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Introduction 

When a new processor is released, optimizing workloads to minimize latency, maximize throughput, 

reduce memory footprint, and lower power consumption is paramount. Often, a few frequently 

executed code blocks—kernels—dominate execution time, so optimizing these (typically via hand-

tuned intrinsics or assembly) is crucial for fully exploiting the processor’s ISA. Many domains rely on 

libraries (e.g., BLIS [1], OpenBLAS [2], Eigen [3]) that bundle such kernels, but hand-optimizing them 

for a new processor can take many human-months, while compiling high-level C/C++ code with an 

optimizing compiler often produces suboptimal performance—as evidenced by Alireza et al. (Sep 

2023) [4]. 

Our approach instead leverages existing hand-optimized kernels from other source ISAs by auto re-

vectorizing them to the new processor’s ISA (target ISA) using compiler infrastructure. The intuition 

is that such code inherently possesses efficient, vector-friendly structures compared to generic high-

level code. Prior work by Charith et al. (Feb 2019) [5] demonstrated the effectiveness of using LLVM 

IR passes to re-vectorize code for newer vector ISA versions (e.g., from AVX to AVX2/AVX512). We 

have developed a tool that uses LLVM IR transformations to convert vector intrinsic code from x86 

AVX and ARM Neon to RISC-V Vector code. We also compare our method with alternative 

approaches—such as header-based translations [6, 7] and a non-open-source tool from a RISC-V 

processor maker [8]. Our contribution is the full disclosure of our LLVM pass-based approach, with 

the tool and source code made available to the RISC-V community.  
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Methodologies 

Auto re-vectorization Method / Algorithm 

The methodology was designed to systematically transform other vector/SIMD ISA (x86 AVX, ARM 

SVE/Neon, etc) intrinsic code into RISC-V Vector assembly and analyze its performance metrics. The 

procedure consists of first converting the input intrinsic code (other vector ISA) to LLVM Vector IR, 

then modifying the input ISA attributes to RISC-V Vector attributes, applying LLVM vector 

optimization passes (for a specific RISC-V Vector Processor) and finally lowering the optimized LLVM 

Vector IR to the target RISC-V Vector CPU assembly code.  

The details are described in the following steps using the example of converting x86 AVX code to 

RISC-V Vector code: 

 

Conversion of AVX Intrinsic Code to LLVM Vector IR  

The C/C++ AVX intrinsic code was compiled to the LLVM intermediate representation (IR) using the 

clang compiler. Example command: 

clang -target x86_64-unknown-linux-gnu  -S -emit-llvm -mfma <source_file>.c -o <llvm_ir_file>.ll 

Modification of x86 Attributes to RISC-V Vector Attributes 

The generated LLVM IR file is modified to replace x86-specific attributes with RISC-V Vector-specific 

attributes. Specifically, attributes such as “target triple”   “target-cpu” “target-features” “tune-cpu” 

were changed to RISC-V Specific attributes, that align with Risc-V Vector architecture. 

Application of LLVM Optimizer Passes 

The next step is to apply LLVM Optimizer (opt) passes on the modified IR File. Before applying the 

optimizer passes the “optnone” Attribute was removed from the modified IR File as the optnone 

attribute suppresses essentially all optimizations on a function or method. 

The optimizer passes applied are: 

• default<O2> 
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• loop-vectorize 

• slp-vectorizer 

• load-store-vectorizer 

Example command: 

opt -S -debug-pass-manager -passes="default<O2>,loop-vectorize,slp-vectorizer,load-store-

vectorizer" <modified_llvm_ir_file>.ll -o <optimized_llvm_ir>.ll -mtriple=riscv64 -mcpu=<target CPU 

for riscv64 architecture> 

Generation of RISC-V Vector Assembly 

The optimized LLVM IR was lowered into RISC-V Vector Assembly using the LLVM backend. Example 

command: 

llc -march=riscv64 -mattr=<target-features> -mcpu=<target CPU for riscv64 architecture> -o 

<output_rvv_asm_file>.s <optimized_llvm_ir>.ll 

Discussion 

LLVM provides the llvm-mca tool [9] to analyze machine code using LLVM’s processor scheduling 

models. It retrieves instruction timing, latencies, and throughput for a given CPU. We used llvm-mca 

to analyze generated RISC-V Vector assembly code, measuring cycle counts and performance 

estimates for specific target processors. Example command: 

llvm-mca -mtriple=riscv64 -mcpu=<target-cpu> -iterations=1 < rvv_asm.s > <output.txt> 
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Results 

We compared the performance of a matrix multiplication kernel (GEMM, 4x4 double precision), 

written in reference C code as well as in C intrinsics of x86 AVX. The reference C code was auto-

vectorized to RVV using LLVM (Generic Flow), and the intrinsic code was converted to RVV using our 

Auto re-vectorization tool (for targets platforms A and B, described below in table 1). We compared 

the performance of these two RVV assemblies using the llvm-mca tool. The results are given below: 

Table 1: Matmul (GEMM 4x4 double precision) performance comparison.  

 

We see that the performance of the code generated by our Auto re-vectorization tool is more than 

1.7x better than the auto-vectorized code generated from reference C code. We intend to do similar 

comparison of more kernel types, which is expected to give even better results, since matrix 

multiplication is well optimized in compilers compared to other compute kernels. 

Comparison with Alternative Approaches 

There are couple of open-source tools available for converting x86 SSE code and ARM Neon code to 

RVV code [6, 7]. They use an alternative approach for this conversion. They replace the intrinsic 

headers with the corresponding implementation using RVV or C code wherever there is no one-to-

one RVV replacement for the SSE/Neon instructions. The disadvantage of this approach is that a 

separate implementation of the header is required for each different version of the ISAs, while our 

approach leverages the LLVM infrastructure itself. The second disadvantage of the header 

replacement approach is that it generates one-to-one replacement of the input code, which might 

not be the optimal RVV code for a given Vector microarchitecture. Our approach leverages LLVM 

infrastructure to do optimizations suitable for the given target Vector microarchitecture.  
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Copyright © MIPS Holding, Inc., 2025. Any performance, power, efficiency, or other product or 

competitive claims are estimates based on MIPS internal projections and are subject to change. 

Results may vary based on final product specification, use case, workload, implementation, and 

other related factors outside of consideration in these statements.  
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