reserved. RO 0
TAG_ADDR 47:15 | This field holds the address portion of L2 Tag RAM entry. R/W 0
The format of this field changes depending up the cache
configuration as described in the System Programmer's
Reference
RSVD 14:0 RO 0

8.14.4.26 L2 Tag RAM Cache Op State Register (GCR_L2_TAG_STATE): Offset 0x0608

This register is loaded with the state information from the L2 Tag RAMs when the L2 Load Tag
and Data CACHE instruction is executed. The value of this register is written to the state por-
tion of L2 Tag RAM when an L2 Store Tag and Data CACHE instruction is executed.

Figure 8.31 L2 Tag RAM Cache Op State Register Bit Assignments

63 47 46 32

RSVD TAG_LRU

31 12 1" 0

RSVD TAG_STATE

190

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.52 L2 Tag RAM Cache Op Address Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:47 |Reserved. RO 0
TAG_LRU 46:32 | This field holds the address portion of L2 Tag RAM entry. R/W 0

The format of this field changes depending up the cache
configuration as described in the System Programmer's

Reference.
RSVD 31:12 | Reserved. RO
TAG_STATE 11:0 This field holds the L2/L1 state for the L2 Tag RAM entry. R/W

The format of this field changes depending up the value of
L1_SHARED and the number of CPU Cores on the clus-
ter as described in the System Programmer's Reference.

8.14.4.27 L2 Data RAM Cache Op Register (GCR_L2_DATA): Offset 0x0610

This register is loaded with the information from the L2 Data RAMs when the L2 Load Tag and
Data CACHE instruction is executed. The value of this register is written to the L2 Data RAM
when a L2 Store Tag and Data CACHE instruction is executed.

Figure 8.32 L2 Data RAM Cache Op Register Bit Assignments
63 32

DATA

31 0

DATA

Table 8.53 L2 Data RAM Cache Op Register Bit Descriptions

Name Bits Description R/W Reset State

DATA 63:0 This register is loaded with the information from the L2 R/W 0
Data RAMs when the L2 Load Tag and Data CACHE
instruction is executed.

The value in this register is stored in the L2 Data RAMs
when the L2 Store Tag and Data CACHE instruction is
executed.

8.14.4.28 L2 Tag and Data ECC Cache Op Register (GCR_L2_ECC): Offset 0x0618

This register is loaded with the ECC information from the L2 Tag and Data RAMs when the L2
Load Tag & Data CACHE instruction is executed. If the GCR_L2_CONFIG.COP_DATA_ECC_WE
bit is set then value of the DATA_ECC register is written to the ECC portion of the L2 Data
RAM when a L2 Store Tag & Data CACHE instruction is executed.

If the GCR_L2_CONFIG.COP_TAG_ECC_WE bit is set then value of the TAG_ECC register is
written to the ECC portion of the L2 Tag RAM when a L2 Store Tag and Data CACHE instruc-
tion is executed.

Figure 8.33 L2 Tag and Data ECC Cache Op Register Bit Assignments

63 62 40 39 32

TAG_ECC_DET RSVD TAG_ECC

\}\<M I PS Copyrigr::g;ézr:;

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

31 30 8 7 0

DATA_ECC_DET RSVD DATA_ECC

Table 8.54 L2 Tag and Data ECC Cache Op Register Bit Descriptions

Name Bits Description R/W Reset State
TAG_ECC_DET 63 Tag ECC error was detected during the most recent L2 R/W 0
CacheOp load Tag and Data CACHE Instruction.
RSVD 62:40 |Reserved. RO
TAG_ECC 39:32 | This register is loaded with the ECC information from the R/W

L2 Tag RAMs when the L2 Load Tag & Data CACHE
instruction is executed.

If the GCR_L2_CONFIG.COP_TAG_ECC_WE bit is set
then the value in this register is stored in the ECC portion
L2 Tag RAMs when the L2 Store Tag & Data CACHE
instruction is executed.

DATA ECC DET 31 Data ECC error was detected during the most recent L2 R/W 0
CacheOp load Tag and Data CACHE Instruction.
RSVD 30:8 Reserved. RO
DATA_ECC 7:0 This register is loaded with the ECC information from the R/W

L2 Data RAMs when the L2 Load Tag & Data CACHE
instruction is executed.

If the GCR_L2_CONFIG.COP_DATA_ECC_WE bit is set
then the value in this register is stored in the ECC portion
L2 Data RAMs when the L2 Store Tag and Data CACHE
instruction is executed.

8.14.4.29 L2 Cache Op State Machine Control Register (GCR_L2SM_COP): Offset 0x0620
This register stores the CMD, TYPE, MODE, RESULT and PRESENT bit info of L2 Cache Op
State machine.
Figure 8.34 L2 Cache Op State Machine Control Register Bit Assignments

63 32

RSVD

31 30 9 8 6 5 4 2 1 0

L2SM_COP_REG RSVD L2SM_COP|L2SM_COP_| L2SM_COP | L2SM_COP
_PRESENT _RESULT | MODE _TYPE _CMD

Table 8.55 L2 Cache Op State Machine Control Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:32 | Reserved. RO 0
L2SM_COP_REG 31 Data ECC error was detected during the most recent L2 RO 1
_PRESENT CacheOp load Tag and Data CACHE Instruction.
RSVD 30:9 Reserved. RO 0

\}\<M I PS Copyrigr:ti‘g;:?znz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.55 L2 Cache Op State Machine Control Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

L2SM_COP_RESULT 8:6 This field is written by hardware and stores the result of RO 0
the operation and is encoded as follows:

0x0: DON'T CARE [During RUNNING mode or after
reset]

0x1: DONE - NO_ERR [When completes the COP and
switches to IDLE mode]

0x2: DONE - ERR [When completes the COP and
switches to IDLE mode]

0x3: ABORT- NO_ERR [When completes the COP and
switches to IDLE mode]

0x4: ABORT- ERR [When completes the COP and
switches to IDLE mode]

L2SM_COP_MODE 5 This field is written by hardware and and indicates the RO 0
current state of the state machine:

0: Machine is IDLE
1: Machine is RUNNING.

L2SM_COP_TYPE 4:2 This field indicates the type of operation and is encoded R/W 0
as follows:

0x0 : Index WB inv/Index Inv [Full cache Flush]

0x1 : Index Store Tag [Full Cache Init - Fast - Only Tag
RAM]

0x2 : Index Store Tag [Full cache init - Norm - Tag and
Data RAM]

0x3 : Reserved

0x4 : Hit Inv

0x5 : Hit WB Inv

0x6 : Hit WB

0x7 : Fetch and Lock This field can only be written when
the COP SMis in IDLE mode

L2SM_COP_CMD 1:0 This field indicates the type of operation and is encoded R/W 0
as follows:

00 : NOP

01 : START [START can only be issued in IDLE mode]
10: Reserved

11: ABORT [ABORT can only be issued in RUNNING
mode] Note: It may take a few cycles for the state
machine to become IDLE after an ABORT is issued

8.14.4.30 L2 Cache Op State Machine Tag Address Register (GCR_L2SM_TAG_ADDR_COP): Offset
0x0628

This register stores the tag address details for the L2 CacheOp State Machine.

Figure 8.35 L2 Cache Op State Machine Tag Address Register Bit Assignments

63 48 47 32

L2SM_COP_NUM_LINES L2SM_COP_START_TAG_ADDR

\}\<M I PS Copyrigr:ti‘g;znz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

31

L2SM_COP_START_TAG_ADDR RSVD
Table 8.56 L2 Cache Op State Machine Tag Address Register Bit Descriptions
Reset
Name Bits Description R/W State
L2SM_COP_NUM_LINES 63:48 | Number of lines (from starting address) to be operated for R/W 0
Requested burst COP.
Max supported number is 65536 (2*16)
This field can only be written when the COP SMis in IDLE
mode.
Not valid for index type cache ops.
L2SM_COP_START _ 47:6 Starting address (tag) of Burst COP. R/W 0
TAG_ADDR This field can only be written when the COP SMis in IDLE
mode. Not valid for index type cache ops.
RSVD 5:0 Reserved. RO 0

8.14.4.31 Global CM3 Semaphore Register (GCR_SEM): Offset 0x0640

The register provides an uncached semaphore mechanism. A write to this register with write
data bit 31=1 is inhibited if the SEM_LOCK bit is already 1. A write to this register proceeds
normally if the write data has bit 31 = 0, or if the SEM_LOCK bit is currently 0.

To acquire the semaphore:

1) Write this register with bit 31 = 1 and the lower bits with the threads VPID.
2) Read the register.

3) If the value read in step #2 is the same as the value as written in step #1, then sema-
phore has been acquired, else go to step #1.

To release the semaphore:

1) Write the register with bit 31 = 0.

63

Figure 8.36 Global CM3 Semaphore Register Bit Assignments

32

RSVD
31 30 0
SEMLOCK SEMDATA
Table 8.57 Global CM3 Semaphore Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:32 | Reserved. RO 0
SEMLOCK 31 Lock bit on semaphore. A value of 1 indicates that this RO 0
register is locked. In which case, subsequent writes trying
to set this bit to 1 will be inhibited, i.e., the SEMDATA field
will not be updated.
SEMDATA 30:0 Data value on the semaphore RO 0
\{k . 194
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

8.14.4.32 Global CM3 Timeout Timer Limit Register (GCR_TIMEOUT_TIMER_LIMIT): Offset 0x0650

Provides the time out limit for transaction time out timer in humber of CM clocks. This regis-
ter is only available if MIPS_FUSA_TIMER is implemented. (FUSA CPU’s only).

Figure 8.37 Global CM3 Timeout Timer Limit Register Bit Assignments

63 32

RSVD

31 20 19 0

RSVD TT_DELAY

Table 8.58 Global CM3 Timeout Timer Limit Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:20 |Reserved. RO 0
TT_DELAY 19:0 | Timeout limit for transaction timeout timer in number of R/W Config
CM clocks.

8.14.4.33 MMIO Request Limit Register (GCR_MMIO_REQ_LIMIT): Offset 0x06F8
Determines the number of MMIO requests that the CM3 will allow to be in flight.

Figure 8.38 MMIO Request Limit Register Bit Assignments

63 32

RSVD

31 24 23 16 15 8 7 0

RSVD MMIO_REQ_CNT RSVD MMIO_REQ_LIMIT

Table 8.59 MMIO Request Limit Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:24 | Reserved. RO 0
MMIO_REQ_CNT 23:16 | Provides current count of requests in flight to MMIO RO 0
regions that have REQ_LIMIT request limitations
enabled..
RSVD 15:8 Reserved. RO 0
MMIO_REQ_LIMIT 7:0 Determines the number of requests to the regions with R/W Config

request limits enabled that the CM3 will allow to be in
flight. Bit O corresponds to region 0, and bit 7 corresponds
toregion 7.

Setting a value of 1 allows one outstanding MMIO request
to that region. Setting a value of 0 disables the MMIO lim-
iting feature.

195

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

8.14.4.34 Lower Bound of MMIO [0-3] Registers (GCR_MMIO[0-3]_BOTTOM): See table below

There are 8 MMIO regions. Each region has two registers that define its upper and lower
boundaries. This section defines the lower bound for the MMIOO through MMIO7 regions.
Each register described here reside at the following offset addresses.

Table 8.60 Lower Bound MMIO Register Map

Register Offset
GCR_MMIOO_BOTTOM 0x0700
GCR_MMIO1_BOTTOM 0x0710
GCR_MMIO2_BOTTOM 0x0720
GCR_MMIO3_BOTTOM 0x0730
GCR_MMIO4_BOTTOM 0x0740
GCR_MMIO5 BOTTOM 0x0750
GCR_MMIO6_BOTTOM 0x0760
GCR_MMIO7_BOTTOM 0x0770

These register store the lower bound address of MMIO Region [0-7].
NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than [0-7].

Figure 8.39 Lower Bounds of MMIO Region [0-7] Register Bit Assignments

63 48 47 32
RSVD MMIO_BOTTOM_ADDR
31 15 10 9 8 7 6 5 2 1 0
MMIO_ MMIO_FORCE MMIO_DISABLE
MMIO_BOTTOM_ADDR | RSVD | "y~ | RSVD | \G\COH REQ |MMIO_PORT| REQ_LIMIT | MMIO_EN

Table 8.61 Lower Bounds of MMIO Region [0-7] Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:48 |Reserved. RO 0
MMIO_BOTTOM_ADDR 47:16 |Provides current count of requests in flight to MMIO R/W Config
regions that have REQ_LIMIT request limitations
enabled..
RSVD 15:10 |Reserved. RO 0
\{k : 196
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.61 Lower Bounds of MMIO Region [0-7] Bit Descriptions (continued)

Name

Bits

Description

RW

Reset State

MMIO_CCA

9:8

Allows MMIO region hit to be qualified by CCA in addition
to address. If this field is zero, then all CCA types may fall
into this MMIO region. A MMIO region hit is determined
based upon just address hit. If bits in MMIO_CCA are set,
then MMIO qualification is based upon address and CCA.
This field is encoded as follows:

MMIO_CCA = 2'b00: CCA is not considered as part of the
match

MMIO_CCA = 2'b01: This region will only match if the
CCAis Uncached (UC)

MMIO_CCA = 2'b10: This region will only match if the
CCA is Uncached Accelerated (UCA)

MMIO_CCA = 2'b11: This region will only match if the
CCA is Uncached (UC) or Uncached Accelerated (UCA).

R/W

Config

RSVD

Reserved.

RO

MMIO_FORCE_
NONCOH_REQ

If a transaction that hits this region generates a request
out to a coherent interconnect, force the request to be
non-coherent. The request will be externalized to ACE as
ReadNoSnoop/WriteNoSnoop.

R/W

Config

MMIO_PORT

5:2

Specify which port issues requests to. This field is
encoded as follows:

0x0 - Main memory port; MEM
0x7-0x1: Reserved

0x8: AUXO0

0x9: AUX1

OxA: AUX2

0xB: AUX3

0xC - OxF: Reserved

Note that the number of available aux ports is provided in
GCR_CONFIG.NUMAUX. MMIO_PORT should not be
programmed to route requests to an AUX port that does
not exist.

R/W

Config

MMIO_DISABLE_
REQ_LIMIT

Determines whether CM3 will limit the number of out-
standing requests to this MMIO region. This bit is
encoded as follows:

0 - This MMIO region has request limits. Set this field to
zero if sending requests to an 10 device that can deadlock
if too many requests are received. If this field is set to
zero, the CM will limit the number of outstanding requests
to the value specified in MMIO_REG_LIMIT. Additionally,
the CM will ensure that all requests sent to this MMIO
region are UC. Coherent requests sent to this region will
be turned around as a bus error.

1 - Set this field to disable request limits. The CM will not
limit the number of requests outstanding. Also both coher-
ent and non-coherent requests can be issued. Incoming
coherent requests can be turned into non-coherent
requests to memory if MMIO_FORCE_NONCOH_REQ is
set.

R/W

Config

SMIPS

a GlobalFoundries company

197
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 8.61 Lower Bounds of MMIO Region [0-7] Bit Descriptions (continued)

Name Bits Description R/W Reset State
MMIO_EN 0 MMIO enable bit for the corresponding region [0-7]. R/W Config

8.14.4.35 Upper Bound of MMIO [0-7] Registers (GCR_MMIO[0-7]_TOP): See table below

There are 8 MMIO regions. Each region has two registers that define its upper and lower
boundaries. This section defines the upper bound for the MMIOO through MMIO7 regions.
Each register described here resides at the following offset addresses.

Table 8.62 Upper Bound MMIO Register Map

Register Offset
GCR_MMIOO_TOP 0x0708
GCR_MMIO1_TOP 0x0718
GCR_MMIO2_TOP 0x0728
GCR_MMIO3_TOP 0x0738
GCR_MMIO4_TOP 0x0748
GCR_MMIO5 TOP 0x0758
GCR_MMIO6_TOP 0x0768
GCR_MMIO7_TOP 0x0778

These register store the upper bound address of MMIO regions [0-7].
NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than [0-7].

Figure 8.40 Upper Bound of MMIO Region [0-7] Register Bit Assignments

63 48 47 32

RSVD MMIO_TOP_ADDR

31 16 15 0

MMIO_TOP_ADDR RSVD

Table 8.63 Lower Bounds of MMIO Region [0-7] Bit Descriptions

Name Bits Description R/W Reset State

RSVD 63:48 | Reserved. RO 0
MMIO_TOP_ADDR 47:16 | Upper limit of address bits 47:16 for MMIO region [0-7]. R/W Config

RSVD 15:10 |Reserved. RO 0

8.14.4.36 CM3 Performance Counter Control Register (GCR_DB_PC_CTL): Offset 0x0900

Configuration register for performance counters of CM3 PDTrace. This register control the
starting and stopping of the performance counters.

Figure 8.41 CM3 Performance Counter Control Register Bit Assignments

63 32

RSVD

198

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

31 30

29

28

10 9 8 7 6 5

PER-

RSVD | PERF_INT_EN|F_OVF)STO

P

P1_

RSVD P1_RST COUNTON

PO_RST

PO_ CYCL_
COUNTON | CNT_RST|_COUNTON

CYCL_CNT

PERF_NUM
_CNT

Table 8.64 CM3 Performance Counter Control Register Bit Descriptions

Name

Bits

Description

R/W Reset State

RSVD

63:31

Reserved.

RO

PERF_INT_EN

30

Enable Interrupts on counter overflow. If set to 1, a CM3
performance counter interrupt is generated when any
enabled CM3 performance counter overflows.

R/W

PERF_OVF_STOP

29

Stop Counting on overflow. If set to 1, all CM3 perfor-
mance counters stop counting when any enabled CM3
performance counter overflows (i.e., the counter has
reached OxFFFF_FFFF).

RW

RSVD

28:10

Reserved.

RO

P1_RST

If P1_RST is written to 1 when P1_COUNTON is written
to 1, then the CM3 performance counter 1 and the P1_OF
bit is reset before counting is started.

If P1_RST is written to 0 when P1_COUNTON is written
to 1, then counting is resumed from previous value. This
bit is automatically set to 0 when the counter is reset, so
P1_RST is always read as 0.

R/W

P1_COUNTON

Start/Stop Counting. If this bit is set to 1 then the CM3 per-
formance counter 1 starts counting the specified event.

If this bit is set to 0 then CM3 performance counter 1 is
disabled. This bit is automatically set to 0 if any counter
overflows and PERF_OVF_STOP is set to 1.

R/W

PO_RST

If PO_RST is written to 1 when PO_COUNTON is written
to 1, then the CM3 performance counter 0 and the PO_OF
bit is reset before counting is started.

If PO_RST is written to 0 when PO_COUNTON is written
to 1, then counting is resumed from previous value. This
bit is automatically set to 0 when the counter is reset, so
PO_RST is always read as 0.

R/W

PO_COUNTON

Start/Stop Counting. If this bit is set to 1 then the CM3 per-
formance counter 0 starts counting the specified event.

If this bit is set to 0 then CM3 performance counter 0 is
disabled. This bit is automatically set to 0 if any counter
overflows and PERF_OVF_STOP is set to 1.

RW

SMIPS

a GlobalFoundries company

199
mips.com

Copyright © 2025
MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.64 CM3 Performance Counter Control Register Bit Descriptions (continued)

Name

Bits

Description

RW

Reset State

CYCL_CNT_RST

5

If CYCL_CNT_RESET is written to 1 when
CYCL_CNT_COUNTON is written to 1, then the CM3
Cycle Counter and the CYCL_CNT_OF bit is reset before
counting is started.

If CYCL_CNT_RESET is written to 0 when
CYCL_CNT_COUNTON is written to 1, then counting is
resumed from previous value. This bit is automatically set
to 0 when the counter is reset, so CYCL_CNT_RST is
always read as 0.

R/W

0

CYCL_CNT_COUNTON

Start/Stop the cycle counter. If this bit is set to 1 then CM3
Cycle Counter starts counting. If this bit is set to 0 then
CM3 Cycle Counter is disabled.

This bit is automatically set to 0 if any counter overflows
and PERF_OVF_STOP is setto 1.

R/W

PERF_NUM_CNT

3:0

The number of performance counters implemented (not
including the cycle counter). The CM3 has 2 performance
counters.

RO

0x2

8.14.4.37 CM3 Performance Overflow Status Register (GCR_DB_PC_OV): Offset 0x0920

Configuration register for performance counters of CM3 PDTrace. This register controls which
performance counters have overflowed.

Figure 8.42 CM3 Performance Counter Overflow Status Register Bit Assignments

63

32

RSVD

31

3 2

1

0

RSVD P1_OF

PO_OF

CYCL_CNT_OF

Table 8.65 CM3 Performance Counter Overflow Status Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:3 Reserved. RO 0
P1_OF 2 If this bit is set to 1, CM3 Performance Counter 1 has R/W 0
overflowed (i.e., the counter has reached OxFFFF_FFFF).
PO_OF 1 If this bit is set to 1, CM3 Performance Counter 0 has R/W 0
overflowed (i.e., the counter has reached OxFFFF_FFFF).
CYCL_CNT_OF 0 If this bit is set to 1, CM3 Cycle Counter 0 has overflowed R/W 0
(i.e., the counter has reached OxFFFF_FFFF).
\{k . 200
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

8.14.4.38 CM3 Performance Overflow Event Select Register (GCR_DB_PC_EVENT): Offset 0x0930
This register selects the event type for each performance counter.

Figure 8.43 CM3 Performance Counter Overflow Status Register Bit Assignments
63 32

RSVD

31 16 15 8 7 0

RSVD P1_EVENT PO_EVENT

Table 8.66 CM3 Performance Counter Overflow Status Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:16 | Reserved. RO 0
P1_EVENT 15:8 Event selection for CM3 Performance Counter 1. Refer to R/W 0
Section 10.2 in Chapter 10 of this manual for more infor-
mation.
PO_EVENT 7:0 Event selection for CM3 Performance Counter 0. Refer to R/W 0
Section 10.2 in Chapter 10 of this manual for more infor-
mation.

8.14.4.39 CM3 Performance Cycle Counter Register (GCR_DB_PC_CYCL): Offset 0x0980
This register contains the 32-bit cycle count for the performance counter.

Figure 8.44 CM3 Performance Cycle Counter Register Bit Assignments
63 32

RSVD

31 0

CYCLE_CNT

Table 8.67 CM3 Performance Cycle Counter Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:16 | Reserved. RO 0
CYCLE_CNT 31:0 | 32-bit count of CM3 clock cycles. R/W Config

8.14.4.40 CM3 Performance PO Qualifier Register (GCR_DB_PC_QUALO): Offset 0x0990
This register contains the 64-bit PO event qualifier.

Figure 8.45 CM3 Performance PO Qualifier Register Bit Assignments

63 32

PO_QUALIFIER

\}\<M I PS Copyrigr::g;z);::;

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

31

PO_QUALIFIER

Table 8.68 CM3 Performance PO Qualifier Register Bit Descriptions

Name Bits Description R/W Reset State
PO_QUALIFIER 63:0 CM3 Performance Counter 0 Event Qualifier. The qualifier R/W 0
corresponds to the event configured through the Perfor-
mance Counter 0 Event Select Register.
8.14.4.41 CM3 Performance Counter PO Register (GCR_DB_PC_CNTO0): Offset 0x0998
This register contains the 32-bit PO performance counter value.
Figure 8.46 CM3 Performance Counter PO Register Bit Assignments
63 32
RSVD
31 0
PO_COUNT
Table 8.69 CM3 Performance Counter PO Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:32 | Reserved RO 0
PO_QUALIFIER 63:0 | CM3 Performance Counter 0 Event Qualifier. The qualifier R/W 0
corresponds to the event configured through the Perfor-
mance Counter 0 Event Select Register.

8.14.4.42 CM3 Performance P1 Qualifier Register (GCR_DB_PC_QUAL1): Offset 0x09A0

This register contains the 64-bit P1 event qualifier.

Figure 8.47 CM3 Performance P1 Qualifier Register Bit Assignments

63

32

P1_QUALIFIER

31

P1_QUALIFIER

Table 8.70 CM3 Performance P1 Qualifier Register Bit Descriptions

Name Bits Description R/W Reset State
P1_QUALIFIER 63:0 | CMS3 Performance Counter 1 Event Qualifier. The qualifier R/W 0
corresponds to the event configured through the Perfor-
mance Counter 1 Event Select Register.
\{k . 202
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
8.14.4.43 CM3 Performance Counter P1 Register (GCR_DB_PC_CNTO0): Offset 0x09A8

This register contains the 32-bit P1 performance counter value.

Figure 8.48 CM3 Performance Counter P1 Register Bit Assignments

63 32

RSVD

31 0

P1_COUNT

Table 8.71 CM3 Performance Counter P1 Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:32 |Reserved RO 0
P1_QUALIFIER 63:0 CM3 Performance Counter 1 Event Qualifier. The qualifier R/W 0

corresponds to the event configured through the Perfor-
mance Counter 1 Event Select Register.

8.14.5 GCR Core Registers

The register map for the GCR core registers is shown in Table 8.72. All of the offsets shown
below are relative to the value stored in the GCR_BASE register.

Table 8.72 GCR Core Register Map

Offset from
GCR_BASE Register Short Descriptions

0x0_2000 GCR.Core[0-63].HO_RESET_BASE Core[0-63] Hart0 Reset PC
0x0_2100

0x0_5F00
0x0_2008 GCR.Core[0-63].H1_RESET_BASE Core[0-63] Hart1 Reset PC
0x0_2108

0x0_5F08
0x0_2010 GCR.Core[0-63].H2_RESET_BASE Core[0-63] Hart2 Reset PC
0x0_2110

0x0_5F10

\}\<M I PS Copyrigr:ti‘gfz)}z

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.72 GCR Core Register Map

Offset from
GCR_BASE

Register

Short Descriptions

0x0_2018
0x0_2118

0x0_5F18

GCR.Core[0-63].H3_RESET_BASE

Core[0-63] Hart3 Reset PC

0x0_2020
0x0_2120

0x0_5F20

GCR.Core[0-63].H4_RESET_BASE

Core[0-63] Hart4 Reset PC

0x0_2028
0x0_2128

0x0_5F28

GCR.Core[0-63].H5_RESET_BASE

Core[0-63] Hart5 Reset PC

0x0_2030
0x0_2130

0x0_5F30

GCR.Core[0-63].H6_RESET BASE

Core[0-63] Hart6 Reset PC

0x0_2038
0x0_2138

0x0_5F38

GCR.Core[0-63].H7_RESET_BASE

Core[0-63] Hart7 Reset PC

0x0_2040
0x0_2140

0x0_5F40

GCR.Core[0-63].H8 _RESET_BASE

Core[0-63] Hart8 Reset PC

0x0_2048
0x0_2148

0x0_5F48

GCR.Core[0-63].H9_RESET BASE

Core[0-63] Hart9 Reset PC

0x0_2050
0x0_2150

0x0_5F50

GCR.Core[0-63].H10_RESET_BASE

Core[0-63] Hart10 Reset PC

SMIPS

a GlobalFoundries company

204
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 8.72 GCR Core Register Map

Offset from
GCR_BASE Register Short Descriptions

0x0_2058 GCR.Core[0-63].H11_RESET_BASE Core[0-63] Hart11 Reset PC
0x0_2158

0x0_5F58
0x0_2060 GCR.Core[0-63].H12_RESET_BASE Core[0-63] Hart12 Reset PC
0x0_2160

0x0_5F60
0x0_2068 GCR.Core[0-63].H13_RESET_BASE Core[0-63] Hart13 Reset PC
0x0_2168

0x0_5F68
0x0_2070 GCR.Core[0-63].H14_RESET_BASE Core[0-63] Hart14 Reset PC
0x0_2170

0x0_5F70
0x0_2078 GCR.Core[0-63].H15_RESET_BASE Core[0-63] Hart15 Reset PC
0x0_2178

0x0_5F78
0x0_20F8 GCR.Core[0-63].COH_EN Core[0-63] coherence enable
0x0 21F8

0x0_5FF8

8.14.5.1 Reset Exception Base Registers (GCR_C[a]H[b] RESET_BASE): Offset; see Table 8.72.

The C[a] in the register name indicates Core 0 through Core 63. The H[b] in the register
name indicates hart 0 through hart 15.

This register is used to drive the core_exception_base[31:12] input to the local hart.

Figure 8.49 Reset Exception Base Register Bit Assignments

63 48 47 32

RSVD RESET_BASE

31 12 " 2 1 0

RESET_BASE

RESET_BASE RSVD _MODE

RSVD

205

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 8.73 Reset Exception Base Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:48 |Reserved RO 0
RESET_BASE 47:12 | Bits [47:12] of the virtual address that the local core will R/W CONFIG

use as the reset exception base.
If RESET_BASE_MODE is 0, then RESET_BASE[47:32]
is ignored and RESET_BASE[31:29] should be set to
3'b101 to locate the reset base in the kseg1 segment.
RSVD 11:2 Reserved RO 0
RESET_BASE_MODE 1 Legacy field, always 1 for MIPS implementations of RISC- RO
V cores.
RSVD 0 Reserved RO 0

8.14.5.2 Core[a] Coherence Enable Registers (GCR_C[a]_COH_EN): Offset; see Table 8.72.

The C[a] in the register name indicates Core 0 through Core 63.
Setting this bit has two effects:

1. The CPC will not transition power states for this core

2. The CM3 may send interventions to this core. Note that the software must follow the appropriate pro-
cedure when setting/clearing this bit as outlined in the System Programmer's Reference. This register

is instantiated for each Core domain.

Figure 8.50 Core[a] Coherence Enable Register Bit Assignments
63

32

RSVD
31 1 0
RSVD COH_EN
Table 8.74 Core[a] Coherence Enable Register Bit Descriptions
Name Bits Description R/W Reset State
RSVD 63:1 Reserved RO 0
COH_EN 0 Enables coherence for the corresponding core. R/W 1
\{k . 206
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

Chapter 9

Power Management

Power management in the I8500 Multiprocessing System is handled by the Cluster Power
Controller (CPC). The I8500 CPC uses the concept of domains to manage both power and
clocking throughout the device. Using registers, the programmer can enable or disable these
domains in order to reduce overall power consumption.

The CPC implements two types of domains; power and clock. In each case, registers are
instantiated on a per-domain basis so that the domain can be individually controlled by kernel
software. This is true for each power domain and each clock domain.

e For the power domains, kernel software uses registers in the CPC to control the power to
individual elements in the system such as cores, IOCU’s, and the Coherence Manager
(CM). The various power domains that can be individually controlled are defined in the
section entitled Power Domains.

e For the clock domains, kernel software uses registers in the CPC to control the clock fre-
quency to the individual elements in the system such as cores, IOCU’s, Coherence Man-
ager (CM), and memory. In addition to clock management for the various devices in the
I8500 Multiprocessing System, the CPC also provides the ability to change the clock ratios
in memory, and put the caches into a low-power state. The various clock domains that
can be individually controlled are defined in the section entitled Clock Domains.

