

MIPS RV64 P8700/P8700-F Multiprocessing
System Programmer’s Guide

Revision 1.83
April 9, 2025

This document contains information that is proprietary to MIPS Tech, LLC and MIPS’ affiliates, as applicable,
(“MIPS”). If this document is obtained pursuant to a MIPS Open license, the sole licensor under such license is
MIPS Tech, LLC. This document and any information therein are protected by patent, copyright, trademarks and
unfair competition laws, among others, and are distributed under a license restricting their use. MIPS has intellectual
property rights, including patents or pending patent applications in the U.S. and in other countries, relating to the
technology embodied in the product that is described in this document. Any distribution release of this document
may include or be accompanied by materials developed by third parties. Any copying, reproducing, modifying or use
of this information (in whole or in part) that is not expressly permitted in writing by MIPS or an authorized third party
is strictly prohibited. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or
Microsoft Word format) may be subject to separate use and distribution restrictions applicable to such document.
UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A
THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF, OR LICENSED
FROM, MIPS. MIPS reserves the right to change the information contained in this document to improve function,
design or otherwise.

MIPS does not assume any liability arising out of the application or use of this information, or of any error or omission
in such information. DOCUMENTATION IS PROVIDED “AS IS” AND ANY WARRANTIES, WHETHER EXPRESS,
STATUTORY, IMPLIED OR OTHERWISE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE EXCLUDED,
EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID IN A COMPETENT
JURISDICTION. Except as expressly provided in any written license agreement from MIPS or an authorized third
party, the furnishing or distribution of this document does not give recipient any license to any intellectual property
rights, including any patent rights, that cover the information in this document.

Products covered by and information contained this document are controlled by U.S. export control laws and may
be subject to the expert or import laws in other countries. The information contained in this document shall not be
exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any country or
international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Nuclear, missile,
chemical weapons, biological weapons or nuclear maritime end uses, whether direct or indirect, are strictly
prohibited. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained
in this document, the laws of the United States of America shall be the governing law.

U.S Government Rights – Commercial software. Government users are subject to the MIPS Tech, LLC standard
license agreement and applicable provisions of the FAR and its supplements.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-Based,
MIPSsim, CorExtend, IASim, microAptiv, microMIPS, proAptiv, SOC-it, and MIPS Open are trademarks or
registered trademarks of MIPS in the United States and other countries. All other trademarks referred to herein are
the property of their respective owners.

MIPS Document Number: MD01502

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83 3

Table of Contents

Chapter 1: Architecture Overview... 11
1.1: Product Overview .. 12

1.1.1: Single-Cluster Configuration .. 13
1.1.2: Multi-Cluster Configuration... 14

1.2: P8700-F Features.. 15
1.2.1: MIPS Out-of-Order Multithreading ... 15
1.2.2: Hybrid Debug ... 15

1.3: P8700/P8700-F Privileged Architecture .. 15
1.4: Functional Safety... 16
1.5: System-level Features... 16
1.6: CPU Core-Level Features ... 17
1.7: P8700-F Core Block Diagram.. 17
1.8: MIPS Software Tools... 18

1.8.1: RISC-V Linux ... 18
1.8.2: MIPS RISC-V SDK... 18
1.8.3: Compilers ... 19
1.8.4: Boot Loader.. 19

1.9: Performance Considerations ... 19
1.10: Instruction Set Architecture ... 19

1.10.1: RISC-V Unprivileged Architecture Extensions Implemented by the I8500..................................... 19
1.10.2: RISC-V Privileged Architecture Extensions Implemented by the I8500... 20
1.10.3: RISC-V Debug Architecture Extensions Implemented by the I8500 .. 21
1.10.4: RV64I Instruction Set Details ... 21

1.10.4.1: Endianess... 21
1.10.4.2: misa[25:0] Extension Bits ... 22
1.10.4.3: A Extension .. 22
1.10.4.4: F and D Extension .. 22
1.10.4.5: Zicntr Extension.. 22
1.10.4.6: Zihintpause and Zawrs Extensions... 22
1.10.4.7: Zihintntl Extension .. 22
1.10.4.8: Zkt Extension.. 23
1.10.4.9: Zfa Extension.. 23
1.10.4.10: Zicbom Extension ... 23
1.10.4.11: Zicbop Extension .. 23
1.10.4.12: Zicboz Extension .. 23
1.10.4.13: Svpbmt Extension... 24
1.10.4.14: Rationale .. 24
1.10.4.15: Svinval Extension ... 24

1.11: Additional Information.. 24

Chapter 2: Memory Management Unit .. 25
2.1: Overview.. 25

2.1.1: TLB Types.. 25
2.1.2: Instruction TLB (ITLB) .. 26
2.1.3: Data TLB (DTLB) ... 27
2.1.4: Variable Page Size TLB (VTLB)... 27

2.1.4.1: VTLB Organization ... 27
2.1.5: Fixed Page Size TLB (FTLB) ... 27

2.2: TLB ECC Errors... 28
2.3: MIPS TLB Exception Handling .. 28

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83 4

2.4: TLB Duplicate Entries.. 28
2.5: TLB Instructions... 28
2.6: Shared FTLB Translations... 28
2.7: Hardware Table Walker... 29
2.8: MMU Programming ... 29

Chapter 3: Caches .. 30
3.1: Cache Configurations .. 30
3.2: LR and SC Instruction Considerations .. 31
3.3: Cache Subsystem Overview ... 31