The CPC provides a flexible engine for managing clock, power, and reset for the entire cluster
under a combination of software and hardware control. Software configures and controls the
CPC via its global configuration register (GCR) interface. Hardware controls the CPC via dedi-
cated signals.

Individual CPU cores within the cluster may have their clock, power, or both gated off when
not in use. The CM may also be powered down.

The CPC manages the power shutdown and ramp-up of each core in the cluster as well as the
CM itself. CPC sequences each core's reset and root-level clock gating and CM's own power
and reset. It manages dependencies between core power states and the CM's power state.

The CPC also manages clock ratios between CPU cores, IOCUs, memory interfaces, and the
CM. CPC supports independent clock ratios for each component connected to CM. Both soft-
ware and hardware can trigger clock ratio changes dynamically at runtime. The CPC
sequences the clock ratio transition to allow seamless changes in clock ratios with minimal
disruption to the system.

The CPC sequences its actions based on a programmable power management policy.

207

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

This chapter provides an overview of how power is managed in the I8500 Multiprocessing
System and identifies the various power and clock domains the programmer can use to man-
age power consumption in the device. Other programming principles include setting the
device to coherent or non-coherent mode, requestor access of CPC registers, system power-
up policy, programming examples of a clock domain change and clock delay change, power-
ing up the CPC in standalone mode (no cores enabled), reset detection, hart run/suspend
mechanism, local RAM shutdown and wakeup procedure, accessing registers in another
power domain, and fine tuning internal and external signal delays to help the programmer
easily integrate the device into a system environment.

9.1 Overview

This section provides an overview of the power and clock management schemes imple-
mented in the I8500 Multiprocessing System.

9.1.1 Power Domains

Figure 9.1 shows the various power domains in the I8500 Multiprocessing System. Registers
are instantiated for each power domain to allow for individual control. Note that in this figure,
core 1 through core n are optional blocks depending on the system configuration.

SMIPS

Copyright © 2025
a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Figure 9.1 Power Domains in the 18500 Multiprocessing System

Core 0
Power Domain
[1
| Core 0 |
= — _— _—

CM3
Power Domain
= 1
| CM3 |
S |

Power Domain

Core 1

[1

Core 1

— — — —

Debug Unit

Power Domain

[1

DBU

- — — —

9.1.2 Clock Domains

Figure 9.2 shows the various clock domains in the I8500 Multiprocessing System. Each clock

domain shown can be individually controlled using the CPC register interface.

Core 0
Clock Domain
[1
| Core 0 |
= — _— _—

IOCUO
Clock Domain
= 1

| I0CUO0
S |

Core 5
Power Domain
= 1
| Coren |
S |

Figure 9.2 Clock Domains in the 18500 Multiprocessing System

9.1.3 Core and IOCU Selection

Figure 9.2 shows the maximum possible number of cores and IOCUs that can be instantiated
into the I8500 MPS. However, the total number of cores and IOCUs cannot exceed eight. So
for example, if there are two cores, there cannot be more than six IOCUs. If there are four

cores, there cannot be more than four IOCUs, etc.

9.1.4 Overview of Power States

a GlobalFoundries company

Core 1 Core 5 CMm3.7 Memory
ClO_Ck D_omiin Clock Domain Clock Domain Clock Domain
M 1 r_——1 1070 _— 17 "1
| Core 1 | o000 | Core 5 | | CM3.5 | | Memory |
- - — — I | U O |
|IOCU7 AUXO0 AUX3
Clock Domain Clock Domain Clock Domain
- — 1 —— — 1 ["1
| 90 @ | IOCU7 | AUXO0 | @@ | AUX3 |
- o - - — — - o

Each device in Figure 9.1, except the CM, contains its own set of Core-Local registers that
can be used to independently place each device into one of the following four power states by
programming the CMD field (bits 3:0) of the CPC Local Command Register. For more information
on this register, refer to the I8500 Registers companion document included in the release.

Note that each command can only be executed in hon-coherent mode. If a command is exe-
cuted in coherent mode, the command is queued, but not processed by the CPC until the
device has transitioned from coherent mode to non-coherent mode. For more information,
refer to the section entitled Enabling Coherent Mode.

The states are as follows:

SMIPS

209
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

e ClockOff - a power domain is brought into ClockOff state when a value of 0x1 is
programmed into the 4-bit CMD field of the CPC_CL_CMD_REG register. If the domain
was powered down before, the power-on sequence is applied according to
CPC_CL_STAT_CONF_REG settings. If the domain was active before and was in non-
coherent operation, the power domain is brought into the ClockOff state. A domain in
the ClockOff state can be sent into operation using the PwrUp command.

A ClockOff command given to a domain in coherent operation remains inactive until
the device has left the coherent mode of operation. Sending a C/kOff command to the
CPC before a previous command has completed causes the CPC domain target to be
redirected towards ClockOff. However, the previous steady state can be observed
temporarily before the newly programmed state is reached. Refer to the section
entitled Enabling Coherent Mode for more information on enabling and disabling
coherence mode.

e PwrDown. A power domain is brought into PwrDown state when a value of 0x2 is
programmed into the 4-bit CMD field of the CPC_CL_CMD_REG register. This command
uses setup values in the CPC_CL_STAT_CONF_REG register.

A PwrDown command given to a domain in coherent operation will remain inactive
until the device has left the coherent mode of operation. Sending a PwrDown
command to the CPC before a previous command has completed causes the CPC
domain target to be redirected towards PwrDown.

e PwrUp - A power domain is brought into PwrUp state when a value of 0x3 is
programmed into the 4-bit CMD field of the CPC_CL_CMD_REG register. This command
uses setup values in the CPC_CL_STAT_CONF_REG register. The execution of this
command depends on the previous domain power state. If the domain is in the
powered-down state, a PwrUp command enables power for the domain, applies the
clocks and reset, and brings the domain into an operational state.

e Reset - A power domain is brought into Reset state when a value of 0x4 is
programmed into the 4-bit CMD field of the CPC CL CMD_REG register. This command
allows a domain in the non-coherent operation to be reset. It also can be sent to a
domain in power-down or clock-off mode. The domain will then become active, and a
reset sequence is executed which leads to an operational steady state of the domain.

9.2 Reset Control

The system reset input resets the Cluster Power Controller (CPC). Sideband signals qualify
the reset as a cold or a warm reset. Configuration signals determine the CPC's actions when
reset deasserts:

e Remain powered down
e Go to clock-off mode
e Power up and start execution

In response to cold reset, the CPC powers up the CPU cores as directed in the CPC cold start
configuration. If the configuration directs the CPC to power up at least one CPU, the CPC also
powers up the CM. If there are no cores in the cluster, then a signal ci_cm_pwr_up is used to
power up the CM.

In response to warm reset, the CPC brings all power domains to their cold-start configura-
tion. The CPC resets powered-up domains that remains powered-up in the cold-start configu-
ration. For domains that CPC must power down, CPC enables isolation between power

\}\<M I PS Copyrigr:tiF();.Zcz);'E

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

domains before gating power off to ensure power integrity for all domains. For a zero-core
config and warm reset, the CM honors ci_cm_pwr_up the same way it does for cold reset.

CM provides memory mapped GCRs that can override the default exception vector address in
each hart of each attached CPU core. This allows software to specify a unique boot vector for
each hart in the cluster if necessary. System level signals control which harts begin execution
on each core after reset. CPC can bring a core out of reset with no harts running, letting the
system determine when to start each hart.

See the CPC documentation for additional details on clocking, reset, and power-down/power-
up.

9.3 Individual Clock Gating

The I8500 Multiprocessing System provides two levels of clock gating. In addition to the indi-
vidual clock gating of each device, global clock gating to all devices simultaneously can be
performed by adjusting the ratio of the clock prescaler as shown in Figure 9.3.

Figure 9.3 Individual and Global Clock Gating in the 18500 Multiprocessing System

3 Core 0 |[1:1to1:8) Core 0
clock gater
[[
[[
Coren |[1:1to1:8 C
si ref clk Clock |I:1to 1:256 clock gater P> ore n
- T Prescaler
(Master Input Clock) IOCUO0 |[1:1to1:8 10CUO
—>
clock gater
IOCUl |1:1to1:8
—>
clock gater I0CU1
CM 1:1to 1:2
—>
clock gater M
Memory |[1:1to1:8
—>
clock gater Memory

The clock prescaler can be programmed to reduce the master input clock by a frequency
range of 1:1 to 1:256. The output of the prescaler becomes the master clock input to all
other devices in the system.

9.4 Global Control Block Register Map

All registers in the Global Control Block are 64 bits wide and should only be accessed using
aligned 64-bit uncached load/stores. Reads from unpopulated registers in the CPC address

\}\<M I PS Copyrigr::g;z);r:;

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

space return 0x0, and writes to those locations are silently dropped without generating any

exceptions.

Table 9.1 Global Control Block Register Map (Relative to Global Control Block Offset)

Register Offset
in Block Name Type Description
0x0008 CPC Global Sequence Delay Counter R/W | Time between microsteps of a CPC
(CPC_SEQDEL_REG) domain sequencer in CPC clock
cycles.
0x0010 CPC Global Rail Delay Counter Register R/W | Rail power-up timer to delay CPS
(CPC_RAIL_REG) sequencer progress until the gated
rail has stabilized.
0x0018 CPC Global Reset Width Counter Register | R/W |Duration of any domain reset
(CPC_RESETLEN_REG) sequence.
0x0020 CPC Global Revision Register R RTL Revision of CPC
(CPC_REVISION_REG)
0x0028 CPC Global Clock Control Register R CPC global clock change configura-
(CPC_CC_CTL_REG) tion, control and status. Enables
clock change for all clock change
enable domains of the cluster.
0x0030 CPC Global CM Powerup Register R Controls Power of CM even inde-
(CPC_PWRUP_CTL_REG) pendent of Cores' power states.
0x0038 CPC Reset Release Register R Control Reset release and Clock
(CPC_RES_REL _REG) Enable timing.
0x0040 CPC Global Reset Occurred Register R Register to indicate which cores
(CPC_ROCC _CTL_REG) have been reset.
0x0048 CPC Global Reset Occurred Register R Controls Precale Clock changes.
(CPC_PRESCALE_CC_CTL_REG)
0x0050 MTIME Register R/W | RISCV timer. Register can be writ-
(CPC_MTIME_REG) ten to synchronize with other clus-
ter's time.
0x0058 Counter Control for MTIME and HRTIME R/W | Support for Software-assisted multi-
(CPC_TIMECTL_REG) cluster time synchronization
0x0060 RESERVED Reserved.
0x0068 CPC Global Fault Supported Register R/W
(CPC_FAULT_SUPPORTED)
0x0070 CPC Global Fault Enable Register (CPC_- R/W
FAULT_ENABLE)
0x0080, R/W
0x0088
0x0090 HRTIME Counter Register R/W
(CPC_HRTIME_REG)
0x0098 - 0x0134 CPC GLOBAL RESERVED R/W
0x0138 CPC Global Config Register (CPC_CON- R/W
FIG)
\{k . 212
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 9.1 Global Control Block Register Map (Relative to Global Control Block Offset) (continued)

Register Offset
in Block Name Type Description

0x0140 CPC System Configuration Register R/W
(CPC_SYS_CONFIG)

0x0200 - 0x03FF | CPC_IOCU Clock Change Control Register (| R/W
CPC_IOCUx_CC_CTL_REG)
with x from 0 to 63)

0x0400 CPC_MEM_CC_CTL_REG RIW
0x0408 CPC_CM_MSTR_CC_CTL_REG RIW

0x0404 - 0x0408 CPC_AUXn_CC_CTL REG,n=03 RIW
0x4070 - CPC_IOMMUO_CC_CTL_REG CPC_IOM- | R/W
0x4078 MU1_CC_CTL_REG

9.5 Local Control Blocks

All registers in the CPC Local Control Block are 64 bits wide and should only be accessed
using aligned 64-bit uncached load/stores. Reads from unpopulated registers in the CPC
address space return 0x0, and writes to those locations are silently dropped without generat-
ing any exceptions. A set of these registers exists for each core in the I8500 MPS.

The register offsets shown are relative to the offsets listed in Table 9.2.

Table 9.2 Core-Local Block Register Map

Register Offset

in Block Name Type Description
0x000 CPC Core Local Command Register R/W | Places a new CPC domain state
(CPC_CL_CMD_REG) command into this individual

domain sequencer.

This register is not available within
the CM sequencer. Writes to the
CM CMD register are ignored while
reads will return zero.

0x008 CPC Core Local Status and R/W | Individual domain power status and
Configuration register domain configuration register.
(CPC_CL_STAT_CONF_REG) Reflects domain micro-sequencer

execution. Initiates micro-
sequencer after status register pro-
gramming. Reflects command exe-
cution status.

0x018 CPC Core Local Clock Change Control Register | R/W | Controls clock changes on corre-
(CPC_CL_CC_CTL_REG) sponding device

0x020 CPC Core Local Hart Stop Register R/W | Stops execution of the hart.
(CPC_CL_VP_STOP_REG)

0x028 CPC Core Local Hart Run Register R/W | Starts execution of the hart.

(CPC_CL_VP_RUN_REG)

213

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 9.2 Core-Local Block Register Map (continued)

Register Offset
in Block Name Type Description
0x030 CPC Core Local Hart Running Register R/W | Indicates which hart’s are in the run
(CPC_CL_VP_RUNNING_REG) state.
0x050 CPC Core Local RAM Sleep Register R/W | Controls the Deep Sleep and Shut
(CPC_CL_RAM _SLEEP REG) Down power state of the RAMs.

9.6 CPC Register Programming

This section describes some of the programming functions that can be performed via the CPC
registers.

9.6.1 Cluster Power Controller Register Address Map

The CPC uses memory locations within the global and core-local address space. All address
locations in this document are relative to a base address of 0x0000_8000.

In Table 9.3, all registers are accessed using 32-bit aligned uncached load/stores. All address
locations in this document are relative to the fixed offset CPC base address from GCR_BASE.

Table 9.3 CPC Address Map

Block Offset Size (bytes) Description

0x0000 - Ox01FF 512B Global Control Block. Contains registers pertaining to the
global system functionality. This address section contains a
single set of registers that is visible to all CPUs.

0x0200 - 0x0408 KB Clock Control Register for CPC_IOCU, CPC_MEM, CM
0x04040 - 0x04078 MSTR, CPC_AUX, and CPC_IOMMU.
0x1000 - 0x5F90 8 KB CPC Core Local registers For CM, DBU and Core local
(Core0 to Core63)
0x5F94 - OxDFFF Reserved.

9.6.2 Global Control Block Register Map

All registers in the Global Control Block are 64 bits wide and should only be accessed using
aligned 64-bit uncached load/stores. Reads from unpopulated registers in the CPC address
space return 0x0, and writes to those locations are silently dropped without generating any
exceptions.

9.6.3 Requestor Access to CPC Registers

9.6.3.1 Register Interface

The CPC allows up to eight requestor’s in a system. A requestor can be either a core or an
IOCU. The requestor may not have unrestricted access to the CPC registers. During boot
time, the programmer determines which requestor’s are provided access to the CPC registers
by programming the Global Access Privilege register located at offset 0x120 in the CM register
map. The 8-bit ACCESS _EN field (bits 7:0) of this register selects up to eight cores, and bits
23:16 enable access for IOCU7 through IOCUO respectively.

\}\<M I PS Copyrigr::g;z);rg

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

The MIPS default for ACCESS_EN field is OxFF, meaning that all cores in the system have
access to the CPC register set. In addition, bits 23:16 are set to allow IOCU7 through I0CUO
access to the CPC register set. To disable access to the registers for a particular requestor,
kernel software need only clear the bit corresponding to that core or IOCU, and all write
requests to the CPC registers by that requestor will be ignored.

9.6.4 Enabling Coherent Mode

The I8500 Multiprocessing System allows each power domain to be placed in either a coher-
ent or non-coherent mode. Because the 18500 implements a directory-based coherence pro-
tocol, MIPS recommends that each domain be placed in coherent mode during normal
operation. The non-coherent mode should only be used during boot-up and power-down.
Software should not execute any cacheable memory accesses (instruction fetch or load/
store) while coherence is disabled.

Register Interface

Coherency is enabled when gcr_cl_coh_en in bit 11 (COH_EN) of the Core-Local Status and
Configuration register equals 0x1. This register resides in the CM local register block at offset
address (0x20F8 + 0x100 x CoreNum). There is one of these registers per power domain.

Note that if a power domain is in coherent mode and a change to the power state is initiated,
the caches must be flushed prior to disabling coherence mode.

Coherent Mode Enable Code Example

The base address for the location of the CM GCR registers is programmed into the CSR CMG-
CRBase register. As a reference, a value of 0x0000_1FB8_0000 is used (MIPS default) to
indicate the base location of the CM global control registers. In this case, the base value is
read from the CSR register and an offset is added to it to derive the exact register address
where the Core Local Coherence Control register is located.

By default, coherence is disabled in the 18500 MPS.

9.6.5 Master Clock Prescaler

The clock prescaler is used to reduce the frequency of all devices in the system simultane-
ously.

The prescaler can be programmed as follows using the global CPC Prescale Clock Change Control
register located at offset address 0x0048.

1. Verify that the PRESCALE_CLK_RATIO _CHANGE_EN bit of this register (bit 8) is set. This
bit must be set before the CLK_PRESCALE field can be changed.

2. Optionally, the programmer can read the PRESCALE _CLK_RATIO field in bits 26:23 of this
register to determine the current clock prescaler ratio.

3. Program the CLK_PRESCALE field (bits 7:0) to set the clock ratio. A value of 0x00 indicates
a 1:1 clock ratio (no difference between input and output frequency of the prescaler). A
value of OxFF indicates a 1:256 ratio between the master input clock and the output of
the prescaler.

The 8-bit CLK_PRESCALE field can be programmed as follows to select the prescaler ratio.

Table 9.4 Encoding of the CLK_PRESCALE Field

Encoding Description

0x00 No prescaling

\}\<M I PS Copyrig':tirg.zcz);é

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 9.4 Encoding of the CLK_PRESCALE Field (continued)

Encoding Description
0x01 Divide input clock by 2
0x02 Divide input clock by 3
0x03 Divide input clock by 4
0x04 Divide input clock by 5
O0xFD Divide input clock by 254
OxFE Divide input clock by 255
OxFF Divide input clock by 256

For an example of how to program these fields, refer to step 1 of the procedure in Section
9.6.6.1, "Clock Domain Change Example — Register Programming Sequence".

For more information on this register, refer to the CM Registers companion document
included in the release.

By default, the clock prescaler is disabled in the I8500 MPS. The clock prescaler is enabled

and the clock divide ratio is set to divide by 4. Note that the PRESCALE_CLK_RATIO field in
bits 23:16 of this register is a read-only field that is updated by hardware and allows kernel
software to quickly read this register to determine the current clock ratio.

9.6.6 Individual Device Clock Ratio Modification

Based on the input clock frequency to each individual device supplied by the clock prescaler,
each device can further reduce the clock by a frequency range of 1:1 to 1:8, except for the
CM, which has a fixed ratio of 1:1 relative to its input clock as shown in the figure. This is
accomplished by programming the CLK_RATIO field (bits 2:0) of each CPC Local Clock Change
Control register located at offset address 0x0018. For an example of how to program this field,
refer to step 2 of the procedure in the section entitled Clock Domain Change Example —
Register Programming Sequence.

9.6.6.1 Clock Domain Change Example — Register Programming Sequence

The following example shows how to run core 0 at full speed, and core 2 at quarter-speed to
save power. Assume the following:

e 2-core system

e 1 hart per core

e si_ref_clk input frequency of 1 GHz
e Prescaler output of 1 GHz

e Core 0 input frequency of 1 GHz

e Core 1 input frequency of 250 MHz

In this example, the si_ref clk input to the clock prescaler is 1 GHz. As shown above, the
output frequency of the prescaler in this example is also 1 GHz. This ratio is accomplished by
programming the global CPC Prescale Clock Change Control register located at offset address
0x0048 as follows. Note that this register is global and is seen by all cores and all individual
devices (clock domains) in the system.

Register Interface
216

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

To program the clock prescaler for this example:

1. Write a value of 0x100 to the global CPC Prescale Clock Change Control register located at offset address
0x0048. This value sets the CLK_PRESCALE field to a value of 0x00, indicating a 1:1 relationship
between the input clock and the output clock. This value also sets the PRESCALE_CLK_RA-
TIO_CHANGE_EN bit to indicate that the value in the CLK_PRESCALE field is valid. Refer to the
I8500 Registers companion document for more information on this register.

2. In this example the core 0 is running at full speed. Core 1 is running at 1/4 speed. To set the ratio of the
clock generators for core 0 so it operates at 1 GHz, and core 1 so it operates at 250 MHz, program the
individual CPC Local Clock Change Control registers. This register is instantiated as one per clock
domain, so in this case each core has its own register since each core is in its own domain.

3. Setthe SET_CLK_RATIO bitin the CPC Global Clock Change Control register located at offset 0x0028 to
initiate a clock change for all clock domains participating in the clock change, which is cores 0 - 3 in
this example. This bit is cleared by hardware once the clock change has completed.

Table 9.5 shows the programming of the CLK_RATIO field (bits 2:0) of the corresponding CPC
Local Clock Change Control register located at offset address 0x0018.

Table 9.5 Programming the CLK_RATIO Field of the CPC Local Clock Change Registers

Core CLK_RATIO Value Clock Ratio Core Clock Frequency
0 3'b000 1:1 1 GHz
1 3'b100 4:1 250 MHz

Poll the following registers to determine when the clock change has completed.

e Read the CPC_CC_CTL_REG register to determine when bit 8 (SET_CLK_RATIO) is 0.
If SET_CLK_RATIO is 1, the change request is still pending.

e Read the CPC_CC_CTL_REG to determine when bit 10 (CLK_CHANGE_ACTIVE) is 0. If
CLK_CHANGE_ACTIVE = 1, the clock change is in progress.

e When both of these bits are zero, the clock change has completed. At this point,
another clock change could be requested.

Clock Ratio Change Code Example

/?P?0?r?m?t?e?C?C?C?_?C?C?L?r?g?s?e? ?L?C?_ ?A?I? ?1i?1? ?0?0?(?:? ?a?i?)
1? ?22? ?x?0?0?0?0? ?/?e?a?l? ?1?c? ?h?n?e?a?d?s?t?r?t?o0?t? ?:?

s? ?2? ?x?0?8?(?1? ?/?s?0?e?c?n?e?t? ?0?C?C?C? ?C?C?L?r?g?s?e? ?t?0?2?17?

/?C?r?1?C? ?T? ?e?i?t?r

s?n?

/?P?0?r?m?t?e?C?C?L?c?1?C?0?k?C?a?g? ?2e?i?t?r?C?0?K?R?T?0?f?e?d?t? ? ?4?1?r?t?0?
1? 22?7 ?x?0?0?20?0? ?/?e?a?l? ?1?c? ?h?n?e?a?d?s?t?r?t?0?t? ?2:?

s? ?2? ?x?1?87?(?1? ?/?s?0?e?c?n?e?t? ?P? ?1?C? ?T? ?e?i?t?r?a? ?x?1?8

/? ?n?t?t? ?e?i?t?r?b?s?d?c?o?k?c?a?g? ? ?r?g?a? ?i? ? ?f£?t?e?C?C?C? ?T? ?E?

/? ?e?i?t?r?a? ?f?s?t?0?0?22? ?r?m?C?C?a?e
217

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

1? ?22? ?x?0?8?(?1? ?/?1?a? ?P? ?C?C?L?R?G?r?g?s?e? ?n?t? ?2

0?1?t?,?t?,?0?21?0?/? ?e? ?h? ?E? ?L? ?A?I? ?i? ?n?t?e?C?C?C? ?T? ?E?

/? ?e?i?t?r?-?1?g?c?1?y?0? ?i? ? ?i?h?t? ?n? ?0?y
/? ?a?k?i?t? ?2? ?h?s?s?t? ?h? ?1?c? ?h?n?e?e?a?l?

S? ?2? ?x?0?8?(?1? ?/?s?0?e?n?w?v?1l?e?i? ?2?b?c? 20?t?e?C?C?C? ?T? ?e?

L?07?:

/? ?0?1?C?C?C?_?T? ?E? ?1?c? ?h?n?e?c?n?r?l?r?g?s?e? ?n?i? ?i?s?8?a?d?1l? ?r? ?o0°?.
1? ?2? ?x?0?87?(?1? ?/?r?a? ?0?t?n?s?0? ?P? ?C?C?L?R?G?1i?t? ?2

a?d? ?2? ?2? ?x?5?20?/? ?N? ?2?2a?d?0?0?07?,?c?p? ?e?u?t?i?t? ?2

b?e?t?,?r?,?1?20? ?/?1?0? ?n?i? ?i?s?8?a?d?1l? ?r? ?20?,?1i?d?c?t?n? ?

/? ?u?c?s?f?l?c?0?k?c?a?g?

N?p

9.6.6.2 Clock Change Delay

The CPC_CC_CTL_REGCC_DELAY field in bits 29:20 of the CPC Global Clock Control register is used
to optimize the amount of delay during a clock change. This can be done if all clock domain
ratios are low. For example, if all current clock ratios are less than 1:4 the value of the delay
could be reduced. The intent is that clock domain changes do not happen very often, so set-
ting the default of 80 clocks should not be a problem and leaving this value at its default
delay is recommended. This register could also be used to extend the state delay period if
desired.

9.6.7 CM Standalone Powerup

Normally, the CM is automatically powered-up if any core is powered-up. Conversely, the CM
is automatically powered-down if all cores are powered-down. The 18500 allows for the CM to
be powered-up even if no core is powered-up. This is useful for system debug/setup via the
DBU.

9.6.7.1 Register Interface

This functionality is controlled by the CPC Global Power Up register (CPC_PWRUP_CTL_REG)
located at offset address 0x0030.

The DBU may execute a one-time power-up of the CM by writing a 1 to this register. If the
CM is not operational at the time this bit is set by the DBU, it will transition from its current
state to an operational state. If the CM is already operational, setting this bit has no meaning
and the register write is ignored.

9.6.8 Reset Detection

The CM provides a series of read-only bits that allow the programmer to determine when a
given device connected to the CM has been reset, including the CPC itself. Whenever a device
is reset, the corresponding bit of the CPC Global Reset Occurred register (CPC_ROCC_CTL_REG)
at offset 0x0040 is set. Refer to the I8500 Registers companion document included in the
release for more information on this register.

In addition to the reset detection, this register also contains a 2-bit field (RESET_CAUSE)
that indicates the type of reset for the CPC block. Reset options are cold reset, external warm
reset, and watchdog timer reset. The functionality of this register is shown in Figure 9.4.

\}\<M I PS Copyrig?tirg;z);nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Figure 9.4 Reset Detection in the 18500 Multiprocessing System
CPC Global Reset Occurred Register

63 31 30 29 17 16 5 4 3 2 10

CPC Reset «———
Cause of CPC Reset =
DBU Reset =
CM Reset =
CORES5 Reset =
CORE4 Reset =

CORE3 Reset
CORE2 Reset

CORE1 Reset
COREDOQ Reset =

A

A

A

9.6.9 VP Run/Suspend

Three registers are used to control the power state of each hart in the system. The I8500
Multiprocessing system supports up to four hart’s per core, and up to six cores per system.
Each of these registers is instantiated per core.

Three registers are used to control this functionality:
e VP Run register (WO)

e VP Stop register (WO)

e VP Running register (RO)

Register Interface

The VP Run register is a Write-only register used to set each hart to the run state. The vPRun
register contains a 2-bit field, where each bit is dedicated to a particular hart, up to two per
core. Prior to setting one of these bits, kernel software must ensure that the hart in question
is not already running by reading the corresponding bit in the VP Running register. If a given bit
in the VP Running register is cleared, setting the corresponding bit in the Hart Run register
places the hart in the run state. If a given bit in the VP Running register is already set, setting
the corresponding bit in the VP Run register has no meaning. The value in this register is reset
whenever the associated core is reset. The VP Run register can also be cleared by hardware,
as well as the Debug unit.

The VP Stop register is a write-only register used to stop a hart. If a given bit in the Hart Running
register is set, setting the corresponding bit in the VP Stop register places the hart in the sus-
pend state. Writing a 0 to any of the bits in the VP Stop register has no effect.

The VP Running register is a read-only register that indicates the run state of each hartin a
given core. These bits are set and cleared by hardware based on the programming of the vP
Run and VP Stop registers by kernel software as described above.

Note that for each of these registers, the two hart’s correspond to the register bits as follows:
e Bit 0 = HartO
e Bit1l = Hartl

\}\<M I PS Copyrigr::g;z);rrz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

For example, to set hart2 of a given core to the Run state, kernel software would do the fol-
lowing,

1. Read bit 2 of the VP Running register. If this bit is already set, hart2 is already running and no action
need be taken.

2. If bit 2 of the VP Running register is cleared, indicating that hart2 is in the Suspend state, kernel soft-
ware sets bit 2 of the Hart Run register to set hart2 to the Run state.

To set hart2 of a given core to the Suspend state, kernel software would do the following,

1. Read bit 2 of the VP Running register. If this bit is already cleared, hart2 is already in the Suspend state
and no action need be taken.

2. If bit 2 of the VP Running register is set, indicating that hart2 is in the Run state, kernel software sets bit
2 of the VP Stop register to set hart2 to the Suspend state.

9.6.10 Local RAM Deep Sleep / Shutdown and Wakeup Delay

The CM allows the local RAM’s within a given power domain (cores, CM, IOCU, etc) to be
placed into either Shutdown mode where the clocks are turned off, or Deep Sleep mode
where the clocks are running at a fraction of their normal frequency. This functionality is con-
trolled through the CPC Local RAM Sleep Control register (CPC _CL RAM_SLEEP) located at off-
set 0x1050 + 0x100 * CM/DBU/Core_num.

This register is instantiated per power domain, so each domain has the ability to power cycle
its own local RAM devices.

9.6.10.1 RAM Deep Sleep Mode

When bit 31 (RAM_DEEP_SLEEP_DISABLE) of the CPC_CL_RAM_SLEEP s cleared (logic '0’),
the RAM’s on the local device enter the Deep Sleep low power state when the CPC power
state for the device reaches the ClockOff state. In this state the clocks to the local RAM’s
within that power domain are running at a fraction of their normal frequency.

The CPC also provides a way to delay the transition from the deep sleep state to the run state
using bits 23:16 RAM_DEEP_SLEEP_WAKEUP_DELAY) of the CPC_CL_RAM_SLEEP register.
Once awoken, the CPC delays the transition to the run state by the value programmed into
this field in order to provide sufficient time for the RAMs to wake up from Deep Sleep. The
delay can range from 1 to 255 (0OxFF) clocks.

9.6.10.2 RAM Shut Down Mode

When bit 15 (RAM_SHUT_DOWN_DISABLE) of the CPC_CL_RAM_SLEEP s cleared (logic ‘0"),
the RAM’s on the local device enter the Shutdown low power state when the CPC power state
for the device reaches the PwrDwn state. In this state the clocks to the local RAM’s within
that power domain are off. The RAM’s remain in the Shutdown low power state even if the
CPC power state changes to CIkOff without transitioning to the operational state.

The CPC also provides a way to delay the transition from the shutdown state to the run state
using bits 7:0 RAM_SHUT_DOWN_WAKEUP_DELAY) of the CPC_CL_RAM_SLEEP register. Once
awoken, the CPC delays the transition to the run state by the value programmed into this
field in order to provide sufficient time for the RAMs to wake up from the Shut Down state.
The delay can range from 1 to 255 (0OxFF) clocks.

220

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
9.6.11 Accessing the CPC Registers in Another Power Domain

Each power domain shown in Figure 9.1 contains its own set of CPC Core-Local and Core-
Other registers. This allows master devices such as a core or IOCU to access these registers
to modify the power parameters for a given domain. This is accomplished by writing to regis-
ters within the CM address space using the Core number and the hart nhumber of the device
to be accessed.

For more information on accessing the CPC registers of another core or hart, refer to the sec-

tion on Core-Local and Core-Other Register usage in the CM Programming chapter of this
manual.

9.6.12 Fine Tuning Internal and External Signal Delays

This section describes those register fields that can be used to delay the assertion of external
signals relative to one another, as well as the internal domain sequencer state machine.
These registers are used to help accommodate a wide variety of timing constraints in the
system. Signals can be lengthened or shortened accordingly in order to meet system timing.

9.6.12.1 Global Sequence Delay Count

The Sequence Delay register (CPC_SEQDEL_REG) located at offset 0x0008 in the CPC Global
Control Block, contains a 10-bit MICROSTEP field that describes the number of clock cycles
each domain sequencer state machine will take to advance to the next state.

The 10-bit MICROSTEP field contains a default value of 0x002, indicating a 2-cycle delay.
However, should additional delay be required based on the system implementation, this reg-
ister provides the programmer with the ability to increase the sequence delay as necessary.

Domain sequencing begins once the RAILDELAY field has counted down to zero. Refer to the
section entitled Rail Delay for more information.

The 10-bit MICROSTEP field is encoded as follows:

Table 9.6 Encoding of MICROSTEP Field

Encoding Description
0x000 1-cycle delay
0x001 2-cycle delay
0x002 3-cycle delay
0x003 4-cycle delay
0x004 5-cycle delay
0x3FD 1022-cycle delay
Ox3FE 1023-cycle delay
Ox3FF 1024-cycle delay

9.6.12.2 Rail Delay

The Rail Delay register (CPC_RAIL_REG) located at offset 0x010 in the CPC Global Register
Block contains a 10-bit counter field (RAILDELAY) used to schedule delayed start of power

domain sequencing after the RailEnable! signal has been activated by the CPC. This allows the
CPC to compensate for slew rates at the gated rail.

\}\<M I PS Copyrigr::g;z)zr:;

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

The 10-bit counter value (RAILDELAY) delays the power-up sequence per domain. The power-
up sequence starts after RAILDELAY has been loaded into the internal counter and a count-
down to zero has concluded. At IP configuration time, the contents of the CPC_RAIL_REG reg-
ister are preset. However, for fine tuning, the register can be written at run time.

The 10-bit RAILDELAY field is encoded as follows:

Table 9.7 Encoding of RAILDELAY Field

Encoding Description
0x000 1-cycle delay
0x001 2-cycle delay
0x002 3-cycle delay
0x003 4-cycle delay
0x004 5-cycle delay
Ox3FD 1022-cycle delay
Ox3FE 1023-cycle delay
Ox3FF 1024-cycle delay

The default value for this register has been determined by MIPS as the value that should
work in the majority of system implementations. As such, this value should not need to be
changed. However, should a problem arise where additional delay is required in order to
meet system timing, this register provides the programmer with the ability to increase the
delay as necessary.

For more information on how this counter is used, refer to the Global Sequence Delay Count
section in the System Integration chapter of the I8500 Integrator’s Guide for more informa-
tion.

9.6.12.3 Reset Delay

During the power-up sequence, reset is applied. Typically, reset is active until the domain
responds by asserting the internal Reset Hold signal. However, the Global Reset Width Counter
register (CPC_RESETLEN_REG) at offset 0x0018 allows reset to be extended beyond the asser-
tion of Reset Hold. A series of down-counters are used to delay various reset pins used to boot
the CM as described in the following subsections.

The default value for this register has been determined by MIPS as the value that should
work in the majority of system implementations. As such, this value should not need to be
changed. However, should a problem arise where additional delay is required in order to
meet system timing, this register provides the programmer with the ability to increase the
delay as necessary.

For more information on these counters and the corresponding hardware signals that can be
delayed, refer to the Reset Delay section in the 18500 Integrator’s Guide for more informa-
tion.

1. This signal is shown only for illustration purposes. Refer to the /8500 Integrator’s Guide for the exact name and usage of this
signal.

\}\<M I PS Copyrigr::g;z)zrrz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Programming the Global Reset Width Counter Register (RESETLEN)

The RESETLEN down counter is used to extend the various reset signals using bits 9:0 of the
CPC Global Reset Width Counter Register (CPC_RESETLEN_REG) at offset 0x0018. This register
field is programmed with a delay value between 1 and 1024 clock cycles as shown in Table
9.8.

Table 9.8 Encoding of the RESETLEN Field

Encoding Description
0x000 1-cycle delay
0x001 2-cycle delay
0x002 3-cycle delay
0x003 4-cycle delay
0x004 5-cycle delay
O0x3FD 1022-cycle delay
Ox3FE 1023-cycle delay
Ox3FF 1024-cycle delay

Programming the Global Reset Release Register — Core Reset Release (RESREL1)

The output of the RESETLEN counter described above is used to load a secondary internal
counter with the value programmed into the RES_REL_LEN field of the CPC Global Reset
Release Register (CPC_RES REL_REG) located at offset 0x0038. This register is used to deter-
mine the amount of delay between the time the configuration signals are stable at the
respective core(s), and the time that the core reset is released.

Bits 9:0 of this register (RES_REL_LEN) are programmed with a delay value between 1 and
1024 clock cycles. The encoding of this field is identical to the RESETLEN field shown in Table

9.8. Once this counter reaches 0, the Domain_Reset_n2 signal is deasserted to the core(s),
allowing them to come out of reset.

Programming the Global Reset Release Register — Domain Ready (RESREL2)

The output of the RESREL1 counter is used to load a third internal counter (RESREL2) with
the value programmed into the RES_REL_LEN field of the CPC Global Reset Release Register
(CPC_RES_REL_REG) located at offset 0x0038. This register is used to determine the amount
of delay between the time the Domain_Reset_n signal is deasserted, and the deassertion of the
Domain_Ready signal, indicating that the core is ready to begin execution. Note that the same
register field (RES_REL_LEN) of the CPC_RES_REL _REG register is used to load both the RES-
REL1 and RESREL2 counters.

The third internal counter (RESREL2) requires that the RESREL1 counter has reached zero
before counting can begin. Once the RESREL2 counter reaches 0, the Domain_Ready signal is
asserted to the core(s), allowing the core to begin execution.

2. This signal is shown only for illustration purposes. Refer to the Global Sequence Delay Count section of the I8500 Integra-
tor’s Guide for more information on the usage of this signal.

223

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

For more information on how these counters are loaded and the signals affected once the
counts reach zero, refer to the Global Sequence Delay Count section in the System Integra-
tion chapter of the I8500 Integrator’s Guide.

224

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

Chapter 10

Interrupt Controller

The Interrupt Controller processes internal and external interrupts in the I8500 Multiprocess-
ing System and is part of the Coherency Manager (CM3.7). It supports up to 511 external
interrupts (configurable in multiples of 8), which are prioritized and routed to the selected
hart for servicing.

The interrupt priority and routing are programmed via memory-mapped registers. The inter-
rupt controller also implements per-hart timer and software interrupts, non-maskable inter-
rupt routing and watchdog timers. The Interrupt Controller is compatible with the RISC-V
Advanced Interrupt Architecture (AIA) specification.

10.1 Features

e AIA.w (Wired interrupt portion) of Advanced Platform Level Interrupt controller (APLIC)
- Configurable - can add binary multiples up to 512 (i.e., 8/16/32/64/128/256/512)
- Two privilege domains - Machine and Supervisor
— MIPS Custom - Non Maskable Interrupt
e Advanced Core Level Interrupt Controller (ACLINT)
- Machine-domain Software interrupt (IPI feature)
- Supervisor-domain Software Interrupt (IPI feature)
- Machine Timer (MTIME)
e Watch Dog Timer
- RISC-V compliant
- Interrupt, NMI or Reset
— MIPS Custom - Periodic Interrupt
— MIPS Custom - Pulse signal
e Custom
- Custom implemented NMI
— Custom implementation of Watch Dog Timer interrupts

\}\<M I PS Copyrig':tirg.zcz)zé

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.2 Overview

The MIPS Interrupt Controller implements the following components defined by the RISC-V
architecture:

e Advanced Platform-Level Interrupt Controller (APLIC)

e Advanced Core Local Interrupt (ACLINT) Machine-level Timer
e ACLINT Machine-level Software Interrupt (MSWI)

e ACLINT Supervisor-level Software Interrupt (SSWI)

e Watchdog Timer (WDT)

The APLIC implementation also contains various custom features, including non-maskable
interrupt (NMI) generation from Machine-domain interrupt sources. The APLIC portion of the
MIPS Interrupt Controller implements the wired interrupts portion of the RISC-V AIA APLIC.
This version of the MIPS Interrupt Controller does NOT support Message Signaled Interrupts
(MSI).

The ACLINT implements three major functions: Machine Timers (MTIMER), Machine-Level
Software Interrupts (MSWI), and Supervisor Level Software Interrupts (SSWI).

The WDT is the third component of the Interrupt Controller and provides generation of
watchdog timer interrupts based upon the RISC-V watchdog timer specification. The MIPS
WDT has also implemented custom "periodic interrupt" and "pulse signal" generation func-
tionalities.

In addition to the standard components, the Interrupt Controller implements custom exten-
sions to support Non-Maskable Interrupt (NMI) routing, timer synchronization, and Watchdog
Timer (WDT) configuration.

Note that interrupt events defined as "local" by the RISC-V ISA (such as Local Count Over-
flow Interrupts and Bus Error Interrupts) are handled internally by the CPU core, and do not
involve the Interrupt Controller.

The Interrupt Controller does not implement the RISC-V IMSIC component or the CPU/hart
CSRs defined by the RISC-V AIA extension. Consequently, hardware virtualization of inter-
rupts is not supported and delivery of interrupts to virtual guests requires software interven-
tion.

Each of these block is described in more detail in the following sections.

10.2.1 Block Diagram

Each cluster in the P8700 Multiprocessing System instantiates an Interrupt Controller block,
as shown in Figure 10.1. It is generally preferable that SoC designs connect the same set of
interrupt sources to the APLIC interrupt inputs of all clusters in parallel to give software a
uniform view of the hardware state across all clusters. However, it is also possible for the SoC
design to statically partition the hardware interrupt sources between clusters to suit a spe-
cific application.

The memory-mapped registers in the Interrupt Controller are accessible to all clusters in the
MPS. This enables software to program a software interrupt as an inter-processor interrupt
(IPI) on a remote cluster by writing to the ACLINT registers of the target cluster.

\}\<M I PS Copyrigr:tiF();.Zcz)sz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

: . _ AlA L interrupts
8 ACLINT Timer [-

i Timer

_ MSE
] 38
] MEL
SE
T

OCP from CMBIU

Yy

vy Vv

Local
interrupts

o

Priority

50C Interrupt Wires

o
[
m

yvYYy

Figure 10.1 Interrupt Controller Block Diagram

This chapter describes how to program the various elements of the interrupt controller using
both register examples and code examples. Some of these elements include register layout
and distribution, determining the number of external interrupts, configuring individual inter-
rupt sources, scheduling timer interrupts and signaling inter-processor interrupts.

10.2.2 Interrupt Controller Domains

External Interrupt handling can be divided into multiple domains, where each domain has its
own memory mapped control registers. The MIPS AIA has two domains;

e Machine mode
e Supervisor mode

Hierarchically, the interrupts are sent to a receiving domain, referred to as the root domain.
The root domain determines whether the interrupt should be handled by the root domain
itself, or whether it should be delegated to a child domain. In the MIPS AIA, the root domain
is always the Machine domain, and the Supervisor domain is the only child domain in the
design.

A Non-Maskable Interrupt (NMI) output generation has been implemented as a custom fea-
ture in the MIPS AIA. This interrupt drives the NMI pin which is exclusive to the Machine
domain. The Supervisor domain does not handle NMlIs.

10.2.3 Interrupt Priority Rules

The following rules determine interrupt priority among competing sources:

e The minimum priority number for an active interrupt source is 1. Zero is not a legal prior-
ity number for an interrupt source.

e A smaller priority number indicates higher priority. For example, if two interrupts for a
given hart have priority numbers 3 and 4 respectively, then the interrupt with priority
number 3 has higher priority than the interrupt with priority number 4.

227

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

e When multiple interrupts have the same priority humber, then the interrupt with the low-
est identity number automatically gets higher priority.

10.2.4 Interrupt Pending and Clearing Rules

This section details the interrupt pending set and clear rules for each of the interrupt source
modes.

e If Source Mode is Detached:
- Pending bit is set to 1 by a relevant write to a setip or setipnum register

- Pending bit is cleared when the interrupt is claimed at the APLIC, or by a relevant write
to a in_clrip or clripnum register

e If Source Mode is Edge0O/Edgel:

- Pending bit is set to 1 by low-to-high transition in the rectified interrupt value, or by a
relevant write to a setip or setipnum register

- Pending bit is cleared when the interrupt is claimed at the APLIC, or by a relevant write
to a in_clrip or clripnum register

e If Source Mode is LevelO/Levell and interrupt domain in Direct Delivery Mode
(domaincf.DM=0):

- Pending bit is set to 1 whenever the rectified interrupt input value is high. Pending bit
cannot be set by a write to a setip or setipnum register.

- Pending bit is cleared whenever the rectified interrupt input value is low. Pending bit
cannot be cleared by a write to a in_clrip or clripnum register, and it is not cleared by a
claimi of the interrupt at the APLIC.

e If Source Mode is LevelO/Levell and interrupt domain in MSI Mode (domaincf.DM=1):
- MSI mode handling is currently NOT implemented in the MIPS AIA.

10.3 Advanced Platform Level Interrupt Controller (APLIC)

The APLIC is responsible for detecting hardware interrupt events from the SoC, prioritizing
them and routing them to the assigned hart for servicing. It supports up to 512 interrupt
inputs (configurable in increments of 8), although 3 interrupt inputs are reserved for inter-
rupt events originating within the cluster and are not available for external use. Interrupt
inputs can be individually programmed to support rising-edge-sensitive, falling-edge-sensi-
tive, high-level-sensitive or low-level-sensitive interrupt signaling. Each of these interrupt
sources is configured and prioritized, and filtering is performed such that the interrupt source
with the highest priority is sent to the HART.

10.3.1 Slice-based Design

The actual number of interrupt sources that a given configuration of the MIPS APLIC will han-
dle can be set, on a per-instance basis, in multiples of 8. This is achieved by using a "slice"
based design, where each slice can handle 8 interrupt sources. The number of "slices" instan-
tiated is defined as a parameter, with the design supporting any number of "slices" between
[1, 64].

Depending on configuration, APLIC interrupts can be "internally generated" by software
writes, even if an external interrupt number corresponding to a non-triggered input is
assigned to it. This behavior is described in the setip register description later in this docu-
ment.

\}\<M I PS Copyrigr:tiF();.Zcz)znz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

The APLIC is automatically configured to the number of harts in the cluster, and the APLIC
hart index is given by the concatenation of the CORENUM and HARTNUM fields of the mhartid
CSR.

10.3.2 Interrupt Controller APLIC Domains

The APLIC supports two interrupt domains; a Machine-level domain and a Supervisor-level

domain. Both domains are associated with all harts in the cluster, allowing interrupts to be

signaled as either Machine External Interrupts (MEI) or Supervisor External Interrupts (SEI).
Interrupts are signaled to a hart in "direct delivery mode".

Generation of non-maskable interrupts (NMI) is a custom feature implemented in the MIPS
APLIC. Any pending machine-domain interrupt can be optionally sent as an NMI. The super-
visor-domain does not contain support for the NMI feature. The generation of NMIs from
interrupt sources is controlled by custom registers within the APLIC. NMI generation is not a
part of the RISC-V AIA standard specification.

Mapping of interrupts to harts is accomplished by use of the following custom memory-
mapped registers: snmie, setnmienum, clrnmie and clrnmienum (analogous to the standard
setie, setienum, clrie and clrienum registers, respectively). If nmie[k] is 1 and interrupt
enable bit k (from the setie/clrie registers) is zero, interrupt source k will be treated as an
NMI.

In this case, when interrupt source k is asserted, an NMI will be signaled to the hart selected
by target[k].HartIndex, and target[k].IPRIO will be ignored. This is only applicable to inter-
rupts at the root (M-Mode) APLIC domain; interrupts delegated to a child (S-Mode) APLIC
domain are not available for use as NMI.

10.4 Advanced Platform Level Interrupt Controller (ACLINT)

The Advanced Core-Level Interrupt Controller (ACLINT) provides inter-processor interrupts
(IPIs) and timer functionalities to each HART. The ACLINT is divided into three component
devices: the Machine-level Timer (MTIMER), Machine-level Software Interrupter (MSWI), and
the Supervisor-level Software Interrupter (SSWI) that provide timer interrupts and software/
inter-processor interrupts to the harts in the cluster. Each of these functionalities is described
in the corresponding section below:

10.4.1 mtime and mtimecmp

The MTIMER device implements the mtime and mtimecmp memory-mapped registers and
associated Machine Timer Interrupt (MTI) functionality defined by the RISC-V Privileged
Architecture. A single mtime register serves the entire cluster, while each hart has its own
dedicated mtimecmp register.

Although it is conceptually part of the ACLINT, the mtime register is physically located in the
the always-on power domain of the CPC block to avoid the need to resynchronize the timer
with other clusters when a cluster is powered up while the overall system is running. The
mtime register is located in the CPC section of the cluster register map.

The mtime register is driven by a dedicated reference clock (si_mtime_clk); the recom-
mended frequency is 100 MHz.

A machine-level timer interrupt is considered pending whenever the value of mtime is equal
to or greater than the value of mtimecmp for the corresponding HART. A machine-level timer
interrupt is considered cleared whenever the value of mtime is less than the value of
mtimecmp for the corresponding HART.

\}\<M I PS Copyrigr::g;z)z

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

In addition to the standard MTIMER functionality, the P8700-F APLIC implements a custom
control register (MTIMECTL) that allows the timer to be stopped and synchronizing the mtime
counters in multiple clusters more precisely than a pure software synchronization algorithm.

10.4.2 mtime Synchronization

The mtime synchronization procedure is as follows:

1. Software should write 1 to the MTIMECTL.STOP register bit in all clusters to be synchro-
nized.

2. Software should write the desired starting count value (e.g. zero) to the mtime register of
all clusters to be synchronized.

3. SoC logic outside of the MPS (presumably under software control) should simultaneously
assert the cpc_mtime_start signal to all clusters to be synchronized. This will clear the
STOP bit and restart all the counters at the same time.

10.4.3 Machine Level Software Interrupts (MSWI)

The MSWI device provides machine-level inter-processor interrupt (IPI) functionality for a set
of HARTs on a RISC-V platform . A RISC-V platform can have multiple MSWI devices when
the MSWI devices provide functionality for disjoint sets of HARTs. In the Shogun implementa-
tion, there is a single MSWI device which provides IPI functionality to all HARTSs.

A 32-bit WARL register known as msip is provided for each HART connected to the MSWI
device, where the upper 31 bits are wired to 0. A machine-level software interrupt is trig-
gered or cleared by writing 1 or 0 to the corresponding msip register.

10.4.4 Supervisor Level Software Interrupts (SWSI)

The SSWI device provides supervisor-level IPI functionality for a set of HARTs on a RISC-V
platform. In the Shogun implementation, there is a single SSWI device which provides IPI
functionality to all HARTs.

A 32-bit WARL register known as setssip is provided for each HART connected to the SWSI
device, where the upper 31 bits are wired to 0. A read to the setssip register always returns
0. Writing 1 to the setssip register will trigger an edge-sensitive interrupt signal to the corre-
sponding HART. Writing 0 to the setssip register has no effect.

10.5 Watchdog Timer

The MIPS Watchdog Timer (WDT) provides a two-stage timer controller for a set of HARTs in
a cluster. The function of the watchdog timer is to wait for a specific period of time, controlled
in software by the wtocnt field of the wdcsr register corresponding to a particular HART. The
expectation is that system software will reset or re-initialize the timer value for this HART, by
writing to the corresponding wdcsr register again, before the specific period of time set from
the initial write elapses. If the timer countdown elapses without software intervention occur-
ring, a watchdog timer interrupt event is produced for that HART.

10.5.1 Features

The watchdog timer has the following features:
e Two-stage counter

\}\<M I PS Copyrigr:tiF();.Zcz)z'E

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

e Output for each timeout event can be configured separately as follows:
- Interrupt
- NMI
- Reset
- SoC output
e Periodic timer interrupt capability

e Clocked from cm_clock, but count gets updated on mtime value

10.5.2 Watchdog Time Stages

The MIPS WDT has two stages. After the first WDT timer countdown completion event, a
"first-stage watchdog timeout" event output is generated, with a corresponding bit field
slwto being set in the wdcsr register. If the WDT timer is then able to complete a second
timer countdown, then a "second-stage watchdog timeout" event output is generated, with a
corresponding bit field s2wto being set in the wdcsr register.

10.5.3 Watchdog Timer Register Interface

The WDT consists of two registers; the WDCSR register (as defined in the RISC-V watchdog
timer specification) and a custom configuration register (WDTCFG). The WDTCFG register
controls the count-down frequency and selects the event to be triggered on Stage-1 and

Stage-2 timeouts. These registers are instantiated on a per-hart basis, with a maximum of
1024 harts currently supported.

10.5.4 NMI Support

The MIPS WDT has custom support for controlling the watchdog timer frequency by allowing
the selection of the mtime counter bit to reference when counting. The MIPS WDT also sup-
ports the generation of a non-maskable interrupt (NMI) output by allowing the selection of
different event actions for each WDT stage timeout. As an additional custom feature, the
MIPS WDT interrupt can be configured to produce an "interval timer" using the "first-stage

watchdog timeout" under a special mode. These custom features are controlled by the MIPS-
custom wdcfg register.

10.5.5 Timeout Events

The available timeout events are:

Signal an interrupt to the associated hart
2. Signal an NMI to the associated hart

Assert a per-cluster signal to the external SoC logic. This signal could be routed to SoC-
level monitoring logic or to an interrupt input of another cluster.

4. Reset the cluster

\}\<M I PS Copyrig':tirg.zcz):é

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.6 Interrupt Controller Register Address Map

Table 10.1 shows a typical address mapping with respect to GCR_BASE register.

Table 10.1: Interrupt Controller Register Map

Address Offset from Block Subblock | Privilege
GCR_BASE Block | Size (K) SubBlock Size (K) (typ) Note
0004_0000 0005_FFFF AIA.M 128 APLIC.M 48 M
APLIC.Custom 4 M Custom NMI control
Reserved 12 M
ACLINT.M 48 M
ACLINT.Custom 8 M WatchDog Timer
0006_0000 0006_FFFF AIA.S 64 APLIC.S 48 S
ACLINT.S 16 S

10.7 ACLINT Memory Mapped Registers

10.7.1 ACLINT Machine Mode Memory Map

The ACLINT machine mode memory mapped registers start at offset 0x50000 from
GCR_BASE, and use the register definitions specified in the RISC-V Advanced Core Local
Interruptor Specification. Registers for the RISC-V Watchdog Timer Specification are also
included in the ACLINT machine mode region.

The ACLINT machine mode region contains the following registers, which are described in
detail in the subsequent per-register description pages:

Table 10.2: ACLINT Machine Mode Memory Mapped Registers

Offset from
GCR_BASE Register Block Name Description

0x50000 ACLINT.MSIP[0-4094] Per-hart machine software interrupt pending
0x50004

Ox53FF8

0x54000 ACLINT.MTIMECMP[0-4094] Per-hart mtime compare
0x54008

0x5BFFO0

0x5C000 ACLINT.WDCFG[0-1023] MIPS Technologies custom per-hart watchdog configu-
0x5C004 ration

0x5CFFC

0x5D000 ACLINT.WDCSR][0-1023] Per-hart watchdog configuration and status
0x5D004

0x5DFFC

232

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

31

10.7.1.1 ACLINT Machine Software Interrupt Pending (MSIP[0-4094]) Register (offset = see below)

This register is a machine software interrupt pending register. A machine software interrupt
is asserted on hart mhartid when MSIP[mhartid[11:0]] is set to 1.

The MSIP register for hart mhartid is accessed at GCR_BASE + 0x50000 + 4 * mhar-
tid[11:0].

Each MSIP register resets to 0, and the upper 31 bits are readonly, zero. MSIP registers for
which there is no corresponding hart in the cluster are readonly, zero.

Offset: GCR_BASE + 0x50000, 0x50004, ... Ox53FF8

Figure 10.2 Machine Software Interrupt Pending Register Bit Assignments

1 0
0 MSIP
Table 10.3: Machine Software Interrupt Pending Register Bit Descriptions
Name Bits Description R/W Reset State
0 31:1 Reserved. R 0
MSIP 0 Machine software interrupt pending register. R 0

63

10.7.1.2 ACLINT Machine Time Compare (MTIMECMP[0-4094]) Register (offset = see below)

This register is a machine time compare register. A machine timer interrupt is asserted on
hart mhartid when CPC.Global.MTIME_REG > = ACLINT.MTIMECMP[mhartid[11:0]].

The MTIMECMP register for hart mhartid is accessed at GCR_BASE + 0x54000 + 4 * mhar-
tid[11:0].

The architectural reset value of MTIMECMP is undefined. On MIPS Technologies implementa-
tions we reset it to all 1's.

Offset: GCR_BASE + 0x54000, 0x54008, ... 0Ox5BFFO

Figure 10.3 Machine Time Compare Register Bit Assignments

MTIMECMP

Table 10.4: Machine Time Compare Register Bit Descriptions

Name Bits Description R/W Reset State

MTIMECMP 63:0 Machine time compare register. R 0

10.7.1.3 ACLINT WatchDog ConFiG (WDCFG[0-1023]) Register (offset = see below)

The WDCFG register for hart mhartid is accessed at GCR_BASE + 0x5c000 + 4 * mhar-
tid[11:0]. WDCFG registers for which there is no corresponding hart in the cluster are
readonly, zero.

When the watchdog timer is configured to signal an interrupt, it will be signaled to the hart
on bit 25 of the mip CSR.

\}\<M I PS Copyrigr::g;z):rrz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Offset: GCR_BASE + 0x5c000, 0x5c004, ... Ox5CFFC

Figure 10.4 WatchDog ConFiG Register Bit Assignments

31 10 9 8 7 4 3 0
0 WDFRQ S2Event S1Event
Table 10.5: WatchDog ConFiG Register Bit Descriptions
Name Bits Description R/W Reset State
0 31:10 |Reserved R 0
WDFRQ 9:8 WDT count-down frequency: counter decrements when R/W 0
bit 8 * (WDFRQ + 1) of CPC.Global. MTIME_REG transi-
tions from 0 to 1.
S2Event 74 Event to trigger on Stage-2 timeout R/W 0
Encoding 0: Alias = Interrupt, Meaning assert interrupt via
APLIC
Encoding 1: Alias = NMI, Meaning assert NMI
Encoding 2: Alias = Reset, Meaning assert Reset
Encoding 3: Alias = TopLevel, Meaning assert top-level
pin to SoC logic
S1Event 3:0 Event to trigger on Stage-1 timeout. R/W 0
When S1Event is set to 4, the WDT will behave as an
interval timer. When the counter reaches zero, an inter-
rupt will be signaled and the counter will be reinitialized to
WDCSR.WTOCNT but the WDCSR.S1WTO bit will not
be set. In this mode, the WDT will periodically signal the
stage-1 interrupt at a fixed interval, and never signal the
stage-2 event.
Encoding 0: Alias = Interrupt, Meaning assert interrupt via
APLIC
Encoding 1: Alias = NMI , Meaning assert NMI
Encoding 2: Alias = Reset , Meaning reset
Encoding 3: Alias = TopLevel, Meaning top-level pin to
SoC logic
Encoding 4: Alias = IntervalTimer, Meaning Interrupt Inter-
val Timer
\{k . 234
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.7.1.4 ACLINT WatchDog Control and Status (WDCSR[0-1023]) Register (offset = see below)

The WDCSR register for hart mhartid is accessed at GCR_BASE + 0x5d000 + 4 * mhar-
tid[11:0]. WDCSR registers for which there is no corresponding hart in the cluster are

readonly, zero.

Offset: GCR_BASE + 0x5D000, 0x5D004, ... 0x5DFFC

Figure 10.5 WatchDog Control and Status Register Bit Assignments

31 14 13 4 3 1 0
0 WTOCNT S2WTO | S1WTO 0 Enable
Table 10.6: WatchDog Control and Status Register Bit Descriptions
Name Bits Description R/W Reset State
0 31:14 | Reserved R 0
WTOCNT 13:4 | Watchdog timer out count. Writes to WDCSR and stage-1 R/W Undefined
timeouts cause a timeout counter to be initialized to
WTOCNT.
S2WTO 3 Stage-2 watchdog timeout has occurred. Set when time- R/W Undefined
out counter is zero and STWTO = 1 (unless
WDCFG.S1Event = 4)
S1WTO 2 Stage-1 watchdog timeout has occurred. Set when time- R/W Undefined
out counter is zero.
0 Reserved R
Enable 0 Enable watchdog timer. R/W
\{k . 235
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.7.2 ACLINT Supervisor Mode Memory Map

The ACLINT supervisor mode memory mapped registers start at offset 0x6C000 from
GCR_BASE, and use the register definitions specified in the RISC-V Advanced Core Local
Interruptor Specification.

The ACLINT supervisor mode region contains the following registers, which are described in
detail in the subsequent per-register description pages:

Table 10.7: ACLINT Supervisor Mode Memory Mapped Registers

Offset from GCR_BASE

Register Block Name

Description

0x6C000
0x6C004

Ox6FFF8

ACLINT.SETSSIP[0-4094]

Per-hart set supervisor software interrupt pending

SMIPS

a GlobalFoundries company

236

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.7.2.1 ACLINT SET Supervisor Software Interrupt Pending (SETSSIP[0-4094]) Register (offset = see
below)

This register set supervisor software interrupt pending register. A supervisor software inter-
rupt is asserted on hart mhartid when SETSSIP[mhartid[11:0]] is written to 1. The SETSSIP
register ignores writes of zero and always reads as zero.

The SETSSIP register for hart mhartid is accessed at GCR_BASE + 0x6c000 + 4 * mhar-

tid[11:0]. SETSSIP registers for which there is no corresponding hart in the cluster are
readonly, zero.

Offset: GCR_BASE + 0x6C000, 0x6C004, ... Ox6FFF8

Figure 10.6 SET Supervisor Software Interrupt Pending Register Bit Assignments

31 1 0

0 SETSSIP

Table 10.8: SET Supervisor Software Interrupt Pending Register Bit Descriptions

Name Bits Description R/W Reset State
0 31:1 Reserved R 0
SETSSIP 0 Set supervisor software interrupt pending register R 0

SMIPS

Copyright © 2025
a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8 APLIC Memory Mapped Registers

10.8.1 APLIC Machine Domain Memory Map

The APLIC machine domain starts at offset 0x40000 from GCR_BASE, and uses the register
definitions and address offsets for an APLIC domain as specified in the RISC-V Advanced
Interrupt Architecture. The offsets and registers within the domain are identical to those for
the APLIC supervisor domain.

The APLIC machine domain contains the following registers, which are described in detail in
the subsequent per-register descriptions:

Table 10.9: APLIC Machine Domain Memory Mapped Registers

Offset from
GCR_BASE Register Block Name Description

0x40000 APLIC.M.domaincfg Machine domain configuration

0x40004 APLIC.M.sourcecfg[1-1023] Machine source configuration

0x40008

0x40FFC

0x41C00 APLIC.M.setip[0-31] Set machine interrupt pending by mask

0x41C04

0x41C7C

0x41CDC APLIC.M.setipnum Set machine interrupt pending by number

0x41D00 APLIC.M.in_clrip[0-31] Read machine source input or clear machine interrupt

0x41D04 pending by mask

0x41D7C

0x41DDC APLIC.M.clripnum Clear machine interrupt pending by number

0x41E00 APLIC.M.setie[0-31] Set machine interrupt enable by mask

0x41E04

0x41E7C

0x41EDC APLIC.M.setienum Set machine interrupt enable by number

0x41F00 APLIC.M.clrie[0-31] Clear machine interrupt enable by mask

0x41F04

0x41F7C

0x41FDC APLIC.M.clrienum Clear machine interrupt enable by number

0x42000 APLIC.M.setipnum_le Set supervisor interrupt pending by number, Little-
endian

0x42004 APLIC.M.setipnum_be Set supervisor interrupt pending by number, Big-
endian

0x43004 APLIC.M.target[1-1023] Specify target hart and priority for machine interrupt

0x43008 source

0x43FFC

\}\<M I PS Copyrig?igggg

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 10.9: APLIC Machine Domain Memory Mapped Registers(continued)

Offset from
GCR_BASE

Register Block Name

Description

0x44000
0x44020

0x4BFEOQ

APLIC.M.Hart[0-1023].idelivery

Enable machine interrupt delivery for hart

0x44004
0x44024

O0x4BFE4

APLIC.M.Hart[0-1023].iforce

Force machine interrupt for hart

0x44008
0x44028

Ox4BFES8

APLIC.M.Hart[0-1023].ithreshold

Specify machine interrupt priority threshold for hart

0x44018
0x44038

0x4BFF8

APLIC.M.Hart[0-1023].topi

Read top priority pending machine interrupt for hart

0x4401C
0x4403C

0x4BFFC

APLIC.M.Hart[0-1023].claimi

Claim top priority pending machine interrupt for hart

SMIPS

a GlobalFoundries company

239

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.2 APLIC Supervisor Domain Memory Map

The APLIC supervisor domain starts at offset 0x60000 from GCR_BASE, and uses the register
definitions and address offsets for an APLIC domain as specified in the RISC-V Advanced
Interrupt Architecture. The offsets and registers within the domain are identical to those for
the APLIC machine domain.

The APLIC supervisor domain contains the following registers, which are described in detail in
the subsequent per-register descriptions

Table 10.10: APLIC Supervisor Domain Memory Mapped Registers

Offset from
GCR_BASE Register Block Name Description
0x60000 APLIC.S.domaincfg Supervisor domain configuration
0x60004 APLIC.S.sourcecfg[1-1023] Supervisor source configuration
0x60008
0x60FFC
0x61C00 APLIC.S.setip[0-31] Set supervisor interrupt pending by mask
0x61C04
0x61C7C
0x61CDC APLIC.S.setipnum Set supervisor interrupt pending by number
0x61D00 APLIC.S.in_clrip[0-31] Read supervisor source input or clear supervisor inter-
0x61D04 rupt pending by mask
0x61D7C
0x61DDC APLIC.S.clripnum Clear supervisor interrupt pending by number
0x61E00 APLIC.S.setie[0-31] Set supervisor interrupt enable by mask
0x61E04
0x61E7C
0x61EDC APLIC.S.setienum Set supervisor interrupt enable by number
0x61F00 APLIC.S.clrie[0-31] Clear supervisor interrupt enable by mask
0x61F04
0x61F7C
0x61FDC APLIC.S.clrienum Clear supervisor interrupt enable by number
0x62000 APLIC.S.setipnum_le Set supervisor interrupt pending by number, Little-
endian
0x62004 APLIC.S.setipnum_be Set supervisor interrupt pending by number, Big-
endian
0x63004 APLIC.S.target[1-1023] Specify target hart and priority for supervisor interrupt
0x63008 source
0x63FFC
0x64000 APLIC.S.Hart[0-1023].idelivery Enable supervisor interrupt delivery for hart
0x64020
0x6BFEO
\{k . 240
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 10.10: APLIC Supervisor Domain Memory Mapped Registers (continued)

Offset from
GCR_BASE

Register Block Name

Description

0x64004
0x64024

Ox6BFE4

APLIC.S.Hart[0-1023].iforce

Force supervisor interrupt for hart

0x64008
0x64028

Ox6BFE8

APLIC.S.Hart[0-1023].ithreshold

Specify supervisor interrupt priority threshold for hart

0x64018
0x64038

Ox6BFF8

APLIC.S.Hart[0-1023].topi

Read top priority pending supervisor interrupt for hart

0x6401C
0x6403C

0x6BFFC

APLIC.S.Hart[0-1023].claimi

Claim top priority pending supervisor interrupt for hart

SMIPS

a GlobalFoundries company

241

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
10.8.3 APLIC Custom Memory Map

The APLIC custom region starts at offset 0x4c000 from GCR base, and contains the following
registers, which are described in more detail in the subsequent per-register descriptions

Table 10.11: APLIC Custom Memory Mapped Registers

Offset from GCR_BASE Register Block Name Description

0x4C000 APLIC.setnmie[0-31] Set NMI enabled bit by mask

0x4C004

0x4C07C

0x4CODC APLIC.setnmienum Set NMI enabled bit by number

0x4C100 APLIC.clrnmie[0-31] Clear NMI enabled bit by mask

0x4C104

0x4C17C

0x4C1DC APLIC.clrnmienum Clear NMI enabled bit by number

SMIPS

a GlobalFoundries company

242

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.1 APLIC Domain Configuration (DOMAINCFG) Register (offset = see below)

This register domain configuration register. per-domain register containing the APLIC

domain’s

configuration status.

Offset: APLIC + 0x00000
GCR_BASE + 0x40000 # APLIC.M
GCR_BASE + 0x60000 # APLIC.S

Figure 10.7 Domain Configuration Register Bit Assignments

31 30 9 8 7 3 2 1 0
1 0 IE 0 DM| 0 [BE
Table 10.12: Domain Configuration Register Bit Descriptions
Name Bits Description R/W Reset State
1 31 Allows current endianness to be identified by reading R 1
domaincfg.
0 30:9 Reserved R 0
IE 8 Interrupts Enabled for this domain? R/W 0
0 73 Reserved R 0
DM 2 Read only-0 when IMSIC not supported. R 0
Delivery Mode
Encoding 0: Alias = Direct, Meaning Direct delivery mode
Encoding 1: Alias = MSI, Meaning MSI delivery mode
0 1 Reserved R 0
BE 0 R/W if bi-endian support present, R otherwise. R/W Oiflittle-endian
When 1, writes to APLIC memory mapped registers are supported, 1
interpreted in big endian byte order. otherwise
\{k . 243
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.2 APLIC Source Configuration (SOURCECFG[1-1023]) Register (offset = see below)

This register source configuration register. Per domain, per-interrupt source read/write regis-
ters containing configuration status for each interrupt source in the APLIC domain.

The sourcecfg[i] register for source i is accessed at the APLIC domain base address + 4 * i.
Offset: APLIC + 0x00004, 0x00008, ... 0x00ffc

GCR_BASE + 0x40004, 0x40008, ... 0x40ffc # APLIC.M

GCR_BASE + 0x60004, 0x60008, ... 0x60ffc # APLIC.S

Figure 10.8 Source Configuration Register Bit Assignments
31 1 10 9 3 2 0

0 D CHILD_INDEX

0 SM

Table 10.13: Source Configuration Register Bit Descriptions

Name Bits Description R/W Reset State
0 31:1 Reserved R 0
D 10 Read/write in Machine domain, readonly 0 in Supervisor R/W 0
domain.

Is the Machine domain interrupt source delegated to the
Supervisor domain?

CHILD_INDEX 9:0 Target domain for delegated interrupts. Only one target R 0
domain (Supervisor, CHILD_INDEX = 0) is currently sup-
ported by MIPS Technologies implementations. These
bits are only used as CHILD_INDEX when sourcecfg.D =
1. When sourcecfg.D = 0, bits 2:0 are used as the SM
(source mode) bitfield.

SM 2:0 Source Mode. These bits are only used as SM when R/W 0
sourcecfg.D=0. When sourcecfg.D=1, bits 9:0 are used
as the CHILD_INDEX bitfield.

Encoding 0: Alias = Inactive, Meaning Inactive in this
domain (and not delegated)

Encoding 1: Alias = Detached, Meaning Active, detached
from the source wire

Encoding 4: Alias = Edge1, Meaning Active, edge-sensi-
tive, asserted on rising edge

Encoding 5: Alias = Edge0, Meaning Active, edge-sensi-
tive, asserted on falling edge

Encoding 6: Alias = Level1, Meaning Active, level-sensi-
tive, asserted when high

Encoding 7: Alias = Level0, Meaning Active, level-sensi-
tive, asserted when low

244

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.3 APLIC SET Interrupt Pending (SETIP[0-31]) Register (offset = see below)

This register set interrupt pending register. A write to the per-domain setip[i] register sets
the interrupt pending bit 32 * i + j for every bit position j which is 1 in the written value. A
read of setip[i] register returns a bitmask of those interrupt sources in the range [32i +

31:32i] for which the interrupt is pending.

Only interrupt sources which are active in the targeted APLIC domain can be read or written.

When the sourcecfg.SM field for the interrupt source is configured to be in LevelO or Levell
mode, the interrupt source is tied directly to the external interrupt input signal, and writes to
setip are ignored, while reads of setip return the rectified value of the external interrupt sig-

nal.

Offset: APLIC + 0x01c00, 0x01c04, ... 0x01c7c

GCR_BASE + 0x41c00, 0x41c04, ... 0x41c7c # APLIC.M
GCR_BASE + 0x61c00, 0x61c04, ... Ox61c7c # APLIC.S

31

Figure 10.9 SET Interrupt Pending Register Bit Assignments

SETIP

Table 10.14: SET Interrupt Pending Register Bit Descriptions

Name Bits Description R/W Reset State
SETIP 31:0 Set interrupt pending register. R/W 0
\{k . 245
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.4 APLIC Input/Clear Interrupt Pending (IN_CLRIP[0-31]) Register (offset = see below)

This register input/clear interrupt pending register. A write to the per-domain in_crlip[i] reg-
ister clears the interrupt pending bit 32 * i + j for every bit position j which is 1 in the written

value.

Only interrupt sources which are active in the targeted APLIC domain can be written. When
the sourcecfg.SM field for the interrupt source is configured to be in LevelO or Levell mode,
the interrupt source is tied directly to the external interrupt input signal and writes to in_clrip

are ignored.

A read of in_clrip[i] register returns a bitmask of the rectified input value for interrupt

sources in the range [32i + 31:32i], where the rectified input value is the input source value
if the interrupt is in Edgel or Levell mode, the inverted input source value if the interrupt is
in Edge0 or Level0 mode, or zero otherwise.

Offset: APLIC + 0x01d00, 0x01d04, ... 0x01d7c

GCR_BASE + 0x41d00, 0x41d04, ... 0x41d7c # APLIC.M
GCR_BASE + 0x61d00, 0x61d04, ... 0x61d7c # APLIC.S

Figure 10.10 Input/Clear Interrupt Pending Register Bit Assignments

31

IN_CLRIP

Table 10.15: Input/Clear Interrupt Pending Register Bit Descriptions
Name Bits Description R/W Reset State
IN_CLRIP 31:0 INput/CLeaR Interrupt Pending Register. R/W 0
\{k . 246
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.5 APLIC Set Interrupt-Pending Number (SETIPNUM) Register (offset = see below)

This register set interrupt-pending number register. On writes, set interrupt pending bit for
the num-bered interrupt source to 1. Only interrupt sources which are active in the targeted
APLIC domain and not configured as level sensitive can be written. Reads return zero.

Offset: APLIC + 0x01lcdc
GCR_BASE + 0x41cdc # APLIC.M
GCR_BASE + 0x61cdc # APLIC.S

Figure 10.11 Set Interrupt-Pending Number Register Bit Assignments

31

SETIPNUM

Table 10.16: Set Interrupt-Pending Number Register Bit Descriptions

Name Bits Description R/W Reset State
SETIPNUM 31:0 Set interrupt-pending number register. R 0
\{k . 247
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.6 APLIC Clear IP Number (CLRIPNUM) Register (offset = see below)

This register clear IP number register. On writes, clear interrupt pending bit for the numbered
interrupt source. Only interrupt sources which are active in the targeted APLIC domain and
not configured as level sensitive can be written. Reads return zero.

Offset: APLIC + 0x01ddc
GCR_BASE + 0x41ddc # APLIC.M
GCR_BASE + 0x61ddc # APLIC.S

31

Figure 10.12 Clear IP Number Register Bit Assignments

CLRIPNUM

Table 10.17: Clear IP Number Register Bit Descriptions

Name Bits Description Reset State
CLRIPNUM 31:0 Clear IP number register. 0
\{k . 248
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.7 APLIC Set Interrupt Enable (SETIE[0-31]) Register (offset = see below)

This register set interrupt enable register. A write to the per-domain setie[i] register sets the
interrupt enable bit 32 * i + j for every bit position j which is one in the written value. Only
interrupt sources which are active in the targeted APLIC domain can be written.

A read of the SETIE[i] register returns a bit-mask of those interrupt sources in the range [32i
+ 31:32i] for which the interrupt is enabled.

Offset: APLIC + 0x01e00, 0x01e04, ... 0x0le7c
GCR_BASE + 0x41e00, 0x41e04, ... Ox41e7c # APLIC.M
GCR_BASE + 0x61e00, 0x61e04, ... 0x61e7c # APLIC.S

31

Figure 10.13 Set Interrupt Enable Register Bit Assignments

SETIE

Table 10.18: Set Interrupt Enable Register Bit Descriptions

Name Bits Description R/W Reset State
SETIE 31:0 Set interrupt enable register. R/W 0
\{k . 249
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.8 APLIC Clear Interrupt Enable (CLRIE[0-31]) Register (offset = see below)

This register clear interrupt enable register. A write to the per-domain CLRIE[i] register clears
the interrupt enable bit 32 * i + j for every bit position j which is one in the written value.
Only interrupt sources which are active in the targeted APLIC domain can be written.

Offset: APLIC + 0x01f00, 0x01f04, ... 0x01f7c

GCR_BASE + 0x41f00, 0x41f04, ... 0x41f7c # APLIC.M
GCR_BASE + 0x61f00, 0x61f04, ... 0x61f7c # APLIC.S

31

Figure 10.14 Clear Interrupt Enable Register Bit Assignments

CLRIE

Table 10.19: Clear Interrupt Enable Register Bit Descriptions

Name Bits Description Reset State
CLRIE 31:0 Clear interrupt enable register. 0
\{k . 250
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.9 APLIC Set Interrupt Enable Number (SETIENUM) Register (offset = see below)

This register set interrupt enable number register. On writes, set interrupt enable bit for the

numbered interrupt source to 1. Only interrupt sources which are active in the targeted
APLIC domain can be written.

Offset: APLIC + Ox01ledc
GCR_BASE + 0x41ledc # APLIC.M
GCR_BASE + 0x61ledc # APLIC.S

Figure 10.15 Set Interrupt Enable Number Register Bit Assignments
31

SETIENUM

Table 10.20: Set Interrupt Enable Number Register Bit Descriptions

Name Bits Description R/W Reset State

SETIENUM 31:0 Set interrupt enable number register. R 0

\{L . 251
\\ MIPS mips.com
4 Copyright © 2025
a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.10 APLIC Clear Interrupt Enable Number (CLRIENUM) Register (offset = see below)

This register clear interrupt enable number register. On writes, clear interrupt enable bit for
the numbered interrupt source. Only interrupt sources which are active in the targeted APLIC

domain and not configured as level sensitive can be written.

Offset: APLIC + 0x01fdc
GCR_BASE + 0x41fdc # APLIC.M
GCR_BASE + 0x61fdc # APLIC.S

Figure 10.16 Clear Interrupt Enable Number Register Bit Assignments

31

CLRIENUM

Table 10.21: Clear Interrupt Enable Number Register Bit Descriptions
Name Bits Description R/W Reset State
CLRIENUM 31:0 Clear interrupt enable number register. R 0
\{k . 252
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.11 APLIC Set Interrupt-Pending Number (SETIPNUM_LE) Register (offset = see below)

This register set interrupt-pending number (Little Endian) register. On writes, set interrupt
pending bit for the numbered interrupt source to 1. Only interrupt sources which are active in
the targeted APLIC domain and not configured as level sensitive can be written.

Offset: APLIC + 0x02000
GCR_BASE + 0x42000 # APLIC.M
GCR_BASE + 0x62000 # APLIC.S

Figure 10.17 Set Interrupt-Pending Number Register Bit Assignments

31

SETIPNUM_LE

Table 10.22: Set Interrupt-Pending Number Register Bit Descriptions

Name Bits Description R/W Reset State
SETIPNUM_LE 31:0 Set interrupt-pending number (Little Endian) register. R 0
\{k . 253
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.12 APLIC Set Interrupt-Pending Number (SETIPNUM_BE) Register (offset = see below)

This register set interrupt-pending number (Big Endian) register. On writes, set interrupt
pending bit for the numbered interrupt source to 1. Only interrupt sources which are active in
the targeted APLIC domain and not configured as level sensitive can be written.

Offset: APLIC + 0x02004
GCR_BASE + 0x42004 # APLIC.M
GCR_BASE + 0x62004 # APLIC.S

Figure 10.18 Set Interrupt-Pending Number Register Bit Assignments

31

24 23

16 15

SETIPNUM_BE

Table 10.23: Set Interrupt-Pending Number Register Bit Descriptions

Name Bits Description R/W Reset State
SETIPNUM_BE 31:0 Set interrupt-pending number (Big Endian) register. R 0
\{k . 254
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.13 APLIC Target (TARGET[1-1023]) Register (offset = see below)

This register is target register. Per domain, per-interrupt source registers for configuring the
target hart number and priority for each interrupt source in the APLIC domain.

The target[i] register for source i is accessed at the APLIC domain base address + 0x3004 +
4 *j,

Offset: APLIC + 0x03004, 0x03008, ... 0x03ffc
GCR_BASE + 0x43004, 0x43008, ... 0x43ffc # APLIC.M
GCR_BASE + 0x63004, 0x63008, ... 0x63ffc # APLIC.S

Figure 10.19 Target Register Bit Assignments

31 18 17 8 7 0

HARTINDEX 0 IPRIO

Table 10.24: Target Register Bit Descriptions

Name Bits Description R/W Reset State
HARTINDEX 31:18 |Index of hart to be targeted by this interrupt source. For R/W 0
MIPS Technologies implementations, the index is mhar-
tid[11:0].
0 17:8 Reserved. R 0
IPRIO 70 Priority of this interrupt source. Values in the range R/W 1
(1<<APLIC.ipriolen) - 1:1 are supported, with 1 being the
highest priority.

\}\<M I PS Copyrigr:ti‘g;znz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.14 APLIC Interrupt Delivery (HART[0-1023].IDELIVERY) Register (offset = see below)

This register interrupt delivery register. Per-domain, per-hart registers for configuring
whether deliv-ery of each interrupt source is enabled.

The idelivery register for hart mhartid is accessed at the APLIC domain base address +
0x4000 + 0x20 * mhartid[11:0].

Offset: APLIC + 0x04000, 0x04020, ... 0xObfe0O
GCR_BASE + 0x44000, 0x44020, ... 0x4bfe0 # APLIC.M
GCR_BASE + 0x64000, 0x64020, ... 0x6bfe0 # APLIC.S

31

Figure 10.20 Interrupt Delivery Register Bit Assignments

0

0 ENABLED
Table 10.25: Interrupt Delivery Register Bit Descriptions
Name Bits Description Reset State

0 31:1 Reserved 0

ENABLED 0 Interrupt delivery register. 0
\{k . 256
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.15 APLIC Interrupt Force (HART[0-1023].IFORCE) Register (offset = see below)
This register interrupt force register. Per-domain, per-hart registers for specifying whether a

interrupt in the APLIC domain is forced for each hart in the domain.

The iforce register for hart mhartid is accessed at the APLIC domain base address + 0x4004
+ 0x20 * mhartid[11:0].

Offset: APLIC + 0x04004, 0x04024, ... 0xObfe4

GCR_BASE + 0x44004, 0x44024, ... 0x4bfe4 # APLIC.M
GCR_BASE + 0x64004, 0x64024, ... 0x6bfe4 # APLIC.S

31

Figure 10.21 Interrupt Force Register Bit Assignments

0

0 IFORCE
Table 10.26: Interrupt Force Register Bit Descriptions
Name Bits Description Reset State

0 31:1 Reserved 0

IFORCE 0 Interrupt force register. 0
\{k : 257
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.16 APLIC Interrupt Threshold (HART[0-1023].ITHRESHOLD) Register (offset = see below)

This register interrupt threshold register. Per-domain, per-hart registers specifying the inter-
rupt priority threshold for each hart in the domain. A value of zero means no threshold is
applied. A non zero value means that interrupts with priority value greater than or equal to
the threshold will be ignored.

The ithreshold register for hart mhartid is accessed at the domain APLIC base address +
0x4008 + 0x20 * mhartid[11:0].

Offset: APLIC + 0x04008, 0x04028, ... 0xObfe8
GCR_BASE + 0x44008, 0x44028, ... 0x4bfe8 # APLIC.M
GCR_BASE + 0x64008, 0x64028, ... 0x64fe8 # APLIC.S

31

Figure 10.22 Interrupt Threshold Register Bit Assighments

ITHRESHOLD

Table 10.27: Interrupt Threshold Register Bit Descriptions

Name Bits Description R/W Reset State
ITHRESHOLD 31:0 Interrupt threshold register. R 0
\{k . 258
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.17 APLIC Top Interrupt (HART[0-1023].TOPI) Register (offset = see below)

This register top interrupt register. Registers specifying the top priority pending interrupt for
each hart in the domain.

The topi register for hart mhartid is accessed at the domain APLIC base address + 0x4018 +
0x20 * mhartid[11:0].

Offset: APLIC + 0x04018, 0x04038, ... 0x0bff8
GCR_BASE + 0x44018, 0x44038, ... 0x4bff8 # APLIC.M
GCR_BASE + 0x64018, 0x64038, ... 0x6bff8 # APLIC.S

Figure 10.23 Top Interrupt Register Bit Assignments

31 26 25 16 15 8 7 0
0 ID 0 PRIORITY
Table 10.28: Top Interrupt Register Bit Descriptions
Name Bits Description R/W Reset State
0 31:26 | Reserved R 0
ID 25:16 | ID register. R 0
0 15:8 Reserved R 0
PRIORITY 7:0 Priority pending interrupt for each hart in the domain. R 0
\{k : 259
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.18 APLIC Claim Interrupt (HART[0-1023].CLAIMI) Register (offset = see below)

This register claim interrupt register. Per-domain, per-hart register for claiming and deassert-
ing the harts top priority interrupt in the domain.

Reading the claimi register returns the current value of the topi register for this hart, i.e. the
highest priority pending interrupt source number and the corresponding IPRIO value. In
addition, the interrupt pending signal for that interrupt source is cleared, unless the interrupt
is in level-sensitive mode, in which case the interrupt pending signal is directly tied to the
external interrupt signal and can only be cleared by change in the external interrupt signal
value.

If no interrupt is currently pending for the hart, i.e. topi equals 0, then the forcei register for
the hart is cleared by a read of claimi.

Writes to the claimi register are ignored.

The claimi register for hart mhartid is accessed at the domain APLIC base address + 0x401c
+ 0x20 * mhartid[11:0].

Offset: APLIC + 0x0401c, 0x0403c, ... 0x0bffc
GCR_BASE + 0x4401c, 0x4403c, ... Ox4bffc # APLIC.M
GCR_BASE + 0x6401c, 0x6403c, ... Ox6bffc # APLIC.S

Figure 10.24 Claim Interrupt Register Bit Assignments

31 26 25 16 15 8 7 0

0 ID 0 PRIORITY

Table 10.29: Claim Interrupt Register Bit Descriptions

Name Bits Description R/W Reset State
0 31:26 | Reserved R 0
ID 25:16 | ID register. R 0
0 15:8 Reserved R 0
PRIORITY 7:0 Per-hart register for claiming and deasserting the harts R 0
top priority interrupt in the domain.

260

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.19 APLIC Set NMI Enable (SETNMIE[0-31]) Register (offset = see below)

This register set NMI enable register. A write to setnmie[i] register sets the NMI enable bit 32
* i + j for every bit position j which is 1 in the written value. A read of setnmie[i] register

returns a bitmask of those interrupt sources in the range [32i + 31:32i] for which the NMI
enabled bit is currently set.

When interrupt source i is pending in the machine domain and not enabled (i.e.
APLIC.sourcecfg.D=0, APLIC.ip[i] is set and APLIC.ie[i] is clear) and NMIs are enabled for the
source (i.e. APLIC.nmie[i] is set) then the interrupt is delivered to the target hart as an NMI.

Offset: GCR_BASE + 0x4c000, 0x4c004, ... 0x4c078

31

Figure 10.25 Set NMI Enable Register Bit Assignments

24 23 16 15 8 7 0

SETNMIE

Table 10.30: Set NMI Enable Register Bit Descriptions

Name Bits Description R/W Reset State
SETNMIE 31:0 Set NMI enable register. R 0
\{k . 261
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.20 APLIC Set NMI Number (SETNMIENUM) Register (offset = 0x4CODC)

This register set NMI number register. On writes, set the NMI enable bit for the numbered
interrupt source to 1. Reads return zero.

When interrupt source i is pending in the machine domain and not enabled (i.e.
APLIC.sourcecfg.D=0, APLIC.ip[i] is set and APLIC.ie[i] is clear) and NMIs are enabled for the
source (i.e. APLIC.nmie[i] is set) then the interrupt is delivered to the target hart as an NMI.

31

Figure 10.26 Set NMI Number Register Bit Assignments

SETNMIENUM

Table 10.31: Set NMI Number Register Bit Descriptions

Name Bits Description R/W Reset State
SETNMIENUM 31:0 Set NMI number register. R 0
\{k : 262
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.21 APLIC Clear NMI Enable (CLRNMIE[0-31]) Register (offset = see below)

This register clear NMI enable register. A write to clrnmie[i] register clears the NMI enable bit
32 * i + j for every bit position j which is 1 in the written value.

When interrupt source i is pending in the machine domain and not enabled (i.e.
APLIC.sourcecfg.D=0, APLIC.ip[i] is set and APLIC.ie[i] is clear) and NMIs are enabled for the
source (i.e. APLIC.nmie[i] is set) then the interrupt is delivered to the target hart as an NMI.

Offset: GCR_BASE + 0x4c100, 0x4c104, ... 0x4c178

31

Figure 10.27 Clear NMI Enable Register Bit Assignments

CLRNMIE

Table 10.32: Clear NMI Enable Register Bit Descriptions

Name Bits Description Reset State
CLRNMIE 31:0 Clear NMI enable register. 0
\{k . 263
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

10.8.3.22 APLIC Clear NMI Number (CLRNMIENUM) Register (offset = 0x4C1DC)

This register clear NMI number register. On writes, clear the NMI enable bit for the numbered
interrupt source. Reads return zero.

When interrupt source i is pending in the machine domain and not enabled (i.e.
APLIC.sourcecfg.D=0, APLIC.ip[i] is set and APLIC.ie[i] is clear) and NMIs are enabled for the
source (i.e. APLIC.nmie[i] is set) then the interrupt is delivered to the target hart as an NMI.

31

Figure 10.28 Clear NMI Number Register Bit Assignments

CLRNMIENUM

Table 10.33: Clear NMI Number Register Bit Descriptions

Name Bits Description R/W Reset State
CLRNMIENUM 31:0 Clear NMI number register. R 0
\{k . 264
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

Chapter 11

Debug Unit

This chapter describes the DBU functionality implemented in the I8500. It is compliant with
the RISC-V Debug Specification, v1.0.

The DBU serves as the interface between a probe or other debug agent and the system under
debug. It includes a JTAG TAP, APB slave interface, Debug Transport Module (DTM), and
Debug Module. Internally, the Register Ring Bus (RRB) serves as the communication mecha-
nism between the DBU and cores.

11.1 RISC-V Debug Specification Compatibility

The debug implementation on the I8500 Multiprocessing System is as follows:
e The MIPS Debug IP is fully compatible with the ratified RISV-V Debug Specification, v1.0.

e Each cluster contains one RISC-V Debug Module (DM), providing access to all cores and
harts in the cluster.

e The RISC-V Debug Modules in different clusters must be daisy-chained via the JTAG inter-
face.

e The RISC-V Debug Module implements a hart and resume group, so a simultaneous halt
and resume of several or all harts is possible (including multi-cluster via trigger in/out
capability).

e The RISC-V Debug Module supports System Bus Access (SBA), allowing access to system
memory and RISC-V trace components without stopping any harts or cores.

e The RISC-V Debug Module may be configured at build time to provided Advanced Periph-
eral Bus (APB) access to the DM registers.

e The ratified Sdtrig extension (see Chapter 5 in the RISC-V Debug Specification) is sup-
ported.

- The pool of debug triggers is shared between different harts in the same core.

- Used trigger (set by one hart) is visible to all other harts (on that core) as a custom
trigger, what will prevent conflicts.

11.2 Halt Groups and External Triggers

The DBU supports the synchronous halt/go feature which enables the debugger to request a
group of harts to be halted or resumed together.

The dmcs2 register, described in Section 9.8.2.8 “"Debug Module Control and Status 2
Register (dmcs2): Offset 0x32”, is used to define which harts belong to the halt-group and
which harts belong to the resume-group. When any member of the halt-group enters halt

\}\<M I PS Copyrigr:tiF();.Zcz):nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

mode, then all members of the halt-group must also enter halt mode. Conversely, when any
member of the resume group exits debug mode, then all members of the resume-group
must also exit debug mode.

The synchronous halt/go operation is extended beyond a cluster with the external trigger sig-
nals. The DBU module has a trigger input and a trigger output and connected in a daisy chain
fashion as shown in Figure 7.

In this figure, the IN and OUT indicators correspond to the EXT_DBG_TRIG_IN and EXT_DB-
G_TRIG_OUT pins respectively.

Cluster 0 Cluster 1 Cluster 2
IN [ARr[LOUT IN AR OUT IN, [PRr1711OUT
» DBU » DBU > DBU
Cluster n+1 Cluster n
oUT PRI N out IN
DBU [« DBU [XX

Figure 11.1 External Trigger Connection in SoC

When the Trigger Input in the figure above transitions from LOW to HI, the DBU initiates a
halt-request to all harts in the halt-group and drives the Trigger Output. The trigger output
propagates the halt-request to the next cluster.

When the Trigger Input transitions from HI to LOW, the DBU initiates a resume-request to all
harts in the resume-group and drives the Trigger Output LOW. The Trigger Output will propa-
gate the resume-request to the next cluster.

11.2.1 Halt Request

Within a cluster, halt-request may be initiated by any one of the following conditions:

1. The debugger writes to the dmcontrol register to start a halt-request to the hart selected
in the hartsel field. If the selected hart is a member of the halt-group, then halt-request
will be extended to all members of the halt-group and the Trigger-Output is driven HIGH.

2. When the hart is halted due to internal debug events such as breakpoint or single-step-
ping. The signal cpc_dbu_debug_m is asserted and if the affected hart is a member of the
halt-group, then halt-request is initiated for all harts in the halt-group and the Trigger-
Output signal is driven HIGH.

3. When the Trigger-Input signal transitions from LOW to HIGH. DBU initiates halt-request
to all the harts in the halt-group and drives the Trigger-Output signal HIGH.

11.2.2 Resume Request

SMIPS

Within a cluster, a resume-request may be initiated when any of the following conditions
occurs:

1. The debugger writes to the dmcontrol register to start resume-request to the hart
selected in the hartsel field. If the selected hart is a member of the resume-group, then
the resume-request will be extended to all members of the resume-group and the Trig-
ger-Output is driven LOW.

266

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
2. When the Trigger-Input signal transitions from HIGH to LOW, the DBU initiates resume-
requests to all harts in the resume-group and drives the Trigger-Output signal LOW.

Within each cluster, DBU ensures all harts in the resume-group resume execution together by
using the handshake described in Section 5.1 and illustrated in Figure 5.

11.3 DBU Reset

The DBU logic crosses different reset domains and can be initiated by any of the following
reset conditions:

1. The DBU logic that runs on JTAG clock is reset by the active low assertion of the JTAG
reset pin (ej_trst_n).

2. The DBU logic that runs on the main CM clock, which constitutes most of DBU, is reset by
either a Cluster Cold Reset (dbu_cold_reset) OR when dmcontrol.DMACTIVE = 1'b0
(DMACTIVE is de-asserted).

The overall DBU reset strategy, as well as reset of other logic (within the DBU) is summarized
below.

e The DMACTIVE bit must be set to 1 before using any of the DBU features. Since the
FDC logic and TRF register accesses are controlled by DBU (in the Shogun
implementation), DMACTIVE must also be set to 1 before using these features.

e The Cluster Warm Reset (dbu_reset_n) will not reset the DBU.
e The dmcontrol.ndmreset bit, when set, will reset the entire cluster except the DBU.

e The JTAG DTMCS.dmihardreset when asserted, will reset the DTM along with any
transactions in progress.

e The MBIST logic in the DBU SRAM wrapper is reset by COLD reset only
(dbu_cold_reset).

e The RRB interface logic (in the RRB master and slave) is reset by Cluster Warm Reset
(dbu_reset_n).

e The DBU monitors Cluster WARM reset and abort any pending RRB transaction if reset
is detected and log the transaction as error (abstractcs.cmderr or sbcs.sberror).

11.4 Debug Module Interface Registers

The DBU is a slave to both the Debug Module Interface (DMI) bus and to the Register Ring
Bus (RRB) through which the harts in a cluster interact with the DBU. Several registers are
accessible through the DMI to control and monitor a debug session.

11.4.1 DMI Register Map
Table 11.1 shows the DMI register map.

Table 11.1 DMI Register Map

Word Address Byte Address Register Name
0x04 - OxOf 0x010 - 0x03c | data0 to data11
0x10 0x040 dmcontrol
0x11 0x044 dmstatus

\}\<M I PS Copyrigr::g;z):ré

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 11.1 DMI Register Map (continued)

Word Address Byte Address Register Name

0x16 0x058 abstractcs
0x17 0x05c command
0x18 0x060 abstractauto

0x20 - Ox2f 0x080 - 0x0Obc | progbuf0 to progbuf15
0x38 0x0e0 sbcs

0x39 - 0x3a 0x0e4 - Oxe8 | sbaddress0 to sbaddress1

0x3c - 0x3d 0x0f0 - Oxf4 | sbdataO to sbdata1
0x40 0x100 haltsumO
0x70 0x1c0 customO = FDCO
0x71 Ox1c4 custom1 = FDC1
0x72 0x1c8 custom2 = DBG_OUT
0x73 - Reserved for internal use (FDC Full transfer)

-- 0xfc8-0xffc APB Block ID ROM Table

For more information on these registers, refer to the DMI section of the RISC-V Debug Spec-

ification.

SMIPS

a GlobalFoundries company

268
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

Chapter 12

Trace Unit

The I8500 Trace Unit (TRU) observes execution of a program and generates trace messages
by encoding:

e Program flow change information (caused by Branch, Exceptions and Interrupts)

e Execution timing information

The I8500 TRU is fully compatible with the ratified RISC-V Trace Control 1.0 and RISC-V N-
Trace 1.0 specifications.

12.1 Summary of Features

e Trace Encoder supports HTM (History Trace Mode) which provides good trace compres-
sion.

- Context trace (allowing trace of processes in an OS/RTOS) is supported.
- Stall mode is supported, so overflow errors can be prevented.
— The timestamp is 48-bits wide and works in Internal Core (core cycles) mode.

e The Trace Funnel (inside of each cluster) aggregates trace from all harts and cores in a
cluster.

e Trace RAM Sink allows both SRAM (trace to dedicated static RAM buffer) and SMEM (trace
to System Memory) modes.

- Always present SRAM buffer can be built in 16KB, 32KB or 64KB size.
- SMEM mode is optional and must be enabled at IP build-time.
e Optional Trace PIB Sink allows tracing via 8 or 16 off-chip pins.

- MIPI compliant Mictor-38 trace connector as defined in ratified RISC-V Trace
Connectors 1.0 specification shall be used.

- Trace calibration patterns are supported.
- SRAM buffer is internally used to mitigate intense trace bursts.

e Trace components are connected to an internal RRB (Ring Register Bus) and can be pro-
grammed using RISC-V DM SBA (System Bus Access) or from a code by using 32-bit
accesses.

\}\<M I PS Copyrig':tirg.zcz):nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

12.2 Trace Component Base Addresses

The base addresses of trace components are listed in Table 12.1.

Table 12.1 Trace Component Base Addresses

Base Address via

Base Address

(optional)

Trace Component RISC-V DM SBA (from Code) Notes
Trace Encoder 0x4000_0000_0000_3000+ TBD The <ci> is a core index in a cluster (0..5). The
(different for each hart) <ci>*0x1000+<hi>*0x400 <hi> is a hart index (0..3) in that core.
Trace Funnel 0x4000_0900_0000_0000 TBD
(always present)
Trace RAM Sink 0x4000_0900_0000_2000 TBD SRAM mode is always enabled. SMEM mode
(always present) most must be enabled at IP build-time.
Trace PIB Sink 0x4000_0900_0000_1000 TBD Must be enabled at build-time.

SMIPS

a GlobalFoundries company

270
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

Chapter 13

Floating-Point Unit (FPU)

This chapter describes the optional MIPS RV64-compliant Floating-Point Unit (FPU).

13.1 Features Overview

The 18500 core features an optional IEEE 754 compliant 3rd generation Floating Point Unit
(FPU3).

The FPU contains thirty-two, 64-bit vector registers used by FPU instructions. Single precision
floating point instructions use the lower 32 bits of the 64 bit register. Double precision float-
ing point instructions use the entire 64-bit register.

The FPU is fully synthesizable and operates at the same clock speed as the CPU. The 18500
core can issue up to two instructions per cycle to the FPU.

The FPU contains two execution pipelines. These pipelines operate in parallel with the integer
core and do not stall when the integer pipeline stalls. This allows long-running FPU operations
such as divide or square root, to be partially masked by system stall and/or other integer unit
instructions.

A scheduler in the ISU block issues instructions to the two FPU functional units. The exception
model is ‘precise’ at all times.

The FPU supports fused multiply-adds as defined by the IEEE Standard for Floating-Point
Arithmetic 754TM-2008. All floating point denormalized input operands and results are fully
supported in hardware.

The FPU supports scalar FPU instructions.

13.2 FPU Execution Units

The I8500 FPU contains two execution units, one for short operations (EXS) and one for long
operations (EXL).

13.2.1 Short Operations

The short data path contains an integer add unit, logical unit, and div unit. The integer add
unit and the logical unit each have 2-cycle latency outputs. One divide instruction can be
issued to the div unit at a time. That divide will be worked on iteratively. Until the divide is
done no other divide instructions can be issued.

The short execution unit (EXES) executes the following instructions:

e All instructions that are sent back to the integer unit, including stores, move-from, and
branches

271

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
e Most 2-source logical operands

e Floating point compares
— fmin/fmax
— fclass
— Sign injection: FSGNJ.S, FSGNJN.S, FSGNJX.S
— feqg/fleffit
Results are written to the Working Register File (WRF).

13.2.2 Long Operations

The long execution unit (EXEL) implements the following operations:
e FP adds, converts, multiplies, and divide-square roots
e Logical operations with 3 sources

Results are written to the Working Register File (WRF).

13.3 Data Formats

The FPU provides both floating-point and fixed-point data types, which are described below:

e The single- and double-precision floating-point data types are those specified by IEEE
Standard 754.

e The signed integers provided by the CPU architecture.

13.3.1 Floating-Point Formats

The FPU provides the following two floating-point formats:
e A 32-bit single-precision floating point (type S)
e A 64-bit double-precision floating point (type D)

The floating-point data types represent numeric values as well as the following special enti-
ties:

e Two infinities, +o and -

e Signaling non-numbers (SNaNs)

e Quiet non-numbers (QNaNs)

 Numbers of the form: (-1)® 2F bg.by by..by_1, where:

— s=0or1

E = any integer between E_min and E_max, inclusive
b; = 0 or 1 (the high bit, by, is to the left of the binary point)
p is the signed-magnitude precision

The single and double floating-point data types are composed of three fields—sign, expo-
nent, fraction—whose sizes are listed in Table 13.1.

Table 13.1 Parameters of Floating-Point Data Types

Parameter Single Double

Bits of mantissa precision, p 24 53

\}\<M I PS Copyrigr::g;z):rrz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 13.1 Parameters of Floating-Point Data Types (continued)

Parameter Single Double
Maximum exponent, E_max +127 +1023
Minimum exponent, E_min -126 -1022
Exponent bias +127 +1023
Bits in exponent field, e 8 1
Representation of by integer bit hidden hidden
Bits in fraction field, f 23 52
Total format width in bits 32 64
Magnitude of largest representable number 3.4028234664e+38 1.7976931349e+308
Magnitude of smallest normalized representable num- 1.1754943508e-38 2.2250738585e-308
ber

Layouts of these three fields are shown in Figures 13.1 and 13.2 below. The fields are:

e 1-bitsign, s

e Biased exponent, e = E + bias

Binary fraction, f=.by b2--bp-1 (the b0 bit is hidden; it is not recorded)

Figure 13.1 Single-Precision Floating-Point Format (S)

31 30 23 22

0

S| Exponent

Fraction

1 8

23

Figure 13.2 Double-Precision Floating-Point Format (D)

63 62 52 51 0
S Exponent Fraction
1 " 52
Values are encoded in the specified format using the unbiased exponent, fraction, and sign
values listed in Table 13.2. The high-order bit of the Fraction field, identified as by, is also
important for NaNs.
Table 13.2 Value of Single or Double Floating-Point Data Type Encoding
Typical Single Typical Double
UnbiasedE | f | s | by Value V Type of Value Bit Pattern’ Bit Pattern’
E max+1 |#0 1 SNaN Signaling NaN Ox7EffEfff Ox7Effffff FEFFEEEF
(FCSR =0)
0 QNaN Quiet NaN 0x7fbfffff Ox7fE7Efff fEEEEEEE
(FCSR =0)

SMIPS

a GlobalFoundries company

273
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 13.2 Value of Single or Double Floating-Point Data Type Encoding (continued)

Typical Single Typical Double
UnbiasedE | f | s | by Value V Type of Value Bit Pattern’ Bit Pattern’
E max+1 |#0 0 SNaN Signaling NaN Ox7fbfffff Ox7Ef7f£ff FEFFEEFEF
(FCSR =1)
1 QNaN Quiet NaN Ox7fffffff Ox7EEffffff fEfFFEFF
(FCSR =1)
E_max +1 0|1 — Minus infinity 0x££800000 0xf££00000 00000000
0 + 00 Plus infinity 0x7£800000 0x7££00000 00000000
E_max 1 - (25)(1_,‘) Negative normalized number 0x80800000 0x80100000 00000000
to_ through through
E_min OxEfE7f£f£fff Oxffefffff fEffffff
0 + (25)(1.f) | Positive normalized number 0x00800000 0x00100000 00000000
through through
Ox7E£7f££f£f£ O0x7fefffff fEfffFffff
E min-1 |=0| 1 - (2E-miny0.f) | Negative denormalized num- 0x807fffff Ox800fffff fEFFFffff
ber
0 + (2E-miny.f) | Positive denormalized num- Ox007ff£fff OxO00fffff ffFFFFfff
ber
E _min -1 0] 1 -0 Negative zero 0x80000000 0x80000000 00000000
0 +0 Positive zero 0x00000000 0x00000000 00000000

1. The “Typical” nature of the bit patterns for the NaN and denormalized values reflects the fact that the sign might have either value
(NaN) and that the fraction field might have any non-zero value (both). As such, the bit patterns shown are one value in a class of poten-
tial values that represent these special values.

13.3.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one
encoding; numbers are kept in normalized form. The high-order bit of the p-bit mantissa,
which lies to the left of the binary point, is “hidden,” and not recorded in the Fraction field.
The encoding rules permit the value of this bit to be determined by looking at the value of the
exponent. When the unbiased exponent is in the range E_min to E_max, inclusive, the num-
ber is normalized and the hidden bit must be 1. If the numeric value cannot be normalized
because the exponent would be less than E_min, then the representation is denormalized,
the encoded number has an exponent of E_min - 1, and the hidden bit has the value 0. Plus
and minus zero are special cases that are not regarded as denormalized values.

13.3.1.2 Reserved Operand Values—Infinity and NaN

A floating-point operation can signal IEEE exception conditions, such as those caused by
uninitialized variables, violations of mathematical rules, or results that cannot be repre-
sented. If a program does not trap IEEE exception conditions, a computation that encounters
any of these conditions proceeds without trapping but generates a result indicating that an
exceptional condition arose during the computation. To permit this case, each floating-point
format defines representations (listed in the table above) for plus infinity (+w), minus infinity
(), quiet non-numbers (QNaN), and signaling non-numbers (SNaN).

13.3.1.3 Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the given format;
it represents a magnitude overflow during a computation. A correctly signed « is generated
as the default result in division by zero operations and some cases of overflow.

\}\<M I PS Copyrigr:ti‘g;z):rg

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Once created as a default result, «» can become an operand in a subsequent operation. The
infinities are interpreted such that -« < (every finite number) < 4. Arithmetic with « is the
limiting case of real arithmetic with operands of arbitrarily large magnitude, when such limits
exist. In these cases, arithmetic on « is regarded as exact, and exception conditions do not
arise. The out-of-range indication represented by « is propagated through subsequent com-
putations. For some cases, there is no meaningful limiting case in real arithmetic for oper-
ands of .

13.3.1.4 Signalling Non-Number (SNaN)

SNaN operands cause an Invalid Operation exception for arithmetic operations. SNaNs are
useful values to put in uninitialized variables. An SNaN is never produced as a result value.

IEEE Standard 754 states that “"Whether copying a signaling NaN without a change of format
signals the Invalid Operation exception is the implementor’s option.” The RISC-V sign injec-
tion instructions are non-arithmetic; they do not signal IEEE 754 exceptions.

13.3.1.5 Quiet Non-Number (QNaN)

QNaNs provide retrospective diagnostic information inherited from invalid or unavailable data
and results.

QNaN operands do not cause arithmetic operations to signal an exception. When a floating-
point result is to be delivered, a QNaN operand causes an arithmetic operation to supply a
QNaN result. QNaNs do have effects similar to SNaNs on operations that do not deliver a
floating-point result—specifically, comparisons. For more information, see the detailed
description of the floating-point compare instruction, fcmp.

When certain invalid operations not involving QNaN operands are performed but do not trap
(because the trap is not enabled), a new QNaN value is created. Table 13.3 shows the QNaN
value generated. The values listed for the fixed-point formats are the values supplied to sat-
isfy IEEE Standard 754 when a QNaN or infinite floating-point value is converted to fixed
point. There is no other feature of the architecture that detects or makes use of these “inte-
ger QNaN" values.

Table 13.3 Value Supplied When a New Quiet NaN is Created

QNaN value
Format (FCSR=1)
Single floating point 0x7FC0_0000
Double floating point 0x7FF8 0000 _0000_0000
Word fixed point 0x7FFF_FFFF (value when converting any FP number too big to

represent as a 32-bit positive integer)
0x0000_0000 (value when converting any FP NaN)
0x8000_0000 (value when converting any FP number too small to
represent as a 32-bit negative integer)

Longword fixed point O0x7FFF_FFFF_FFFF_FFFF (value when converting any FP number too
big to represent as a 64-bit positive integer)

0x0000_0000 (value when converting any FP NaN)

0x8000_0000 (value when converting any FP number too small to
represent as a 64-bit negative integer)

13.3.2 Signed Integer Formats

The FPU instruction set provides the following signed integer data types:
275

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
e A 32-bit Word fixed point (type W), shown in Figure 13.3.

e A 64-bit Longword fixed point (type L), shown in Figure 13.4.

The fixed-point values are held in 2’s complement format, which is used for signed integers in
the CPU. Unsigned fixed-point data types are not provided by the architecture; application
software can synthesize computations for unsigned integers from the existing instructions
and data types.

Figure 13.3 Word Fixed-Point Format (W)

Integer

Figure 13.4 Longword Fixed-Point Format (L)
63 0

Integer

13.4 Floating-Point General Registers

This section describes the organization and use of the Floating-Point general Registers
(FPRs). There are thirty-two 64-bit FPU registers.

13.4.1 FPRs and Formatted Operand Layout

FPU instructions that operate on formatted operand values specify the Floating-Point Register
(FPR) that holds the value. Operands that are only 32 bits wide (W and S formats) use only
half the space in an FPR.

Figures 13.5 and 13.6 show the FPR organization and the way that operand data is stored in
them.

Figure 13.5 Single Floating-Point or Word Fixed-Point Operand in an FPR
63 32 31 0

Reg 0 Undefined/Unused Data Word

Figure 13.6 Double Floating-Point or Longword Fixed-Point Operand in an FPR

Reg 0 Data Doubleword/Longword

276

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

Chapter 14

Performance Counters

This section describes the performance counters for the core and CM3 blocks in the 18500

Multiprocessing System.

e Section 14.1 “Core Performance Counters”

e Section 14.2 “CM3 Performance Counters”

14.1 Core Performance Counters

The I8500 core contains four performance counters. Each counter has a Control register
(mhpmevent) and an associated Count (mhpmcounter) register. Therefore, there are four
Control registers an four Count registers per hart. These registers are located at the following

CSR locations.

Table 14.1 Core Performance Counter Registers

CSR Register

Register Name Register Acronym Index
Performance Counter Control 3 mhpmevent3 0x323
Performance Counter Control 4 mhpmevent4 0x324
Performance Counter Control 5 mhpmevent5 0x325
Performance Counter Control 6 mhpmevent6 0x326
Performance Counter Count 3 mhpmcounter3 0xB03
Performance Counter Count 4 mhpmcounter4 0xB04
Performance Counter Count 5 mhpmcounter5 0xB05
Performance Counter Count 6 mhpmcounter6 0xB06

Each register is instantiated per-hart. Therefore in a 2-hart core, there are eight total
mhpmevent registers and eight total mhpmcounter registers.

14.1.1 Performance Event Masking

The four mhpmevent registers allows for the masking of event counting for the following

modes:

e M-mode (Machine)

e S-mode (Supervisor)
e U-mode (User)

SMIPS

a GlobalFoundries company

277
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

VS-mode (Virtual Supervisor)
VU-mode (Virtual User)

When the corresponding bit is set as defined in Table 14.2, that mode is prohibited from
counting events.

14.1.2 Core Performance Event Control Register (mhpmevent[6:3])

The four performance counter control registers (instantiated per hart) at the locations shown
in Table 14.1 above each have identical bit assignments. Therefore, only one register is
shown below.

Figure 14.1 Performance Counter Control Register Format

63 62 61 60 59 58 57 56 55 54 8 7 0
OF | MINH|SINH| UINH| VSINH| VUINH 00 PCTD 0 EVENT
Table 14.2 Performance Counter Control Register Bit Descriptions
Read/
Bits Name Reset Val Write Description
63 OF Undefined R/W |OverFlow. Set when counter overflows. When overflow occurs with OF
set, interrupt generation is disabled.
62 MINH Undefined R/W Machine Inhibit. Inhibit counting of events in M-mode.
61 SINH Undefined R/W Supervisor Inhibit. Inhibit counting of events in S-mode.
60 UINH Undefined R/W User Inhibit. Inhibit counting of events in U-mode.
59 VSINH Undefined R/W Virtual Supervisor Inhibit. Inhibit counting of events in VS-mode.
58 VUINH Undefined R/W Virtual User Inhibit. Inhibit counting of events in VU-mode.
57:56 0 Undefined R/W Write as zero.
55 PCTD Undefined R/W Performance Counter Trace Disable.
54:8 0 Undefined R/W Write as zero
7:0 EVENT Undefined WARL |Encoding of event to be monitored by the specified hardware perfor-
mance monitor, with 0 meaning no event. The encoding for this field is
shown in Table 14.4.

SMIPS

a GlobalFoundries company

278

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

14.1.3 Core Performance Counter Count Register (mhpmcounter[6:3])

Each Performance Counter Control register described above has an associated Count register
that counts the number of events as indicated by the EVENT field of the Control register.
Refer to Table 14.1 for a listing and location of these registers. The Performance Counter
Count registers are instantiated per-hart.

Figure 14.2 Performance Counter Count Register Format

63

mhpmcounter[63:0]

Table 14.3 Core Performance Counter Count Register

Read/
Name Bits Reset Val Write Description
mhpmcounter 63:0 Undefined RwW Increments once for each event that is enabled by the correspond-

ing Control Register. For example, if bit 62 (MINH) of the mhpmev-
ent[3] register is cleared, then the value in the mhpmcounter[3]
register will increment each time there is an M-mode event in Con-
trol register 3.

14.1.4 Core Performance Counter Events

The table below shows the encoding of the EVENT field in bits 7:0 of each Performance
Counter Control register.

In the following table:
e All events are local to the hart running except #128.

e All events are available to all performance counters.

e Event counting is edge counting; that is, an event occurs when the signal goes from not

TRUE to TRUE.

Table 14.4 Core Performance Counter Events

Event ID Event Name Description
Execution Units
1 num_grad Number of graduated instructions
2 one_grad Number of cycles in which one instruction graduated
3 two_grad Number of cycles in which two instruction graduated
4 no_grad Number of cycles in which no instruction graduated
5 alu_grad Number of ALU instructions graduated
6 Isu_grad Number of LSU instructions graduated
7 cti_grad Number of CTl instructions graduated
8 mdu_grad Number of MDU instructions graduated
9 fpu_grad Number of FPU instructions graduated
10 Reserved Reserved
11 load_grad Number of LOAD instructions graduated

SMIPS

a GlobalFoundries company

279

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 14.4 Core Performance Counter Events (continued)

Event ID Event Name Description
12 store_grad Number of STORE instructions graduated
13 no_isu Number of cycle in which no instructions issued
14 one_isu Number of cycle in which one instructions issued
15 two_isu Number of cycle in which two instructions issued
16 isu_block Number of times the Issue unit got stalled
17 dec_stall Number of times the Decoder unit got stalled
18 dmap_stall Number of times the Dependency Mapper stalled
19 ibfr_empty Cycles in which instruction buffer is empty
20 itrkr_num_replay Replays initiated by the scoreboard
21 br_grad Conditional branches graduated
22 br_miss_grad Mispredicted conditional branches graduated
23 jr_ret_grad Returns (JR $31) graduated
24 jr_ret_miss_grad Mispredicted Returns (JR $31) graduated
25 jr_grad JR graduated
26 jr_miss_grad Mispredicted JR graduated
27 br_t grad Taken conditional branches graduated
28 br_nt_grad Not taken conditional branches graduated
29 redirect Total redirects
30 num_exceptions Total number of exceptions
31 ica_miss_stall Number of cycles where an Icache miss is solely responsible for stalling
the pipe
32 load_blocked Number of cycles graduation was blocked of a load waiting to complete
33 sync_blocked Number of cycles graduation was blocked of sync waiting to complete
64 dtlb_lookup Number of DTLB lookups
65 dtlb_miss_new Number of DTLB misses
66 dtlb_miss_merge Number of DTLB misses (merged with existing)
67 bond_load Bonded Load
68 bond_store Bonded Store
69 total_dcache_lookups Total number of cache lookups
70 loads_dcache_lookup Number of Load-type instns
71 stores_dcache_lookup Number of Store-type instns
72 total_dcache_misses Misses cache lookup
73 load_dcache_misses Loads miss cache lookup
74 store_dcache_misses Stores miss cache lookup
75 smb_full Number of cycles SDB graduation was blocked due to SMB full
128 utb_glob_vc_stalled All harts currently stalled (for any reason)
129 utb_access Number of harts that accessed the uTLB
130 utb_stall Number of harts stalled waiting for MMU response to uTLB
131 utb_miss Number of harts where an access to the uTLB caused a uTLB miss

SMIPS

a GlobalFoundries company

280

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 14.4 Core Performance Counter Events (continued)

Event ID Event Name Description
132 ifu_ica_access Number of harts accessing the ICache
133 ifu_ica_miss Number of harts accesses that resulted an ICache miss
134 ifu_ibuff_cred_stall Instruction fetch stalled due to lack of IBUF credit
135 ifu_pcbuf _cred_stall Number of times the hart stalled waiting for PCBuffer credit.
136 ifu_overall_stall Number of times the hart stalled for any reason
255 clock_cycles Total number of clock cycles

14.2 CM3 Performance Counters

14.2.1 Overview and Features

Performance characteristics of the CM3 can be measured via the CM3 performance counters.
Two sets of identical programmable 32-bit performance counters in addition to a 32-bit cycle
counter are implemented. The counters are controlled and accessed via GCR registers
described in Chapter 8, “"Coherency Manager”. This section describes the operation of those
registers.

Features of the CM3 performance counters include:

e Performance event counters. These counters are used for different events in the CM
and have the ability to filter out certain events from the qualifier CSRs.

e Histogram performance counter. This feature keeps track of latency of transactions.
The counters enable the ability to build a histogram for performance analysis.

14.2.2 Register Interface

SMIPS

The counters are started by writing a 1 to the PO_CountOn, P1_CountOn and
Cycl_Cnt_CountOn bits in the CM3 Performance Counter Control Register (GCR_DB_PC_CTL
Offset 0x0100). Each counter can be reset to 0, and the corresponding overflow bit (PO_OF,
P1_OF, Cyc_Cnt_OF) is reset to 0 prior to the start of counting by writing a 1 to the PO_Re-
set, P1_Reset and Cycl_Cnt_Reset bits in the same access that sets the corresponding start
bits. This functionality allows all three counters to be reset and started with a single GCR
write.

The CM3 Performance Counter Control Register also controls how a counter overflow is han-
dled. If the Perf_Ovf_Stop bit is set to 1, then all CM Performance counters will stop when
one of the counters (including the Cycle Counter) reaches its maximum value of OxFFFFFFFF.
If instead the Perf_Ovf_Stop bit is set to 0, when a counter overflows, it rolls over and con-
tinues counting from 0.

If the Perf_Int_En bit is set to 1, an interrupt is generated when one of the counters (includ-
ing the cycle counter) reaches its maximum value of OxFFFFFFFF. The CM3 asserts the
so_cm_perf_cnt_int signal which generates an interrupt only if the System Integrator has con-
nected the so_cm_perf _cnt_int signal to one bit of si_cm_int.

When a performance counter overflows, the corresponding bit is automatically set in the CM3
Performance Counter Overflow Status Register (GCR_DB_PC_OV). A status bit is cleared by
writing a 1 to it.

281

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

The event to be counted by each performance counter is designated by the event number set
in the PO_Event and P1_Event fields of the CM3 Performance Counter Event Select Register
(GCR_DB_PC_EVENT). The events corresponding to the event numbers are listed and
described in Table 14.6, "CM3 Performance Counter Event Types,” on page 286.

Each event is further specified by the CM3 Performance Counter Qualifier Register (GCR_D-
B_PC_QUALn). The meaning of this register is different for each event. The column labeled
“Qualifier” in Table 14.6 shows the qualifiers that can be specified for each event. For exam-
ple, the qualifiers for the Coherence Manager Request Event (event 1) are the request port,
thread, cmd, CCA, size, etc.

The qualifiers for some events are composed of several groups. A performance counter will
increment if the specified event occurs and the qualifier criteria is matched in all groups. For
example, assume the PO_Event field in the CM3 Performance Counter Event Select Register
is set to 1 (Coherence Manager Request). This event occurs when the CM3 serializes a
request. However, the performance counter for this event will only count if the request meets
the criteria programmed in all 12 groups in the Request Qualifier (see Table 14.6):

The port that issued the request has the corresponding Port qualifier bit set to 1.
AND

The thread that issued the request has the corresponding Thread qualifier bit set
to 1.

AND

The target of the request has the corresponding bit of the Target qualifier set to

The request command type has the corresponding Request Command qualifier bit set to
The Cachebility attribute (CCA) for the request has the corresponding CCA qualifier
bit set to 1.

The size of the request has the corresponding Size qualifier bit set to 1.

The L1 State of the request has the corresponding L1l State qualifier bit set to 1.

The L2 state of the request has the corresponding L2 State qualifier bit set to 1.

The L2 Locked state of the request has the corresponding L2 Locked qualifier bit
set to 1.

The resulting eviction due to the request has the Eviction qualifier bit set to 1.
The bank of the request has the Bank qualifier bit set to 1.

The scheduler used for the request has the Scheduler qualifier bit set to 1.

Multiple bits within a qualification group may be set. In this case, the OR of all bits set within
the group. For example, by setting the request port qualifier for Port 0 and Port 1, then a
request will be counted if it originated from Port O or Port 1.

A qualifier group can be set to “"don't care” by setting all bits within the group to 1. For exam-
ple, to have performance counter 0 count all requests from port 1, program the CM Performance
Counter Event Select Register and CM Performance Counter Qualifier 0 Register as follows:

Set P0_Event to 1(Coherence Manager Request)

Set Request Port Qualifer bit to 1 for Port 1

Set Request Port Qualifier bits to 0 for all other Ports

Set all other qualifer bits to 1 (causing the Thread, Target, Command, CCA, etc to

282

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

be ignored)

The two counters can be programmed to count a different event or the same event with dif-
ferent qualifiers. For example, to measure the ratio of requests from Port 1 vs. all Ports, set
program Counter 0 to count requests from Port 1 (see previous example) and program
Counter 1 to count all request from all Ports by setting P7_Eventto 1 (Coherence Manager
Request) and set all bits in the CM Performance Counter Qualifier 1 Register to 1.

The cycle counter can be used to calculate the average rates of specified events. Continuing
the above example, assuming the cycle counter is reset, started, and stopped simultaneously
with the two performance counters, then the rate of requests from port 1 and all ports can be
easily computed (value of each performance counter / value in cycle counter).

14.2.3 CM3 Performance Counter Usage Models

There are several models for using the CM3 performance counters. This sections discusses 3
possible models:

Periodic Sampling - take many measurement samples of specific duration

Stop and Interrupt when counter overflows - counters run until one overflows, then inter-
rupt CPU

Large count capability - enables unrestricted sample periods

14.2.3.1 Periodic Sampling

One model for making performance measurements is for the software to set up and gather
samples for a set period of time. The code sequence could follow the following steps:

start:

Write CM Event and Qualifier Registers for particular event of interest
Write CM Performance Counter Control Register to reset and start counters
Perf Int En = 0 (no interrupt on overflow)

Perf Ovf Stop = 0(no stop on overflow).

Pl Reset = 1, Pl CountOn = 1

PO_Reset = 1, PO_CountOn = 1

Cycl Cnt Reset = 1, Cycl Cnt CountOn =1

Wait for some relatively small period of time (i.e., 2 seconds)

Write CM Performance Counter Control Register to stop counters

P1 Counton = 0, PO _CountOn=0, Cycl Cnt CountOn = 0

Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers

If more events, go to start (or if measuring same counter go to step 2 instead)

14.2.3.2 Stop and Interrupt on Overflow

A second CM3 performance counter usage model involves setting up the counters to stop and
interrupt on overflow. This runs the counters until one of the counters (usually the cycle
counter) reaches the 32-bit limit. An example of such a code sequence is:

SMIPS

start:

Write CM Event and Qualifier Registers for particular event of interest
Write CM Performance Counter Control Register to reset and start counters
Perf Int En = 1 (interrupt on overflow)

Perf Ovf_Stop = 1(stop on overflow).

Pl Reset = 1, P1 CountOn = 1

PO_Reset = 1, PO_CountOn = 1

Cycl Cnt Reset = 1, Cycl Cnt CountOn =1

When interrupt occurs:

Read CM Performance Counter Status Register

Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers

283

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Write CM Performance Counter Control Register to reset counters

(clears status register and interrupt)

P0_Reset = 1, Pl Reset = 1, Cycl Cnt Reset =1

If more events, go to start (or if measuring same counter go to step 2 instead)

14.2.3.3 Large Count Capability

If larger counts than can fit into the 32-bit counters are required, the counters can be set up
to interrupt, but not stop, on overflow. Memory variables can then count the number of over-
flows, as shown below:

start:

Write CM Event and Qualifier Registers for particular event of interest

Write CM Performance Counter Control Register to reset and start counters

Perf Int En = 1 (interrupt on overflow)

Perf Ovf Stop = 0 (do not stop on overflow).

Pl Reset = 1, P1 CountOn = 1

P0_Reset = 1, PO_CountOn = 1

Cycl Cnt Reset = 1, Cycl Cnt CountOn = 1

When interrupt occurs:

<status>=Read CM Performance Counter Status Register

Increment <overflow counts>[counter] for each counter with <status> = 1

Write <status> to CM Performance Counter Status Register to clear interrupt

When run limit is reached then

Write CM Performance Counter Control Register to stop counters

Pl Counton = 0, PO _CountOn=0, Cycl Cnt CountOn = 0

Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers

Write CM Performance Counter Control Register to reset counters

(clears status register and interrupt)

PO_Reset = 1, P1 Reset = 1, Cycl Cnt Reset =1

If more events, go to start (or if measuring same counter go to step 2 instead)

In the above model, the final counts are calculated for each counter by multiplying
<overflow count>[counter] by 4G and adding the final values in the Performance Counter
register described below.

284

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
14.2.4 CM3 Performance Counter Control Register, GCR_DB_PC_CTL (offset =

0x0800)
Table 14.5 CM3 Performance Counter Control Register Bit Assignments
Name Bits Reset | RIW Description
RESERVED 63 :31 0 R Reads as 0x0. Must be written with a value of 0x0.
PERF_INT_EN 30 0 R/W | Enable Interrupt on counter overflow. If set to 1, a CM3 perfor-

mance counter interrupt is generated when any enabled CM3
performance counter overflows.

PERF_OVR_STOP

29 0 R/W | Stop Counting on overflow. If set to 1, all CM3 Performance
counters stop counting when any enabled CM3 performance
counter overflows i.e., the counter has reached OxFFFF_FFFF.

RESERVED

28:10 0 R Reads as 0x0. Must be written with a value of 0x0.

P1_RESET

9 0 RW If P1_RESET is written to 1 when P1_COUNTON is written to
1, then CM3 Performance Counter 1 and the P1_OF bit is reset
before counting is started. If P1_RESET is written to 0 when
P1_COUNTON is written to 1, then counting is resumed from
previous value. This bit is automatically set to 0 when the
counter is reset, so P1_RESET is always read as 0.

P1_COUNTON

8 0 RW | Start/Stop Counting. If this bit is set to 1 then CM3 Perfor-
mance Counter 1 starts counting the specified event. If this bit
is set to 0 then CM3 Performance Counter 1 is disabled. This
bit is automatically set to O if any counter overflows and Per-
f_Ovf_Stopis setto 1.

PO_RESET

7 0 RwW If PO_RESET is written to 1 when PO_COUNTON is written to
1, then CM3 Performance Counter 0 and the PO_OF bit is reset
before counting is started. If PO_RESET is written to 0 when
PO_COUNTON is written to 1, then counting is resumed from
previous value. This bit is automatically set to 0 when the
counter is reset, so PO_RESET is always read as 0.

PO_COUNTON

6 0 RW | Start/Stop Counting. If this bit is set to 1 then CM3 Perfor-
mance Counter O starts counting the specified event. If this bit
is set to 0 then CM3 Performance Counter 0 is disabled. This
bit is automatically set to O if any counter overflows and Per-
f_Ovf_Stopis setto 1.

CYCL_CNT_RESET

5 0 RW | If CYCL_CNT_RESET is written to 1 when
CYCL_CNT_COUNTON is written to 1, then CM3 Cycle
Counter and the Cycl_Cnt_OF bit is reset before counting is
started. If CYCL_CNT_RESET is written to 0 when
CYCL_CNT_COUNTON is written to 1, then counting is
resumed from previous value. This bit is automatically set to 0
when the counter is reset, so CYCL_CNT_RESET is always
read as 0.

CYCL_CNT_COUNTON

4 9 RW | Start/Stop the Cycle Counter. If this bit is set to 1 then CM3
Cycle Counter starts counting. If this bit is set to 0 then CM3
Cycle Counter is disabled. This bit is automatically set to O if
any Counter Overflows and Perf_Ovf_Stop is set to 1.

PERF_NUM_CNT

3:0 0x2 R The number of performance counters implemented (not includ-
ing the cycle counter). The CM3 has 2 performance counters.

SMIPS

a GlobalFoundries company

285

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 14.6 CM3 Performance Counter Event Types

Event #

Related Events

Qualifiers

Description/Comments

0

None

No events are
enabled for counting.
This is the lowest
power mode.

Coherence Manager
Requests

Port
Thread
Target
Cmd
Prefetch
CCA

Size

L1 State
L2 State
L2 Locked
Eviction
Bank
Scheduler

Can be used in conjunction with a cycle count to
determine the number of requests received in a given
period of time.

Refer to Table 14.7 for more information.

I/0 Traffic Requests

Which IOCU
Direction/Cacheability
Size

Length

Prefetch

Device ID
Transaction ID

Counts the requests received by the IOCU.

Refer to Table 14.8 for more information.

Memory Interface Requests

Direction
Size

Length
Cacheability
Source
Thread
Code/data
Prefetch

Counts the number of Memory requests issued.

Refer to Table 14.9 for more information.

Reserved

MEM AXI Bus Utilization

channel
ready
valid

Measure Utilization of main memory AXI/ACE bus
Refer to Table 14.10 for more information.

I0OCUO AXI Bus Utilization

IOCU1 AXI Bus Utilization

10

I0CU2 AXI Bus Utilization

11

|I0CU3 AXI Bus Utilization

12

I0CU4 AXI Bus Utilization

13

IOCUS5 AXI Bus Utilization

14

IOCUG6 AXI Bus Utilization

15

I0CU7 AXI Bus Utilization

channel
ready
valid

Measure Utilization of corresponding IOCU bus
Refer to Table 14.10 for more information.

SMIPS

a GlobalFoundries company

286

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 14.6 CM3 Performance Counter Event Types (continued)

Event # Related Events Qualifiers Description/Comments
17 CM N-trace Dropped Mes- responses Count number of messages dropped by CM Trace
sages requests due to overflow.
port enables Refer to Table 14.11 for more information.
18 CM N-trace overflow cycle None Counts the number of clock cycles for which CM
length N-trace overflow took to finish.

SMIPS

a GlobalFoundries company

287

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 14.7 Coherence Manager Request Qualification

Bit Qualifier Group Qualifier Value Description/Comments

63 2 Reserved unused Reserved for future use. Set all bits to 1.

62 1

61 0

60 1 Scheduler Scheduler 1 Request processed by CM scheduler 1.

59 0 Scheduler 0 Request processed by CM scheduler 0.

58 1 Bank Bank 1 Request sent to L2 bank 1.

57 0 Bank 0 Request sent to L2 bank 0.

56 2 Eviction L2 eviction no L1 eviction Request causes an L2 eviction but not and L1
eviction. This covers all cases where the evicted
line is either NOT in the L1 cache, or in the L1
cache, but not in the Modified or Exclusive state.

55 1 L2 eviction with L1 eviction Request causes both an L2 and L1 eviction. This
covers the case where the evicted line is in the L1
cache, and is in either the Modified or Exclusive
state.

54 0 no L2 eviction Request does not cause an eviction.

53 1 L2 Locked Locked L2 line is valid and locked.

52 0 Not locked L2 line is not locked (or the line is invalid).

51 3 L2 State Modified L2 line is in state modified.

50 2 Exclusive L2 line is in state exclusive.

49 1 Shared L2 line is in state shared.

48 0 Invalid L2 line is invalid.

47 2 L1 State Exclusive/Modified Line is Exclusive or Modifed in one of the cores.

46 1 Shared Line is Shared in at least one of the cores.

45 0 Invalid Line is not valid in any of the core L1s.

44 1 Size line Request for 1 cache line of data.

Note: This counts the burst length as seen by the
Coherent Manager. Requests form the I/O Sub-
system may be longer, but the IOCU may break
these into multiple smaller requests.

43 0 Less than a line Request for less than a cache line.

SMIPS

a GlobalFoundries company

288

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 14.7 Coherence Manager Request Qualification (continued)

Bit Qualifier Group Qualifier Value Description/Comments

42 2 Other Request hasa cacheability attribute other than UC/
UCA.

41 1 UCA Request has an accelerated un-cached cacheabil-
ity attribute.

40 0 uc Request has an un-cached cacheability attribute.

39 23 Other command

38 22 command L3 Cache all L3 cacheop including FetchNLock.

37 21 L2 Cache

36 20 L1D Cache

35 19 L1l Cache

34 18 Sync

33 17 RegWrite

32 16 RegRead

31 15 Tag_Err

30 14 GetToOwn

29 13 Prefetch Write Invalidate

28 12 Prefetch Share

27 11 Prefetch Own

26 10 CohReadDiscardAllocate

25 9 CohWritelnvalidate

24 8 CohWriteBack

23 7 CohUpgradeSC

22 6 CohUpgrade

21 5 CohEvict

20 4 CohReadDiscard

19 3 CohReadShare

18 2 CohReadOwn

17 1 Legacy Write Request is a legacy write command. This is used
for all non-coherent writes.
Note: When a processor is in coherent mode, L1
cache writebacks are always considered coherent,
so the result is a CohWriteBack command, not a
Legacy Write command.

16 0 Legacy Read Request is a legacy read command. This is used
for all non-coherent reads, including code fetches.

SMIPS

a GlobalFoundries company

289

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 14.7 Coherence Manager Request Qualification (continued)

Bit Qualifier Group Qualifier Value Description/Comments
15 1 Target Register bus target Request targets a device on the register bus such
as GCR, APLIC, CPC, DBU, etc.
14 0 Memory Request targets memory (coherent or non-coher-
ent).
13 3 Thread Thread 3 Request originated from thread 3.
12 2 Thread 2 Request originated from thread 2.
11 1 Thread 1 Request originated from thread 1.
10 0 Thread 0 Request originated from thread 0.
9 9 Port Intervention Request originated from an intervention.
8 8 Prefetch Request originated from the prefetcher.
7 7 Port 7 Request originated from Input Port x, x is assigned
Cores before IOCU. For example, for a 4 core, 2
6 6 Port 6 I0CU configuration, the ports are assigned as fol-
lows:
° ° Port 5 Port 5 : IOCU 1
4 4 Port 4 Port 4: IOCU 0
Port 3: Core 3
3 3 Port 3 Port 2: Core 2
Port 1: Core 1
2 2 Port 2 Port 0: Core O
1 1 Port 1
0 0 Port 0
Table 14.8 1/0 Traffic Qualification
Bit Qualifier Group Qualifier Value Description/Comments
41:37 4:0 transaction ID Specific transaction ID Match specific transaction ID. This field is used
only when All transaction ID is 0.
36 0 All transaction ID If set, any transaction ID matches, transaction ID
group ignored.
35:30 5.0 device ID Specific device ID Match specific device ID. This field is used only
when All device ID is 0.
29 0 All device ID If set, any device ID matches, device ID group
ignored
28 1 Prefetch prefetch I0OCU request is a prefetch
27 0 not prefetch I0OCU request is not a prefetch
26 1 Aligned Misaligned I0OCU request address is not aligned
25 0 Aligned address I0CU request address is aligned
\{k . 290
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 14.8 I/O Traffic Qualification (continued)

Bit Qualifier Group Qualifier Value Description/Comments

24 8 Length 129-256 Number of transfers in a burst.

23 7 65-128

22 6 33-64

21 5 17-32

20 4 9-16

19 3 5-8

18 2 3-4

17 1 2

16 0 1

15 7 Size 128 Indicates the number of bytes in each transfer in
14 5 64 the burst.

13 5 32

12 4 16

1 3 8

10 2 4

9 1 2

8 0 1

7 2 Direction/ Write - coherent Coherent write request.

6 1 cacheability Write - UC Uncached write request.

5 0 Read - coherent no allocate Coherent read request without allocate.

4 1 Read - coherent with allocate | Coherent read request with allocate.

3 0 Read - UC Uncached read request.
2:0 2:0 I0OCU Number 0-7 Encoded value of which IOCU requests to count

Table 14.9 Memory Interface Request Qualification
Bit Qualifier Group Qualifier Value Description/Comments
45:41 4:0 Guest ID Specific Guest ID Match specific guest ID. This field is only used
when All Guest ID is 0.
40 0 All Guest ID All Guest ID If set, any guest ID matches, Guest ID group
ignored.
39 1 Prefetch Prefetch Prefetch memory request.
38 0 Not prefetch Not a prefetch memory request.

\}\<M I PS Copyrigr:tug.zcz)z;;

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 14.9 Memory Interface Request Qualification

Bit Qualifier Group Qualifier Value Description/Comments
37 1 Code/data Code Request indicated it was accessing code.
36 0 Data Request indicated it was accessing data.
35 3 Thread Thread 3 Request originated from thread 3.
34 2 Thread 2 Request originated from thread 2.
33 1 Thread 1 Request originated from thread 1.
32 0 Thread 0 Request originated from thread 0.
31 Reserved
30
29 7 Source Input Port 7 Request originated from Input Port x, x is assigned
Cores before IOCU. For example, for a 4 core, 2
28 6 Input Port 6 IOCU configuration, the ports are assigned as fol-
27 5 Input Port 5 :;’(‘;";% oCU 1
26 4 Input Port 4 Port 4: 10CU 0
Port 3: Core 3
25 3 Input Port 3 Port 2: Core 2
24 2 Input Port 2 ig: (1) gg:g (1)
23 1 Input Port 1
22 0 Input Port O
21 3 Cacheability Cacheable not read discard | Any coherent access that is not a read discard.
20 2 Cacheable read discard Coherent read discard.
19 1 UCA Uncached Accelerate access.
18 0 uc Uncached access.
17 7 Length 7 Number of transfers in a burst.
16 6 6
15 5 5
14 4 4
13 3 3
12 2 2
1 1 1
10 0 0

\}\<M I PS Copyrigr:tug.zcz)z

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 14.9 Memory Interface Request Qualification

Bit Qualifier Group Qualifier Value Description/Comments
9 7 Size 128 Indicates the number of bytes in each transfer in
the burst.
8 6 64
7 5 32
6 4 16
5 3 8
4 2 4
3 1 2
2 0 1
1 1 Direction Write Write
0 0 Read Read
Table 14.10 AXI Bus Utilization Qualification
Bit Qualifier Group Qualifier Value Description/Comments
6:4 2:0 channel 0: AR count transactions on the specified channel
1. AW
2:W
3R
4:B
3 1 ready ready count when xREADY signal is asserted
2 0 not_ready count when XxREADY signal is not asserted
1 1 valid valid count when xVALID is asserted
0 0 not_valid count when xVALID is not asserted
Table 14.11 CM N-trace Dropped Message Qualification
Bit Qualifier Group Qualifier Value Description/Comments
7 0 trace_type response trace responses. only used for tmh1_mulp, tmh1,
tmhO_mulp, tmh0, and ubrh
6 0 request trace requests. only used for tmh1, tmhO

SMIPS

a GlobalFoundries company

293
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 14.11 CM N-trace Dropped Message Qualification (continued)

Bit Qualifier Group Qualifier Value Description/Comments

5 5 trace_port tmh1_mulp Count dropped messages due to multiple-
responses for main pipeline #1

4 4 tmh1 Count dropped from main pipeline #1

3 3 tmhO_mulp Count dropped messages due to multiple-
responses for main pipeline #0

2 2 tmhO Count dropped from main pipeline #0

1 1 prsh Count messages dropped at perf counter tracing
port

0 0 ubrh Count messages dropped from uncached
responses

14.3 Histogram Performance Counter

SMIPS

The Histogram Performance Counter has three main purposes.
e Keep track of latencies for all requests going through CM main pipe.

e Provide ability to control granularity of the counter in order to save number of
program counters.

e Provide ability to rebuild the latency histogram for performance analysis, especially to
detect outlier transactions.

The performance monitor histogram function can be used to count the latencies of different
accesses to the L2 cache in a single execution run. The latencies are counted from the time
the request is received by the CM logic on a REQ port from a Core or IOCU to the time the
response is ready to be placed on the RIN bus connected to the same Core or IOCU. There
are a few build parameters that are used to control if this function is instantiated in the hard-
ware; how many count registers should be instantiated; and the size of the internal (HW
access only) counter.

The user can program the number of count registers used to capture the latency data in a
histogram format. Each count register corresponds to a bucket with a range of latency val-
ues. The range of latency values for a bucket is programmable. The value in each count reg-
ister corresponds to a single vertical bar in a typical histogram chart. The number of count
registers used can be from 2 to 64 registers, inclusive - although the maximum number of
count registers that can be used is limited by the number of count registers specified at build
time.

The performance monitor histogram function monitors up to 8 input REQ ports (any combi-
nation of COREs or IOCUs). This is limited by the value of CM3_NUM_CORES plus the value
of CM3_NUM_IOCUS which are specified at build time. Filtering is provided via the perfor-
mance monitor event qualification registers to control what type of operations are counted.

Event counting by the histogram related logic works a bit differently that the normal event
counting by the performance monitor. The histogram function starts the count of cycles to
calculate the latency as an op is received from the REQ bus associated with a Core or IOCU.
The latency value is captured as the operation result is sent to the RIN bus back to the
appropriate Core or IOCU. This permits the latency values to include the number of cycles
the incoming ops spend in the input queues before being sent to the L2 cache. This means
that there are few of the performance monitoring filtering settings that do not work with the

294

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

histogram function; but most of them are supported by the histogram function. The details of
the filtering support are provided in the section on filtering.

14.3.1 Histogram Register Map

Table 14.12 lists the histogram register map.

Table 14.12 Histogram Register Map

Offset

Acronym

Description

0x1000

GCR_DB_PC_HIST_CTL

CM PC Histogram Control Register

0x1008

GCR_DB_PC_HIST_GRAN

CM PC Histogram Granularity Register

0x1010

GCR_DB_PC_HIST_CNTIO0]

CM PC Histogram Counter Register 0

0x1018

GCR_DB_PC_HIST_CNTI[1]

CM PC Histogram Counter Register 1

0x1020

GCR_DB_PC_HIST_CNT[2]

CM PC Histogram Counter Register 2

0x1028

GCR_DB_PC_HIST_CNTI[3]

CM PC Histogram Counter Register 3

0x1030

GCR_DB_PC_HIST_CNT[4]

CM PC Histogram Counter Register 4

0x1038

GCR_DB_PC_HIST_CNTI[5]

CM PC Histogram Counter Register 5

0x1040

GCR_DB_PC_HIST_CNTI6]

CM PC Histogram Counter Register 6

0x1048

GCR_DB_PC_HIST_CNTI[7]

CM PC Histogram Counter Register 7

0x1050

GCR_DB_PC_HIST_CNTI[8]

CM PC Histogram Counter Register 8

0x1058

GCR_DB_PC_HIST_CNTI[9]

CM PC Histogram Counter Register 9

0x1060

GCR_DB_PC_HIST_CNT[10]

CM PC Histogram Counter Register 10

0x1068

GCR_DB_PC_HIST_CNT[11]

CM PC Histogram Counter Register 11

0x1070

GCR_DB_PC_HIST_CNT[12]

CM PC Histogram Counter Register 12

0x1078

GCR_DB_PC_HIST_CNT[13]

CM PC Histogram Counter Register 13

0x1080

GCR_DB_PC_HIST_CNT[14]

CM PC Histogram Counter Register 14

0x1088

GCR_DB_PC_HIST_CNT[15]

CM PC Histogram Counter Register 15

0x1090

GCR_DB_PC_HIST_CNT[16]

CM PC Histogram Counter Register 16

0x1098

GCR_DB_PC_HIST_CNT[17]

CM PC Histogram Counter Register 17

0x10A0

GCR_DB_PC_HIST_CNT[18]

CM PC Histogram Counter Register 18

0x10A8

GCR_DB_PC_HIST_CNT[19]

CM PC Histogram Counter Register 19

0x10B0O

GCR_DB_PC_HIST_CNT[20]

CM PC Histogram Counter Register 20

0x10B8

GCR_DB_PC_HIST_CNT[21]

CM PC Histogram Counter Register 21

0x10C0

GCR_DB_PC_HIST_CNT[22]

CM PC Histogram Counter Register 22

0x10C8

GCR_DB_PC_HIST_CNT[23]

CM PC Histogram Counter Register 23

0x10D0

GCR_DB_PC_HIST_CNT[24]

CM PC Histogram Counter Register 24

0x10D8

GCR_DB_PC_HIST_CNT[25]

CM PC Histogram Counter Register 25

0x10EO

GCR_DB_PC_HIST_CNT[26]

CM PC Histogram Counter Register 26

0x10E8

GCR_DB_PC_HIST_CNT[27]

CM PC Histogram Counter Register 27

0x10F0

GCR_DB_PC_HIST_CNT[28]

CM PC Histogram Counter Register 28

0x10F8

GCR_DB_PC_HIST_CNT[29]

CM PC Histogram Counter Register 29

0x1100

GCR_DB_PC_HIST_CNT[30]

CM PC Histogram Counter Register 30

SMIPS

a GlobalFoundries company

295
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Table 14.12 Histogram Register Map (continued)

Offset

Acronym

Description

0x1108

GCR_DB_PC_HIST_CNT[31]

CM PC Histogram Counter Register 31

0x1110

GCR_DB_PC_HIST_CNT[32]

CM PC Histogram Counter Register 32

0x1118

GCR_DB_PC_HIST_CNT[33]

CM PC Histogram Counter Register 33

0x1120

GCR_DB_PC_HIST_CNT[34]

CM PC Histogram Counter Register 34

0x1128

GCR_DB_PC_HIST_CNT[35]

CM PC Histogram Counter Register 35

0x1130

GCR_DB_PC_HIST_CNT[36]

CM PC Histogram Counter Register 36

0x1138

GCR_DB_PC_HIST_CNT[37]

CM PC Histogram Counter Register 37

0x1140

GCR_DB_PC_HIST_CNT[38]

CM PC Histogram Counter Register 38

0x1148

GCR_DB_PC_HIST_CNT[39]

CM PC Histogram Counter Register 39

0x1150

GCR_DB_PC_HIST_CNT[40]

CM PC Histogram Counter Register 40

0x1158

GCR_DB_PC_HIST_CNT[41]

CM PC Histogram Counter Register 41

0x1160

GCR_DB_PC_HIST_CNT[42]

CM PC Histogram Counter Register 42

0x1168

GCR_DB_PC_HIST_CNT[43]

CM PC Histogram Counter Register 43

0x1170

GCR_DB_PC_HIST_CNT[44]

CM PC Histogram Counter Register 44

0x1178

GCR_DB_PC_HIST_CNT[45]

CM PC Histogram Counter Register 45

0x1180

GCR_DB_PC_HIST_CNT[46]

CM PC Histogram Counter Register 46

0x1188

GCR_DB_PC_HIST_CNT[47]

CM PC Histogram Counter Register 47

0x1190

GCR_DB_PC_HIST_CNT[48]

CM PC Histogram Counter Register 48

0x1198

GCR_DB_PC_HIST_CNT[49]

CM PC Histogram Counter Register 49

0x11A0

GCR_DB_PC_HIST_CNT([50]

CM PC Histogram Counter Register 50

0x11A8

GCR_DB_PC_HIST_CNT[51]

CM PC Histogram Counter Register 51

0x11B0

GCR_DB_PC_HIST_CNT[52]

CM PC Histogram Counter Register 52

0x11B8

GCR_DB_PC_HIST_CNT[53]

CM PC Histogram Counter Register 53

0x11CO

GCR_DB_PC_HIST_CNT[54]

CM PC Histogram Counter Register 54

0x11C8

GCR_DB_PC_HIST_CNT[55]

CM PC Histogram Counter Register 55

0x11D0

GCR_DB_PC_HIST_CNT[56]

CM PC Histogram Counter Register 56

0x11D8

GCR_DB_PC_HIST_CNT[57]

CM PC Histogram Counter Register 57

0x11EOQ

GCR_DB_PC_HIST_CNT[58]

CM PC Histogram Counter Register 58

Ox11E8

GCR_DB_PC_HIST_CNT[59]

CM PC Histogram Counter Register 59

0x11FO0

GCR_DB_PC_HIST_CNT[60]

CM PC Histogram Counter Register 60

0x11F8

GCR_DB_PC_HIST_CNT[61]

CM PC Histogram Counter Register 61

0x1200

GCR_DB_PC_HIST_CNT[62]

CM PC Histogram Counter Register 62

0x1208

GCR_DB_PC_HIST_CNT[63]

CM PC Histogram Counter Register 63

SMIPS

a GlobalFoundries company

296
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

14.3.2 Histogram Register Descriptions

63

14.3.2.1 CM PC Histogram Control Register (GCR_DB_PC_HIST_CTL) Offset: 0x1000

This register is used to indicate how many count registers (one for each histogram bucket)
should be used when the histogram function is enabled.

e If the user desires to run with 2 buckets, then two enables should be set to 1'b1: bits
[0] and [1] - while bits [63:2] are set to 1'b0.

e If the user desires to run with 16 histogram buckets, then the register should be
written (single atomic write) as 64h'0000_0000_0000_FFFF.

The act of writing bit [0] starts the counter. The enable bits in the GCR_DB_PC_HIST_CTL
register are allocated by the hardware to the instantiated count registers starting with bit [0]
and continuing to bit [63].

The CM3_DB_PC_HIST_NUM_CNTRS define controls how many count registers are created at
build time. Software must not set more enable bits to 1'b1 than the number of instantiated
count registers. Software may choose to set fewer enable bits than there are count regis-
ters; this means that the hardware will not use some of the existing count registers. The
enable bits set to 1'b1 MUST be contiguous. Hardware looks for the first 1'b0 enable bit
(starting from bit 0) to determine how many count registers to use.

Figure 14.3 CM PC Histogram Control Register Bit Assignments

COUNTER_ENABLE[63:0]

Table 14.13 CM PC Histogram Control Register Bit Descriptions

Name Bits Description R/W Reset State

COUNTER_ENABLE 63:0 | This register is used to enable each of the histogram R/W 0

counters. Each bit enables corresponding histogram per-
formance counter. Bit 0 enables counter 0, while bits 63
enables counter 63.

SMIPS

14.3.2.2 CM PC Histogram Granularity Register (GCR_DB_PC_HIST_GRAN) Offset: 0x1008

This register holds the size of the range of latencies counted in each count register (bucket
size). The range/granularity can be set to any value from 1 to 1024 inclusive.

For example, setting the granularity to 4 will allocate the latencies to the count registers as
follows:

e cnt0O-0to3
e cntl-4to7
e cnt2-8toll, etc.

Setting the register GCR_DB_PC_HIST_GRAN[63:0] to a granulatiry of 8
(64'h0000_0000_0000_0008) will allocate the latencies to the count registers as follows:

e cnt0-0to7
e cntl -8to 15
e cnt2 - 16 to 23, etc.

The hardware histogram function only uses bits [10:0] because the maximum bucket size is
1024. However, all 64 bits of the register are implemented and accessible by software via
reads or writes.

297

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Figure 14.4 CM PC Histogram Granularity Register Bit Assignments

63

1 10

RESERVED

GRANULARITY

Table 14.14 CM PC Histogram Granularity Register Bit Descriptions

This is used to sort latencies into buckets. Using this field,
the range can be set to a value of 1 to 1024 inclusive.

Name Bits Description R/W Reset State
RESERVED 63:11 Reserved WARL 0
GRANULARITY 10:0 This register is used to set the granularity of the counters. R/W 0

14.3.2.3 CM PC Histogram Counter Registers (GCR_DB_PC_HIST_CNT[0-63]) Offset: 0x1010-0x1208

These are the 64 histogram count registers. The number of count registers instantiated at

build time is specified by the defined constant, CM3_DB_PC_HIST_NUM_CNTRS. The number
of registers used at run time is given by the number of enable bits set to 1'b1 in the GCR_D-
B_PC_HIST_CTL register described above.

The full 64 bits of the count registers are used for the histogram count, although as a practi-
cal matter, the count will never reach the max value representable by 64 bits. Software can

read/write GCR_DB_PC_HIST_CNTO register at address 20'h1010. For the offset location for
each Counter register, refer to Table 14.12.

31

Figure 14.5 CM PC Histogram Counter Register Bit Assignments

PC_HIST_COUNTER[0-63]

Table 14.15 CM PC Histogram Counter Register Bit Descriptions

Name Bits Description R/W Reset State
PC_HIST_COUNTER 31:0 There are up to 64 Histogram Counter register, with each R/W 0
registers containing a 32-bit histogram count. The number
of count registers is a build time configuration setting.
There can be anywhere from 8 to 64 count registers
instantiated.
\{k . 298
\ MIPS mips.com
4 Copyright © 2025

a GlobalFoundries company

MIPS, a GlobalFoundries company. All Rights Reserved

Chapter 15

Data Scratch Pad RAM

The optional Data Scratch Pad RAM (DSPRAM) block provides a general scratch pad RAM used for tem-
porary storage of data. The DSPRAM provides a connection to on-chip memory or memory-mapped regis-

ters, which are accessed in parallel with the L1 data cache to minimize access latency.

The DSPRAM interface connects the CPU to an external customer designed DSPRAM module (a refer-
ence design is provided with the 18500 CPU). All the threads in the same CPU share the DSPRAM. For a

system with multiple CPUs there is one DSPRAM per CPU.

The default RAM size is 64 KB when implemented, but can be set to any power of 2 (such as 128 KB, 256

KB, etc.) The base address of the DSPRAM in memory is set using a new CSR register.

CPU

Lsu

DSPRAM interface

MCP Inteface

CM

DSPRAM

DMA interface
MBIST Interface

15.1 Overview

Figure 1: DSPRAM Interface

The DSPRAM module has the following features:

+ 16 Byte wide data path for both read and write operations.

+ Data can be protected (parity/ECC/none on 32-bit granularity).

SMIPS

a GlobalFoundries company

299
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

* One or multi-cycle latency for read/write in byte invariant format.

* Multi-threaded design, so the blocking of one thread may not block other thread.

* Root physical address (RPA) is checked against base and range to validate access.

15.1.1 New CSR Register

A new CSR register has been added to facilitate access to the DSPRAM as shown in Table 15.1 .

Table 15.1 CSR Register Used for Accessing the DSPRAM Module

Register
Offset Register Name Description
0x7CC mipsdsprambase Per-core register containing the base address of the DSPRAM region,

as well as additional configuration bits.

63

The bit assignments for this register is shown below.

15.1.1.1 MIPS DSPRAM Base Address Register — mipsdsprambase

62 61

Figure 15.1 MIPS DSPRAM Base Register Bit Assignments

44 43

32

SO

SLF

0 ADDR([31:20]

31

121

ADDRI[19:0] 0

SIZE EN

Table 15.2 MIPS DSPRAM Base Register Bit Descriptions

Name

Bits

Description

Reset State

SO

63

Strict Ordering. By default the DSPRAM interface allows for specu-
lative loads to bypass ahead of DSPRAM stores.

When this bit is set, the core asserts and additional signal (sdb_d-
sp_empty) to notify the DSPRAM logic that there are no stores of
the same thread pending in the store data buffer. This information
can then be used to prevent a DSPRAM load from being performed
until older DSPRAM stores from the same thread have been com-
pleted.

To prevent deadlock, when this bit is set, younger stores will not be
issued to the LSU till all older loads (DSPRAM or non-DSPRAM) of
the same thread have graduated.

R/W

0

SLF

62

Store-to-Load Forwarding. By default, a pending DSPRAM store in
the store buffer cannot forward its data to a younger DSPRAM load
with uncached CCA attributes. When this bit is set, the existing
DSPRAM-specific check is disabled, allowing for forwarding and
cancelling of the DSPRAM read.

R/W

61:44

Reserved. Set to 0.

R/W

SMIPS

a GlobalFoundries company

300
mips.com
Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
Table 15.2 MIPS DSPRAM Base Register Bit Descriptions (continued)

Name Bits Description R/IW Reset State

ADDR 43:12 |Base address. This field stores the base physical address of the R/W 0
DSPRAM in memory. Note that the DSPRAM base address must be
aligned with respect to the size of the DSPRAM.

To compute the value for the ADDR field, shift the desired DSPRAM
base address right by 16 bits. Conversely, to reconstruct the
DSPRAM base address from the ADDR field, take the ADDR field's
value and shift it left 16 bits. For example, a DSPRAM base address
of 0x12340000 would be represented by an ADDR field value of
0x1234.

For example, for a 64KB DSPRAM, the ADDR field does not need
any lower bits to be cleared, as the ADDR field is shifted left 16 bits
to represent the base address, and will result in a 64KB-aligned
base address. For a 1IMB DSPRAM, the lower 20 bits of the base
address must be zero, therefore the lower 4 bits of the ADDR field
must be zero to ensure proper 1MB alignment of the DSPRAM base

address.
0 11:6 | Reserved. Set to 0. R/W 0
SIZE 5:1 This field indicates the size of the DSPRAM device and is encoded R/W 0x10

as 25\ZE pytes. With a default value of 0x10 (decimal = 16), this
yields a size of 216 bytes, which is 65,536 bytes, or 64 KBytes.
The actual size can be less than 64 KBytes, but the minimum size
of the address window must be 64 KBytes. For example, if a mem-
ory slice occupies only 16 KBytes, then the upper 48 KBytes of the
address window is unused.

EN 0 This bit must be set to allow DSPRAM accesses. A read of this reg- R/W 0
ister gives the current state of this bit.

15.1.2 Changes to Existing CSR Registers — Error Reporting

To accommodate error reporting by the DSPRAM, the following CSR register has been modified as shown
below.

15.1.2.1 Cache Error — mipscacheerr (offset = 0x7C5)

In the 18500 mipscacheerr register, the following fields have changed as defined below. If not defined, the
field(s) behave the same as in previous generation cores.

» Bits 29:26 are used to indicate the array where the error was detected. Encoding 0x8 of this field was
added to indicate a DSPRAM error.

+ Bits 21:20 are used to indicate the way where the error occurred. However, since the DSPRAM is a 1-
way set associative memory, this field is not used.

15.2 DSPRAM Software Interface

The DSPRAM is accessed by Load and Store instructions. Read requests for load instructions can be
issued to the DSPRAM module speculatively. Write requests for store instructions are non-speculative.
The read/write access to the DSPRAM is 16 Bytes (128 bits) wide for data.

301

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

The CACHE, LL/SC variants, GINV variants, and PREF instructions are not supported on the address
space of the DSPRAM. The address of the load/store instruction to the DSPRAM must be aligned to the
size of access (i.e. 4 bytes, 8 bytes, or 16 bytes). Any violation of the address alignment can cause an
address error exception (i.e. unaligned loads/stores to DSPRAM are not supported). The SYNC instruction
will enforce ordering of DSPRAM loads and stores.

15.3 Accessing the DSPRAM

As mentioned above, the DSPRAM is accessed using the mipsdsprambase CSR register located at offset
0x7CC. From a kernel software perspective, there is one mipsdsprambase register per core.

Figure 2 shows a 2-hart implementation.
Figure 2: Accessing the DSPRAM

CSR interface

v

mipsdsprambase Hart 0 ———P

DSPRAM

Hart 1 “—>

v

15.3.1 Register Programming Sequence

To select the DSPRAM block and set the address, size, and enable fields of the mipsdsprambase register,
the following programming sequence can be used:

1. Specify the base address location of the DSPRAM in the ADDR field (bits 43:12) of the mipsdspram-
base register.

2. Specify the size of the DSPRAM in the Size field in bits 5:1 of the mipsdsprambase register.

3. Set the EN enable bit, bit 0, to enable DSPRAM accesses. All three of these steps may be performed
by a single store instruction.

4. This is done by the privileged software (i.e. by operating system software if virtualization is not imple-
mented, or by the Hypervisor if virtualization is implemented).

These steps can be represented by the following assembly language code, along with an example transfer

of data:

la s5,TEST_DATA
#MCACHE Hit Wb Inv for L1
MCACHE (21, s5)

enter mmode ()

##DSPRAM_enable(TEST_DATA, 1) ##
1i t3, addr;\

1i t5, O0x0000FFFFFFFF0000;\
and t3, t3, t5;\

srli t3, t3, 4;\

\}\<M I PS Copyrigr::g;};:rz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

ori t3, t3,
cesrw (mipsdsprambase,

1i s4, Ox11l111111
sw s4, 0(s5)

##DSPRAM disable () ##
csrr (t3, mipsdsprambase) ;\
1i t5, OxXFFFFFFFFFFFE;\

and t3, t3,
csrw (mipsdsprambase,

15.3.2 Programming Constraints

#Storing to DSPRAM

The DSPRAM is shared across all harts in the core. As such, accesses to the DSPRAM must adhere to the

following constraints:

1. If multiple harts are present, each hart can access the DSPRAM independent of the other. Therefore, if
one hart stores data to a location in the DSPRAM, that data can be overwritten by another hart at any

time.

2. Since there is only one mipsdsprambase register per core, each hart can write to the mipsdsprambase
register. Therefore, if one hart sets the base address and size for the DSPRAM, that information can

be overwritten by another hart at any time.

For example, in the code example above, hart 0 places the DSPRAM at a base of 0x80000 with a size
of 64K, so the DSPRAM resides from 0x80000 - 0x8FFFF in memory. However, if hart 1 sets the base
address at a different value, such as 0xA0000, then the location of the DSPRAM will be moved.

It is incumbent upon software to ensure that these conditions do not occur.

SMIPS

a GlobalFoundries company

303

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

Chapter 16

Instruction Scratch Pad RAM

The optional Instruction Scratch Pad RAM (ISPRAM) block provides a general scratch pad RAM used for
temporary storage of instructions. The ISPRAM provides a connection to on-chip memory or memory-
mapped registers, which are accessed in parallel with the L1 instruction cache to minimize access latency.

The ISPRAM interface connects the CPU to an external customer designed ISPRAM module (a reference
design is provided with the 18500 CPU). All the threads in the same CPU share the ISPRAM. For a system
with multiple CPUs there is one ISPRAM per CPU.

The default RAM size is 64 KB when implemented, but can be set to any power of 2 (such as 128 KB, 256
KB, etc.) The base address of the ISPRAM in memory is set using a new CSR register.

ISPRAM I/F
CPU < 4

ISPRAM

DMA I/F

CM

MBIST I/F

Figure 1: ISPRAM Interface
16.1 Overview

The ISPRAM module has the following features:

+ 16 Byte wide data path for both read and write operations.

+ Data can be protected (parity/ECC/none on 32-bit granularity).

* One or multi-cycle latency for read/write in byte invariant format.

+ Multi-threaded design, so the blocking of one thread may not block other thread.

* Root physical address (RPA) is checked against base and range to validate access.

\}\<M I PS Copyrig?tirg;}zg

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
16.1.1 New CSR Register

A new CSR register has been added to facilitate access to the ISPRAM as shown in Figure 16.1

Figure 16.1 MIPS ISPRAM Base Register Bit Assignments

63 44 43 32
RSVD MIPSISPRAMBASE[47:36]
31 121 6 5 1 0
MIPSISPRAMBASE[35:16] RSVD SIZE EN

Table 16.1 MIPS ISPRAM Base Register Bit Descriptions

Name Bits Description R/W Reset State
RSVD 63:44 |Reserved. R 0
MIPSISPRAMBASE 43:12 | Contains bits 47:16 of MIPS ISPRAM base address in R/W Undefined
memory.
RSVD 11:6 |Reserved. R 0
SIZE 5:1 Size of the device. This field is encoded as 2*SIZE R/W Undefined

bytes. This value is preset at build time.
For a 64 KB DSPRAM, the SIZE field should be 5'h10.

EN 0 Write 1 to enable ISPRAM access. Read gives the cur- R/W Undefined
rent value of the bit.

16.1.2 Changes to Existing CSR Registers — Error Reporting

To accommodate error reporting by the ISPRAM, the following CSR register has been modified as shown
below.

16.1.2.1 Cache Error — mipscacheerr (offset = 0x7C5)

In the 18500 mipscacheerr register, the following fields have changed as defined below. If not defined, the
field(s) behave the same as in previous generation cores.

« Bits 29:26 are used to indicate the array where the error was detected. Encoding 0x9 of this field was
added to indicate an ISPRAM error.

+ Bits 21:20 are used to indicate the way where the error occurred. However, since the DSPRAM is a 1-
way set associative memory, this field is not used.

16.2 ISPRAM Software Interface

The ISPRAM is accessed during instruction fetches. The CACHE, LL/SC variants, GINV variants, and
PREF instructions are not supported on the address space of the ISPRAM. The instruction fetch to the
ISPRAM must be aligned to the size of access (i.e. 4 bytes, 8 bytes, or 16 bytes). Any violation of the
address alignment can cause an address error exception (i.e. unaligned loads/stores to ISPRAM are not
supported). The SYNC instruction will enforce ordering of ISPRAM loads and stores.

305

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00
16.3 Accessing the ISPRAM

As mentioned above, the ISPRAM is accessed using the mipsisprambase CSR register located at offset
0x7CD. From a kernel software perspective, there is one mipsisprambase register per core.

Figure 2 shows a 2-hart implementation.
Figure 2: Accessing the ISPRAM

CSR interface

mipsisprambase Hart 0 ———P

v

ISPRAM

Hart 1 “—>

v

16.3.1 Register Programming Sequence

To select the ISPRAM block and set the address, size, and enable fields of the mipsisprambase register,
the following programming sequence can be used:

1. Specify the base address location of the ISPRAM in the ADDR field (bits 43:12) of the mipsisprambase
register.

2. Specify the size of the ISPRAM in the Size field in bits 5:1 of the mipsisprambase register.

3. Set the EN enable bit, bit 0, to enable ISPRAM accesses. All three of these steps may be performed
by a single store instruction.

4. This is done by the privileged software (i.e. by operating system software if virtualization is not imple-
mented, or by the Hypervisor if virtualization is implemented).

These steps can be represented by the following assembly language code, along with an example transfer

of data:

la s5,TEST_DATA
#MCACHE Hit Wb Inv for L1
MCACHE (21, s5)

enter mmode ()

##ISPRAM_enable(TEST_DATA, 1) ##
1i t3, addr;\

1i t5, 0x0000FFFFFFFF0000;\
and t3, t3, t5;\

srli t3, t3, 4;\

ori t3, t3, 0x1;\

csrw (mipsisprambase, t3);\

1i s4, Ox11111111
sSw s4, 0(s5) #Storing to DSPRAM

\}\<M I PS Copyrigr::g;};:rz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

##ISPRAM disable () ##
csrr (t3, mipsisprambase) ;)\
1i t5, OXFFFFFFFFFFFE;\
and t3, t3, t5;\
csrw (mipsisprambase,

16.3.2 Programming Constraints

The ISPRAM is shared across all harts in the core. As such, accesses to the ISPRAM must adhere to the

following constraints:

1. If multiple harts are present, each hart can access the ISPRAM independent of the other. Therefore, if
one hart stores data to a location in the ISPRAM, that data can be overwritten by another hart at any

time.

2. Since there is only one mipsisprambase register per core, each hart can write to the mipsisprambase
register. Therefore, if one hart sets the base address and size for the ISPRAM, that information can be

overwritten by another hart at any time.

For example, in the code example above, hart 0 places the ISPRAM at a base of 0x80000 with a size
of 64K, so the ISPRAM resides from 0x80000 - Ox8FFFF in memory. However, if hart 1 sets the base
address at a different value, such as 0xA0000, then the location of the ISPRAM will be moved.

It is incumbent upon software to ensure that these conditions do not occur.

SMIPS

a GlobalFoundries company

307

mips.com

Copyright © 2025

MIPS, a GlobalFoundries company. All Rights Reserved

Chapter 17

Multithreading

The I8500 Multiprocessing System (MPS) incorporates hardware multithreading that executes
multiple threads in such a way that the threads appear to be run in parallel. This functionality
is performed entirely in hardware and does not require any software control. Hence this
chapter is only intended to provide an overview of multithreading and how it is implemented
in the I8500 MPS.

In the 18500, each thread is referred to as a hart. Each hart contains a complete system state
(General, CSR, and FP registers, TLB mappings, interrupt and exception model). In addition,
each thread has its own system debug, reset and various boot and exception vectors, and
memory coherency.

There are multiple types of multithreading implementations in MIPS cores and in the industry.
The I8500 MPS implements Simultaneous Multithreading, where the core can execute multi-
ple threads in parallel every cycle. In addition, instructions from different threads can execute
at the same time in the same pipeline stage. This allows for maximum throughput and mini-
mization of idle hardware during execution. The 18500 is a three-issue machine, allowing up
to three threads to execute in a single pipeline stage. In the 18500, all threads (up to 4) can
be fetched, decoded, issued, executed, and graduated in parallel.

17.1 Instruction Flow

The I8500 Instruction Fetch Unit (IFU) fetches instructions from a shared Instruction Cache
(IC) for all four threads. It fetches two instructions (for a single thread) in a cycle, using a
program counter (PC) for that thread. This pair of instructions are sent to the Execution Unit
(EXU). The IFU fetches instructions in a round-robin manner.

The IFU also manages a shared Instruction TLB (ITLB) structure. The ITLB performs instruc-
tion address translation, allowing complete independence amongst threads. This ITLB is
backed up by the larger Variable TLB (VTLB) and Fixed TLB (FTLB).

The translated instructions are passed to the Execution Unit (EXU), which is responsible for
decoding, issuing, executing and graduating the instructions. In addition, the EXU resolves all
data and resource conflicts and manages precise exceptions. In the I8500, the instructions
are issued and graduated in order.

Every cycle, the EXU decodes the top two instructions from each of the (up to) four threads
to determine which instructions are ready to issue, based on resource availability and data
dependencies. The EXU then takes that per-thread information from all four threads, and
selects one thread to issue 2 instructions, and another thread to issue 1 instruction, if avail-
able. This can result in up to three instructions being issued in a single cycle. The selection
process uses a round-robin scheme to ensure fairness and prevent starvation amongst the
threads. Instructions can be issued from any of the harts, hence the term Simultaneous Mul-
tithreading (SMT). Note that the 18500 always issues instructions in order.

308

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

Once the instructions are issued, they are executed in one of the functional units. During its
execution, each instruction is appropriately tagged for thread identification and instruction
order. This allows the proper instruction order to be maintained at graduation (completion)
time. If an instruction completes, but an earlier instruction from the same thread has not
graduated, the completed instruction remains in the graduation queue to maintain in-order
completion.

17.2 Data Flow

Like the IFU mentioned above, the Load-Store Unit (LSU) manages a shared data cache to
perform loads and stores for all threads. The LSU also performs a load or a store for a single
thread in a cycle, but multiple loads and stores from differing threads can be queued up to
access the data cache.

The LSU processes loads and stores in the order received to maintain cache coherency
between threads. The data cache is organized as 4-way set associative cache, which elimi-
nates most of the cache conflicts.

The LSU also manages a shared Data TLB (DTLB) structure. The DTLB performs data address
translation, allowing complete independence amongst threads. The shared DTLB is backed up
by the larger Variable TLB (VTLB) and Fixed TLB (FTLB).

The VTLB is a fully associative translation lookaside buffer with 64, 128, or 256 "dual" or
"two-sectored" entries per core (competitively shared between harts) that can map variable
page sizes in powers of 4 ranging from 4KB to 256GB. The 512 dual-entry Fixed TLB (FTLB)
is shared between all harts.

Data stored by one thread does not become visible to other threads until the store instruction
has graduated and the core has obtained ownership of the associated cache line (for cache-

able accesses). In other words, data stored by one thread becomes visible to other threads in
the same core at exactly the same point that it becomes visible to other cores in the system.

The I8500 manages allocation of shared resources (such as data buffers) between threads to
prevent starvation and ensure that all threads can make forward progress.

17.3 Thread Management

Each of the threads operate independently, except to share some common resources. How-
ever, there are times when the processor needs to make sure the system is being accessed in
a very controlled manner.

17.4 Independent Exception Model

Since each thread has a completely independent exception model, one thread cannot block
another thread. This independent exception model includes: Synchronous Exceptions (Over-
flow, TLB Miss, etc.), Asynchronous Interrupts (Int, NMI, etc.), Debug Exceptions (DIint),
and Reset. A thread can be reset to reboot, while the other threads are completely unaf-
fected.

\}\<M I PS Copyrigr:tiF();.Zcz):nz

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

Appendix A

Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in the document
since its last release. Change bars are removed for changes that are more than one revision old.

Revision Date Description
0.50 August 11, 2025 First release of 18500 Programmer’s Reference Guide.
0.75 September 15, 2025 Miscellaneous updates from internal review.
1.00 October 14, 2025 Convert document to GlobalFoundries template.

Added updates from internal review.

310

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

Appendix B

User Defined Instructions (UDI) via CorExtend Interface

The I8500 implements a minimal CorExtend interface intended for stateless arithmetic func-
tions that operate on integer registers and immediate values encoded in the opcode. The
CorExtend Unit executes the CorExtend™ User-Defined Instructions (UDI). The CorExtend
capability allows the core’s performance to be tailored for specific applications, while still
maintaining the benefits of the RISC-V instruction set architecture.

By extending the instruction set with custom instructions, UDIs can enable significant perfor-
mance improvement in critical algorithms beyond what is achievable with standard MIPS
RISC-V instructions.

B.1 CorExtend Features

Features of the CorExtend interface include:

e Up to 16 customer-defined instruction opcodes, defined by a configuration input.
e Supports fixed latency, stateless instructions.
e Two 64-bit register sources, one 64-bit register destination.

e Full 32-bit opcode provided to CorExtend interface, so customers can provide
alternate interpretations of opcode fields.

B.2 CorExtend Usage Model and Restrictions

The usage model for the CorExtend instructions is as follows:

1.

SMIPS

The CorExtend block will interface to several units on the core Decode/Issue, WRF, and
GRU.

User-defined instructions may be added by modifying only the UDI module. The user may
not modify any other module in the core.

The CorExtend block is synthesized with the core. The location of the UDI module within
the RTL hierarchy is mips core sam.sam top.pso.main.exu.corxtnd wrapper. Thus,
synthesis of the custom CorExtend block is rolled into the synthesis flow for the rest of
the core.

RTL file for CorExtend block to be replaced by the customer:
$SMIPS HOME/samurai/user/rtl/corxtnd/sam exu corxtnd.v.

The opcodes reserved for UDI instructions is given in Decode opcode Section. This allows
for 16 distinct opcodes that are distinguishable by the Decode.

311

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

6. The core sends the instruction to the UDI in X0 stage, it sends the GPR operands rs1 and
rs2 in X1 stage. The instruction is sent a cycle before execution, so that the UDI can do
some basic decode. The instruction is dispatched as soon as the operands become avail-
able.

7. To determine source and destination dependencies for the UDI instruction the core
assumes RISC-V R-type instruction format (2 source and 1 destination).

8. In order to not create any new bypass networks, the UDI instructions are restricted to 2
cycle latency. However, the results produced by a UDI instruction will be ready for bypass
only in the X3 state so the effective latency will be 3 cycles, similar to MUL instructions in
MDU.

9. The UDI instruction they will use the same write port into the WRF as the MUL pipe.
10. UDI block may be shared by multiple TCs.
11.The destination must be a GPR.

12.The UDI block must be pipelined. The core may send instructions every clock if there is
no source dependency.The core does not expect the UDI block to save any state between
instructions (i.e. only stateless instructions are allowed)

13. The execution pipeline of UDI should never be stalled.
B.3 CorExtend Interface Signals

For more information on the CorExtend interface signals, refer to Appendix E of the 18500
Integrator’s Guide.

B.4 Implementing a Custom Instruction

If a customer wants to implement a custom instruction they will have to modify this RTL stub
file:

$SMIPS HOME/samurai/user/rtl/corxtnd/sam _exu corxtnd.v

Using the provided ports they will have to add functional logic for each custom instruction (up
to a max of 16 instructions) implemented. The custom instruction opcodes reserved and
available for functional implementation in corextend are defined in the MIPS RISC-V Internal
specification.

In particular the following output signal must be reassigned to drive out the result of the
instructions:

assign corxtnd gpr wr data x2 = 64'd0;

For Shogun decode logic to be aware of the implemented instruction, the user must modify
this assignment to drive “1” on each bit position of this 16-bit vector corresponding to an
implemented instruction (i.e. 16-bits correspond to 16 possible instructions):

assign corxtnd present xx = 16'h0000;

For example, if only the seventh custom instruction (of those reserved for corextend) is
implemented then this assignment will be modified as follows:

assign corxtnd present xx = 16’'h0040; // i.e. bit corresponding to eight
position is set

\}\<M I PS Copyrig':tirg.zcz);é

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

MIPS 18500 Multiprocessing System Programmer’s Guide — Revision 1.00

The bit position corresponds to the value of 4-bit immediate field of the custom instructions
reserved for corextend. For the instruction in the example above (seventh instruction) the
value of the 4-bit immediate field will have to be 0x7.

B.5 CorExtend Instruction

The bit assignments for the CorExtend instruction are shown below.

313

SMIPS

a GlobalFoundries company MIPS, a GlobalFoundries company. All Rights Reserved

COREXTEND User Defined Core Extension

31 29 28 25 24 20 19 15 14 12 1 7 6 2 1 0

100 imm rs2 rs1 000 rd 00010 111

Extension Name: xmipscorextend

Extension Number: 1.0

Format: mips.corextend $rd, $rs1, $rs2, imm

Description: The CorExtend instruction extends the base core functionality by performing on of 16 possible
CorExtend operations, using registers $rs1 and $rs2 as input, and writing the result to integer register $rd. The
specific CorExtend operation to be carried out is selected by the 4-bit immediate value item, with unsupported
immediate values raising an illegal instruction exception.

Operation:
if not CONFIG.core extend & (1 << imm):

raise illegal instruction exception (f”CorExtend operation {imm} not supported”)

Exceptions:
lllegal Instruction: when the imm field of the instruction contains an illegal value.

Restrictions:
1. Generate an instruction accepted notice in the X1 pipeline stage from CorExtend to ITRKR.

2. Send a result valid for it to be used by the bypass network. This is sent in 3 cycle of the CorExtend operation as
it is considered a two cycle operation. A flopped version of UDI_gpr_we_stribe_xx. This is used to generate the
oprnd_dvld given each execution unit.

Encoding: The MSB of the COREXTEND instruction determines whether the instruction is for COREXTEND or
PREF. The upper 3 bits of the COREXTEND instruction are decoded as follows:

Bits 31:29
Oxx = PREF (000/001/010/011)
1xx = COREXTEND (100/101/110/111)

MIPS Technologies Proprietary and Confidential 314

	I8500 Multiprocessing System Programmer’s Guide Revision 1.00 October 14, 2025
	Introduction
	1.1 I8500 System Level Block Diagram
	1.2 Chapter Descriptions
	1.3 Additional Key Resources
	1.4 Harts and Virtual Processors (VPs)

	Product Features Overview
	2.1 I8500 Core-Level Features
	2.1.1 I8500 Core-Level Block Diagram
	2.1.2 Simultaneous Multi-Threading (SMT)
	2.1.3 Tandem Control Transfer Unit (CTU)
	2.1.4 Integer Multiply / Divide Unit (MDU)
	2.1.4.1 Integer Multiplies
	2.1.4.2 Integer Divides

	2.1.5 Floating Point Pipelines (FP Short / FP Long)
	2.1.6 Load Store Unit
	2.1.7 Bus Interface Unit (BIU)
	2.1.8 CorExtend

	2.2 I8500 Cluster-Level Features
	2.2.1 I8500 System Level Block Diagram
	2.2.2 CM/Cluster and System Level Features
	2.2.3 Multi-Cluster Configuration

	2.3 MIPS Software Tools
	2.3.1 RISC-V Linux
	2.3.2 Compilers
	2.3.3 Boot Loader

	Architecture
	3.1 RISC-V Unprivileged Architecture Extensions Implemented by the I8500
	3.2 RISC-V Privileged Architecture Extensions Implemented by the I8500
	3.3 RISC-V Debug Architecture Extensions Implemented by the I8500
	3.4 RV64I Instruction Set Details
	3.4.1 Endianess
	3.4.2 misa[25:0] Extension Bits
	3.4.2.1 A Extension
	3.4.2.2 F and D Extension

	3.4.3 Zicntr Extension
	3.4.4 Zihintpause and Zawrs Extensions
	3.4.5 Zihintntl Extension
	3.4.6 Zkt Extension
	3.4.7 Zfa Extension
	3.4.8 Zicbom Extension
	3.4.9 Zicbop Extension
	3.4.10 Zicboz Extension
	3.4.11 Svpbmt Extension
	3.4.12 Rationale
	3.4.13 Svinval Extension

	3.5 Operating Modes

	Memory Management Unit
	4.1 Overview
	4.1.1 TLB Types
	4.1.1.1 ITLB and DTLB Overview
	4.1.1.2 TLB Hierarchy
	4.1.1.3 Instruction TLB
	4.1.1.4 Data TLB
	4.1.1.5 Variable TLB
	4.1.1.6 Fixed TLB

	4.1.2 TLB Instructions
	4.1.3 Shared FTLB Translations
	4.1.4 Global TLB Invalidate

	Caches
	5.1 Cache Subsystem Overview and Configurations
	5.1.1 L1 Instruction Cache
	5.1.1.1 Level 1 Instruction Cache Error Detection
	5.1.1.2 L1 Instruction Cache Organization
	5.1.1.3 L1 Instruction Cache Error Types
	5.1.1.4 L1 Instruction Cache Replacement Policy
	5.1.1.5 L1 Instruction Cache Coherency Management
	5.1.1.6 MCACHE Instruction Usage
	5.1.1.7 FENCE.I Instruction Usage

	5.1.2 L1 Data Cache
	5.1.3 Level 1 Data Cache Error Checking and Correction (ECC)
	5.1.3.1 L1 Data Cache Organization
	5.1.3.2 L1 Data Cache Load/Store Operations
	5.1.3.3 L1 Data Cache Error Types
	5.1.3.4 Store Operations Less than 32-bits
	5.1.3.5 Examples of L1 Data Cache ECC Errors

	5.1.4 L1 Data Cache Replacement Policy
	5.1.5 L1 Data Cache Memory Coherence Protocol
	5.1.6 Load/Store Bonding
	5.1.7 L2 Cache
	5.1.8 L2 Cache General Features
	5.1.9 Overview of the AXI Interface
	5.1.9.1 AXI Channels
	5.1.9.2 Read Operations
	5.1.9.3 Write Operations
	5.1.9.4 AXI Memory Bus Ordering

	5.1.10 L2 Cache Operations
	5.1.11 Cache Instructions

	5.2 Cache Coherency Attributes
	5.3 Directory Based L1 Cache Coherence
	5.3.1 L1 Data Cache Coherence
	5.3.2 L1 Instruction Cache Coherence

	5.4 L2 Cache Initialization Options
	5.4.1 Automatic Hardware Cache Initialization
	5.4.2 Manual Hardware Cache Initialization

	5.5 L2 Cache Flush, Burst, and Abort
	5.5.1 L2 Cache Flush
	5.5.2 L2 Cache Burst Operations

	Control and Status Registers (CSR)
	6.1 User Floating-Point Registers
	6.1.1 Floating-Point Accrued Exception Register — offset 0x001
	6.1.2 Floating-Point Dynamic Rounding Mode Register — offset 0x002
	6.1.3 Floating-Point Control and Status Register — offset 0x003

	6.2 Supervisor Trap Setup Registers
	6.2.1 Supervisor Status (SSTATUS) — offset 0x100
	6.2.2 Supervisor Interrupt Enable (SIE) — offset 0x104
	6.2.3 Supervisor Trap Handler Base Address (STVEC) — offset 0x105

	6.3 Supervisor Counter/Timer Registers
	6.3.1 Supervisor Counter Enable (SCOUNTEREN) — offset 0x106
	6.3.2 Supervisor Environment Configuration (SENVCFG) — offset 0x10A
	6.3.3 Supervisor State Enable[0-3] (SSTATEN) — offset 0x10C/10D/10E/10F
	6.3.4 Supervisor TIme Compare (STIMECMP) — offset 0x14D
	6.3.5 Supervisor Counter Overflow (SCOUNTOVF) — offset 0xDA0

	6.4 Supervisor Trap Handler Registers
	6.4.1 Supervisor Trap Handler Scratch (SSCRATCH) — offset 0x140
	6.4.2 Supervisor Exception Program Counter (SEPC) — offset 0x141
	6.4.3 Supervisor Trap Cause (SCAUSE) — offset 0x142
	6.4.4 Supervisor Bad Address or Instruction (STVAL) — offset 0x143
	6.4.5 Supervisor Interrupt Pending (SIP) — offset 0x144

	6.5 Supervisor Protection and Translation Registers
	6.5.1 Supervisor Address Translation and Protection (SATP) — offset 0x180

	6.6 Virtual Supervisor Registers
	6.6.1 Virtual Supervisor Status (VSSTATUS) — offset 0x200
	6.6.2 Virtual Supervisor Interrupt Enable (VSIE) — offset 0x204
	6.6.3 Virtual Supervisor Trap Handler Base Address (VSTVEC) — offset 0x205
	6.6.4 Virtual Supervisor Trap Handler Scratch (VSSCRATCH) — offset 0x240
	6.6.5 Virtual Supervisor Exception Program Counter (VSEPC) — offset 0x241
	6.6.6 Virtual Supervisor Trap Cause (VSCAUSE) — offset 0x242
	6.6.7 Virtual Supervisor Bad Address of Instruction (VSTVAL) — offset 0x243
	6.6.8 Virtual Supervisor Interrupt Pending (VSIP) — offset 0x244
	6.6.9 Virtual Supervisor TIme Compare (VSTIMECMP) — offset 0x24D
	6.6.10 Virtual Supervisor Address Translation and Protection (VSATP) — offset 0x280

	6.7 Machine Trap Setup Registers
	6.7.1 Machine Status (MSTATUS) — offset 0x300
	6.7.2 Machine ISA and Extensions (MISA) — offset 0x301
	6.7.3 Machine Exception Delegation (MEDELEG) — offset 0x302
	6.7.4 Master Interrupt Delegation (MIDELEG) — offset 0x303
	6.7.5 Machine Interrupt Enable (MIE) — offset 0x304
	6.7.6 Machine Trap Vector Base Address (MTVEC) — offset 0x305
	6.7.7 Machine Counter Enable (MCOUNTEREN) — offset 0x306
	6.7.8 Machine Environment Configuration (MENVCFG) — offset 0x30A
	6.7.9 Machine State Enable[0] (MSTATEN) — offset 0x30C
	6.7.10 Machine State Enable[1-3] (MSTATEEN) — offset 0x30D/30E/30F

	6.8 Machine Counter Setup Registers
	6.8.1 Machine Counter Inhibit (MCOUNTINHIBIT) — offset 0x320
	6.8.2 Machine Performance Monitor Event Select (MHPMEVENT[3-6]) — offset 0x323/ 0x324/0x325/0x326

	6.9 Machine Trap Handling Registers
	6.9.1 Machine Scratch (MSCRATCH) — offset 0x340
	6.9.2 Machine Exception Program Counter (MEPC) — offset 0x341
	6.9.3 Machine Trap Cause (MCAUSE) — offset 0x342
	6.9.4 Machine Bad Address or Instruction (MTVAL) — offset 0x343
	6.9.5 Machine Interrupt Pending (MIP) — offset 0x344
	6.9.6 Machine Trap Instruction (MTINST) — offset 0x34A
	6.9.7 Machine Bad Guest Physical Address (MTVAL2) — offset 0x34B

	6.10 Machine Memory Protection Registers
	6.10.1 Physical Memory Protection Configuration 0 Register (PMPCFG0) — offset = 0x3A0
	6.10.2 Physical Memory Protection Configuration 2 Register (PMPCFG2) — offset = 0x3A2
	6.10.3 Physical Memory Protection Address Registers (PMPADDR0 - PMPADDR15) — offset = 0x3B0 - 0x3BF

	6.11 Hypervisor Trap Setup Registers
	6.11.1 Hypervisor Status (HSTATUS) — offset 0x600
	6.11.2 Hypervisor Exception Delegation (HEDELEG) — offset 0x602
	6.11.3 Hypervisor Interrupt Delegation (HIDELEG) — offset 0x603
	6.11.4 Hypervisor Interrupt Enable (HIE) — offset 0x104
	6.11.5 Hypervisor Counter Enable (HCOUNTEREN) — offset 0x606
	6.11.6 Hypervisor Guest External Interrupt (HGEIE) — offset 0x607
	6.11.7 Hypervisor Environment Configuration (HENVCFG) — offset 0x60A
	6.11.8 Hypervisor State Enable[0] (HSTATEN) — offset 0x60C
	6.11.9 Hypervisor State Enable[1-3] (SSTATEN) — offset 0x60D/60E/60F

	6.12 Hypervisor Trap Handler Registers
	6.12.1 Hypervisor Bad Address of Instruction (HTVAL) — offset 0x643
	6.12.2 Hypervisor Interrupt Pending (HIP) — offset 0x644
	6.12.3 Hypervisor Virtual Interrupt Pending (HVIP) — offset 0x645
	6.12.4 Hypervisor Trap Instruction (HTINST) — offset 0x64A
	6.12.5 Hypervisor Guest External Interrupt Pending (HGEIP) — offset 0xE12

	6.13 Hypervisor Counter/Timer Virtualization Registers
	6.13.1 Hypervisor Delta for VS/VU Mode Timer (HTIMEDELTA) — offset 0x605

	6.14 Hypervisor Protection and Translation Registers
	6.14.1 Hypervisor Address Translation and Protection (HGATP) — offset 0x680

	6.15 Machine Counter/Timer Registers
	6.15.1 Machine Cycle Counter Register (MCYCLE) — offset 0xB00
	6.15.2 Machine Instruction-Retired Counter (MINSTRET) — offset 0xB02
	6.15.3 Machine Performance Monitor Counter[3-6] (MHPMCOUNTER[3-6] — offset 0xB03/B04/B05/B06

	6.16 Machine Information and Identification Registers
	6.16.1 Machine Vendor ID Register (MVENDORID) — offset = 0xF11
	6.16.2 Machine Architecture ID Register (MarchID) — offset = 0xF12
	6.16.3 Machine Implementation ID Register (mimpid) — offset = 0xF13
	6.16.4 Machine Hart ID Register (mhartID) — 0xF14
	6.16.5 Machine Configuration Pointer Register (mconfigptr) — 0xF15

	6.17 User Counter/Timer Registers
	6.17.1 Cycle Register (UCYCLE) — offset 0xC00
	6.17.2 Read Time Register (RDTIME) — offset 0xC01
	6.17.3 User Instruction-Retired Counter (UINSTRET) — offset 0xC02
	6.17.4 User Performance-Monitor Counter[3-6] (HPMCOUNTER[3-6]) — offset 0xC03/ C04/C05/C06

	6.18 MIPS Custom Control and Status Registers
	6.18.1 MIPS Trap Vector Base Address Register (mipstvec) — offset = 0x7C0
	6.18.2 MIPS Cache Error Register (mipscacheerr) — offset = 0x7C5
	6.18.3 MIPS Error Control Register (mipserrctrl) — offset = 0x7C6
	6.18.4 MIPS Diagnostic Data Register (mipsdiagdata) — offset = 0x7C8
	6.18.5 MIPS Buffer Cache Configuration Register (mipsbcconfig) — offset = 0x7C9
	6.18.6 MIPS Buffer Cache Active Segment Register (mipsbcactvseg) — offset = 0x7CA
	6.18.7 MIPS Interrupt Control Register (mipsintctl) — offset = 0x7CB
	6.18.8 MIPS DSPRAM Base Register (mipsdsprambase) — offset = 0x7CC
	6.18.9 MIPS ISPRAM Base Register (mipsisprambase) — offset = 0x7CD
	6.18.10 MIPS Configuration 1 Register (mipsconfig1) — offset = 0x7D1
	6.18.11 MIPS Configuration 4 Register (mipsconfig4) — offset = 0x7D4
	6.18.12 MIPS Configuration 5 Register (mipsconfig5) — offset = 0x7D5
	6.18.13 MIPS Configuration 6 Register (mipsconfig6) — offset = 0x7D6
	6.18.14 MIPS Configuration 7 Register (mipsconfig7) — offset = 0x7D7
	6.18.15 MIPS Wait For Event Register (mipswfe) — offset = 0x800
	6.18.16 PMA Configuration Registers
	6.18.17 PMA Configuration 0 Register (PMACFG0) — offset = 0x7E0
	6.18.18 PMA Configuration 2 Register (PMACFG2) — offset = 0x7E2

	6.19 Debug Control and Status Register — offset = 0x7B0

	Exceptions and Interrupts
	7.1 Exception Conditions
	7.2 Selecting the Exception Address

	Coherence Manager
	8.1 CM Overview
	8.1.1 Modes of Operation
	8.1.1.1 IOCU Coherence
	8.1.1.2 Custom Instructions
	8.1.1.3 Multi-Cluster Mode
	8.1.1.4 External GCR Slave Access

	8.1.2 CM Interface — Register Ring Bus and Device ID’s
	8.1.3 Cluster to Cluster Accesses

	8.2 Verifying Overall System Configuration
	8.3 Programming the Base Addresses in Memory
	8.3.1 CM GCR Register Interface

	8.4 CM Register Access Permissions
	8.4.1 Enabling Access Permissions

	8.5 Coherency Enable
	8.6 L2 Cache Prefetch
	8.6.1 Prefetch Enable
	8.6.2 Select Ports for L2 Prefetching
	8.6.3 Enabling Code Prefetch

	8.7 CM Uncached Semaphore Management
	8.8 Custom GCR Implementation
	8.9 Error Processing
	8.10 I/O Coherence Unit (IOCU)
	8.10.1 IOCU Features
	8.10.2 IOCU Control

	8.11 MMIO Address Regions
	8.11.1 CM GPR Register Interface
	8.11.2 MMIO Region Control

	8.12 Auxiliary Interfaces
	8.13 Error Processing
	8.13.1 Error Codes 1 and 3 — Tag ECC Error
	8.13.1.1 Command Group Field Encoding
	8.13.1.2 CCA Field Encoding
	8.13.1.3 Type Field Encoding

	8.13.2 Error Codes 1 and 3 — Data ECC Error
	8.13.3 Error Code 2 — Request Decode Error
	8.13.4 Error Code 4 — Parity Error
	8.13.5 Error Code 5 — Fetch and Lock Error
	8.13.6 Error Codes 6, 7, 8 — Bus Interface Unit (BIU) Errors
	8.13.7 Error Code 10 — Ring Bus Error
	8.13.8 Error Code 11 — IOCU Request Error
	8.13.9 Error Code 12 — IOCU Parity Error
	8.13.10 Error Code 13 — IOCU Response Error
	8.13.11 Error Code 15 — RBI REGTC Bus Request Error

	8.14 CM3 General Control Registers
	8.14.1 Accessing the GCR’s
	8.14.2 Controlling the GCR’s
	8.14.3 CM3 GCR Group Offsets
	8.14.4 GCR Global Registers
	8.14.4.1 Global Config Register (GCR_CONFIG): Offset 0x0000
	8.14.4.2 GCR Base Register (GCR_BASE): Offset 0x0008
	8.14.4.3 Global CM3 Control Register (GCR_CONTROL): Offset 0x0010
	8.14.4.4 GCR Revision Register (GCR_REV): Offset 0x0030
	8.14.4.5 GCR Error Control Register (GCR_REV): Offset 0x0038
	8.14.4.6 Global CM3 Error Mask Register (GCR_ERR_MASK): Offset 0x0040
	8.14.4.7 Global CM3 Error Cause Register (GCR_ERR_CAUSE): Offset 0x0048
	8.14.4.8 Global CM3 Error Address Register (GCR_ERR_ADDR): Offset 0x0050
	8.14.4.9 Global CM3 Error Multiple Register (GCR_ERR_MULT): Offset 0x0058
	8.14.4.10 GCR Custom Status Register (GCR_CUSTOM_STATUS): Offset 0x0068
	8.14.4.11 GCR AIA Status Register (GCR_AIA_STATUS): Offset 0x00D0
	8.14.4.12 Cache Revision Register (GCR_CACHE_REV): Offset 0x00E0
	8.14.4.13 GCR Cluster Power Controller Status Register (GCR_CPC_STATUS): Offset 0x00F0
	8.14.4.14 Global CSR Address Privilege Register (GCR_ACCESS): Offset 0x0120
	8.14.4.15 GCR L2 Configuration Register (GCR_L2_CONFIG): Offset 0x0130
	8.14.4.16 System SDB Configuration Register (GCR_SDB_CONFIG): Offset 0x00160
	8.14.4.17 IOCU Revision Register (GCR_IOCU_REV): Offset 0x0200
	8.14.4.18 DBU Revision Register (GCR_DBU_REV): Offset 0x0208
	8.14.4.19 AIA Revision Register (GCR_AIA_REV): Offset 0x0210
	8.14.4.20 L2 RAM Configuration Register (GCR_L2_RAM_CONFIG): Offset 0x0240
	8.14.4.21 Scratch0 Register (GCR_SCRATCH0): Offset 0x0280
	8.14.4.22 Scratch1 Register (GCR_SCRATCH1): Offset 0x0288
	8.14.4.23 L2 Prefetch Control Register (GCR_L2_PFT_CONTROL): Offset 0x0300
	8.14.4.24 L2 Prefetch Control Register 2 (GCR_L2_PFT_CONTROL_B): Offset 0x0308
	8.14.4.25 L2 Tag RAM Cache Op Address Register (GCR_L2_TAG_ADDR): Offset 0x0600
	8.14.4.26 L2 Tag RAM Cache Op State Register (GCR_L2_TAG_STATE): Offset 0x0608
	8.14.4.27 L2 Data RAM Cache Op Register (GCR_L2_DATA): Offset 0x0610
	8.14.4.28 L2 Tag and Data ECC Cache Op Register (GCR_L2_ECC): Offset 0x0618
	8.14.4.29 L2 Cache Op State Machine Control Register (GCR_L2SM_COP): Offset 0x0620
	8.14.4.30 L2 Cache Op State Machine Tag Address Register (GCR_L2SM_TAG_ADDR_COP): Offset 0x0628
	8.14.4.31 Global CM3 Semaphore Register (GCR_SEM): Offset 0x0640
	8.14.4.32 Global CM3 Timeout Timer Limit Register (GCR_TIMEOUT_TIMER_LIMIT): Offset 0x0650
	8.14.4.33 MMIO Request Limit Register (GCR_MMIO_REQ_LIMIT): Offset 0x06F8
	8.14.4.34 Lower Bound of MMIO [0-3] Registers (GCR_MMIO[0-3]_BOTTOM): See table below
	8.14.4.35 Upper Bound of MMIO [0-7] Registers (GCR_MMIO[0-7]_TOP): See table below
	8.14.4.36 CM3 Performance Counter Control Register (GCR_DB_PC_CTL): Offset 0x0900
	8.14.4.37 CM3 Performance Overflow Status Register (GCR_DB_PC_OV): Offset 0x0920
	8.14.4.38 CM3 Performance Overflow Event Select Register (GCR_DB_PC_EVENT): Offset 0x0930
	8.14.4.39 CM3 Performance Cycle Counter Register (GCR_DB_PC_CYCL): Offset 0x0980
	8.14.4.40 CM3 Performance P0 Qualifier Register (GCR_DB_PC_QUAL0): Offset 0x0990
	8.14.4.41 CM3 Performance Counter P0 Register (GCR_DB_PC_CNT0): Offset 0x0998
	8.14.4.42 CM3 Performance P1 Qualifier Register (GCR_DB_PC_QUAL1): Offset 0x09A0
	8.14.4.43 CM3 Performance Counter P1 Register (GCR_DB_PC_CNT0): Offset 0x09A8

	8.14.5 GCR Core Registers
	8.14.5.1 Reset Exception Base Registers (GCR_C[a]H[b]_RESET_BASE): Offset; see Table 8.72.
	8.14.5.2 Core[a] Coherence Enable Registers (GCR_C[a]_COH_EN): Offset; see Table 8.72.

	Power Management
	9.1 Overview
	9.1.1 Power Domains
	9.1.2 Clock Domains
	9.1.3 Core and IOCU Selection
	9.1.4 Overview of Power States

	9.2 Reset Control
	9.3 Individual Clock Gating
	9.4 Global Control Block Register Map
	9.5 Local Control Blocks
	9.6 CPC Register Programming
	9.6.1 Cluster Power Controller Register Address Map
	9.6.2 Global Control Block Register Map
	9.6.3 Requestor Access to CPC Registers
	9.6.3.1 Register Interface

	9.6.4 Enabling Coherent Mode
	9.6.5 Master Clock Prescaler
	9.6.6 Individual Device Clock Ratio Modification
	9.6.6.1 Clock Domain Change Example — Register Programming Sequence
	9.6.6.2 Clock Change Delay

	9.6.7 CM Standalone Powerup
	9.6.7.1 Register Interface

	9.6.8 Reset Detection
	9.6.9 VP Run/Suspend
	9.6.10 Local RAM Deep Sleep / Shutdown and Wakeup Delay
	9.6.10.1 RAM Deep Sleep Mode
	9.6.10.2 RAM Shut Down Mode

	9.6.11 Accessing the CPC Registers in Another Power Domain
	9.6.12 Fine Tuning Internal and External Signal Delays
	9.6.12.1 Global Sequence Delay Count
	9.6.12.2 Rail Delay
	9.6.12.3 Reset Delay

	Interrupt Controller
	10.1 Features
	10.2 Overview
	10.2.1 Block Diagram
	10.2.2 Interrupt Controller Domains
	10.2.3 Interrupt Priority Rules
	10.2.4 Interrupt Pending and Clearing Rules

	10.3 Advanced Platform Level Interrupt Controller (APLIC)
	10.3.1 Slice-based Design
	10.3.2 Interrupt Controller APLIC Domains

	10.4 Advanced Platform Level Interrupt Controller (ACLINT)
	10.4.1 mtime and mtimecmp
	10.4.2 mtime Synchronization
	10.4.3 Machine Level Software Interrupts (MSWI)
	10.4.4 Supervisor Level Software Interrupts (SWSI)

	10.5 Watchdog Timer
	10.5.1 Features
	10.5.2 Watchdog Time Stages
	10.5.3 Watchdog Timer Register Interface
	10.5.4 NMI Support
	10.5.5 Timeout Events

	10.6 Interrupt Controller Register Address Map
	10.7 ACLINT Memory Mapped Registers
	10.7.1 ACLINT Machine Mode Memory Map
	10.7.1.1 ACLINT Machine Software Interrupt Pending (MSIP[0-4094]) Register (offset = see below)
	10.7.1.2 ACLINT Machine Time Compare (MTIMECMP[0-4094]) Register (offset = see below)
	10.7.1.3 ACLINT WatchDog ConFiG (WDCFG[0-1023]) Register (offset = see below)
	10.7.1.4 ACLINT WatchDog Control and Status (WDCSR[0-1023]) Register (offset = see below)

	10.7.2 ACLINT Supervisor Mode Memory Map
	10.7.2.1 ACLINT SET Supervisor Software Interrupt Pending (SETSSIP[0-4094]) Register (offset = see below)

	10.8 APLIC Memory Mapped Registers
	10.8.1 APLIC Machine Domain Memory Map
	10.8.2 APLIC Supervisor Domain Memory Map
	10.8.3 APLIC Custom Memory Map
	10.8.3.1 APLIC Domain Configuration (DOMAINCFG) Register (offset = see below)
	10.8.3.2 APLIC Source Configuration (SOURCECFG[1-1023]) Register (offset = see below)
	10.8.3.3 APLIC SET Interrupt Pending (SETIP[0-31]) Register (offset = see below)
	10.8.3.4 APLIC Input/Clear Interrupt Pending (IN_CLRIP[0-31]) Register (offset = see below)
	10.8.3.5 APLIC Set Interrupt-Pending Number (SETIPNUM) Register (offset = see below)
	10.8.3.6 APLIC Clear IP Number (CLRIPNUM) Register (offset = see below)
	10.8.3.7 APLIC Set Interrupt Enable (SETIE[0-31]) Register (offset = see below)
	10.8.3.8 APLIC Clear Interrupt Enable (CLRIE[0-31]) Register (offset = see below)
	10.8.3.9 APLIC Set Interrupt Enable Number (SETIENUM) Register (offset = see below)
	10.8.3.10 APLIC Clear Interrupt Enable Number (CLRIENUM) Register (offset = see below)
	10.8.3.11 APLIC Set Interrupt-Pending Number (SETIPNUM_LE) Register (offset = see below)
	10.8.3.12 APLIC Set Interrupt-Pending Number (SETIPNUM_BE) Register (offset = see below)
	10.8.3.13 APLIC Target (TARGET[1-1023]) Register (offset = see below)
	10.8.3.14 APLIC Interrupt Delivery (HART[0-1023].IDELIVERY) Register (offset = see below)
	10.8.3.15 APLIC Interrupt Force (HART[0-1023].IFORCE) Register (offset = see below)
	10.8.3.16 APLIC Interrupt Threshold (HART[0-1023].ITHRESHOLD) Register (offset = see below)
	10.8.3.17 APLIC Top Interrupt (HART[0-1023].TOPI) Register (offset = see below)
	10.8.3.18 APLIC Claim Interrupt (HART[0-1023].CLAIMI) Register (offset = see below)
	10.8.3.19 APLIC Set NMI Enable (SETNMIE[0-31]) Register (offset = see below)
	10.8.3.20 APLIC Set NMI Number (SETNMIENUM) Register (offset = 0x4C0DC)
	10.8.3.21 APLIC Clear NMI Enable (CLRNMIE[0-31]) Register (offset = see below)
	10.8.3.22 APLIC Clear NMI Number (CLRNMIENUM) Register (offset = 0x4C1DC)

	Debug Unit
	11.1 RISC-V Debug Specification Compatibility
	11.2 Halt Groups and External Triggers
	11.2.1 Halt Request
	11.2.2 Resume Request

	11.3 DBU Reset
	11.4 Debug Module Interface Registers
	11.4.1 DMI Register Map

	Trace Unit
	12.1 Summary of Features
	12.2 Trace Component Base Addresses

	Floating-Point Unit (FPU)
	13.1 Features Overview
	13.2 FPU Execution Units
	13.2.1 Short Operations
	13.2.2 Long Operations

	13.3 Data Formats
	13.3.1 Floating-Point Formats
	13.3.1.1 Normalized and Denormalized Numbers
	13.3.1.2 Reserved Operand Values—Infinity and NaN
	13.3.1.3 Infinity and Beyond
	13.3.1.4 Signalling Non-Number (SNaN)
	13.3.1.5 Quiet Non-Number (QNaN)

	13.3.2 Signed Integer Formats

	13.4 Floating-Point General Registers
	13.4.1 FPRs and Formatted Operand Layout

	Performance Counters
	14.1 Core Performance Counters
	14.1.1 Performance Event Masking
	14.1.2 Core Performance Event Control Register (mhpmevent[6:3])
	14.1.3 Core Performance Counter Count Register (mhpmcounter[6:3])
	14.1.4 Core Performance Counter Events

	14.2 CM3 Performance Counters
	14.2.1 Overview and Features
	14.2.2 Register Interface
	14.2.3 CM3 Performance Counter Usage Models
	14.2.3.1 Periodic Sampling
	14.2.3.2 Stop and Interrupt on Overflow
	14.2.3.3 Large Count Capability

	14.2.4 CM3 Performance Counter Control Register, GCR_DB_PC_CTL (offset = 0x0800)

	14.3 Histogram Performance Counter
	14.3.1 Histogram Register Map
	14.3.2 Histogram Register Descriptions
	14.3.2.1 CM PC Histogram Control Register (GCR_DB_PC_HIST_CTL) Offset: 0x1000
	14.3.2.2 CM PC Histogram Granularity Register (GCR_DB_PC_HIST_GRAN) Offset: 0x1008
	14.3.2.3 CM PC Histogram Counter Registers (GCR_DB_PC_HIST_CNT[0-63]) Offset: 0x1010-0x1208

	Data Scratch Pad RAM
	15.1 Overview
	15.1.1 New CSR Register
	15.1.1.1 MIPS DSPRAM Base Address Register — mipsdsprambase

	15.1.2 Changes to Existing CSR Registers — Error Reporting
	15.1.2.1 Cache Error — mipscacheerr (offset = 0x7C5)

	15.2 DSPRAM Software Interface
	15.3 Accessing the DSPRAM
	15.3.1 Register Programming Sequence
	15.3.2 Programming Constraints

	Instruction Scratch Pad RAM
	16.1 Overview
	16.1.1 New CSR Register
	16.1.2 Changes to Existing CSR Registers — Error Reporting
	16.1.2.1 Cache Error — mipscacheerr (offset = 0x7C5)

	16.2 ISPRAM Software Interface
	16.3 Accessing the ISPRAM
	16.3.1 Register Programming Sequence
	16.3.2 Programming Constraints

	Multithreading
	17.1 Instruction Flow
	17.2 Data Flow
	17.3 Thread Management
	17.4 Independent Exception Model

	Revision History
	User Defined Instructions (UDI) via CorExtend Interface
	B.1 CorExtend Features
	B.2 CorExtend Usage Model and Restrictions
	B.3 CorExtend Interface Signals
	B.4 Implementing a Custom Instruction
	B.5 CorExtend Instruction