3.3.1: L1 Instruction Cache .. 32
3.3.1.1: Level 1 Instruction Cache Error Detection.. 33
3.3.1.2: L1 Instruction Cache Organization ... 33
3.3.1.3: L1 Instruction Cache Error Types... 33
3.3.1.4: L1 Instruction Cache Replacement Policy.. 33
3.3.1.5: L1 Instruction Cache Coherency Management .. 34
3.3.1.6: FENCE.I Instruction Usage .. 34

3.3.2: L1 Data Cache ... 34
3.3.3: Level 1 Data Cache Error Checking and Correction (ECC) ... 36

3.3.3.1: L1 Data Cache Organization .. 37
3.3.3.2: L1 Data Cache Load/Store Operations .. 37
3.3.3.3: L1 Data Cache Error Types.. 37
3.3.3.4: Store Operations Less than 32-bits .. 37
3.3.3.5: Examples of L1 Data Cache ECC Errors ... 37

3.3.4: L1 Data Cache Replacement Policy .. 38
3.3.5: L1 Data Cache Memory Coherence Protocol .. 38
3.3.6: Load/Store Bonding ... 39
3.3.7: L2 Cache.. 39
3.3.8: L2 Cache General Features... 40
3.3.9: Overview of the AXI Interface .. 40

3.3.9.1: AXI Channels.. 40
3.3.9.2: Read Operations .. 41
3.3.9.3: Write Operations... 41
3.3.9.4: AXI Memory Bus Ordering.. 41

3.3.10: Cache Instructions ... 41
3.4: Cache Coherency.. 42
3.5: L2 Cache Initialization Options .. 42

3.5.1: Automatic Hardware Cache Initialization ... 42
3.6: L2 Cache Flush, Burst, and Abort ... 43

3.6.1: L2 Cache Flush.. 43
3.6.2: L2 Cache Burst Operations.. 43
3.6.3: Abort Operations.. 44

Chapter 4: Exceptions and Interrupts.. 45
4.1: Exception Conditions... 45
4.2: Selecting the Exception Address... 46
4.3: Debug Exception Processing .. 46

Chapter 5: Coherence Manager... 47
5.1: CM Overview ... 47

5.1.1: CM Interface — Register Ring Bus and Device ID’s.. 47
5.1.2: Cluster to Cluster Accesses ... 50

5.2: Verifying Overall System Configuration... 51
5.3: Programming the Base Addresses in Memory .. 52

5.3.1: CM GCR Register Interface ... 52
5.4: CM Register Access Permissions ... 52

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83 5

5.4.1: Enabling Access Permissions .. 52
5.5: Coherency Enable ... 52
5.6: L2 Cache Prefetch... 52

5.6.1: Prefetch Enable.. 53
5.6.2: Select Ports for L2 Prefetching .. 53
5.6.3: Enabling Code Prefetch ... 53

5.7: CM Uncached Semaphore Management .. 53
5.8: Custom GCR Implementation.. 54
5.9: IOCU Interface... 54
5.10: MMIO Address Regions .. 55

5.10.1: CM GPR Register Interface ... 55
5.10.2: MMIO Region Control .. 55

5.11: Auxiliary Interfaces .. 56
5.12: Error Processing.. 57

5.12.1: Error Codes 1 and 3 — Tag ECC Error ... 59
5.12.1.1: Command Group Field Encoding ... 60
5.12.1.2: CCA Field Encoding ... 64
5.12.1.3: Type Field Encoding... 65

5.12.2: Error Codes 1 and 3 — Data ECC Error .. 65
5.12.3: Error Code 2 — Request Decode Error ... 67
5.12.4: Error Code 4 — Parity Error... 69
5.12.5: Error Code 5 — Fetch and Lock Error ... 70
5.12.6: Error Codes 6, 7, 8 — Bus Interface Unit (BIU) Errors .. 72
5.12.7: Error Code 10 — Ring Bus Error ... 73
5.12.8: Error Code 11 — IOCU Request Error... 75
5.12.9: Error Code 12 — IOCU Parity Error... 76
5.12.10: Error Code 13 — IOCU Response Error.. 76
5.12.11: Error Code 15 — RBI REGTC Bus Request Error... 77

5.13: Memory Mapped Registers ... 78
5.14: Coherence Manager (CM) Memory Mapped Registers... 79

5.14.1: GCR.Global Registers.. 82
5.14.1.1: GCR Global Configuration Register (offset = 0x0000) ... 82
5.14.1.2: Global GCR_BASE Register (offset = 0x0008) .. 83
5.14.1.3: GCR Global Control Register (offset = 0x0010) ... 84
5.14.1.4: Global Revision ID Register (offset = 0x0030) ... 86
5.14.1.5: GCR Global Error Control (ERR_CONTROL) Register (offset = 0x0038)............................ 87
5.14.1.6: GCR Global Error Mask (ERR_MASK) Register (offset = 0x0040) 88
5.14.1.7: GCR Global Error Cause (ERR_CAUSE) Register (offset = 0x0048) 89
5.14.1.8: GCR Global Error Address (ERR_ADDR) Register (offset = 0x0050) 90
5.14.1.9: GCR Global Error Mult (ERR_MULT) Register (offset = 0x0058) .. 91
5.14.1.10: GCR Global Custom Status (CUSTOM_STATUS) Register (offset = 0x0068) 92
5.14.1.11: GCR Global Interrupt Status (AIA_STATUS) Register (offset = 0x00D0) 93
5.14.1.12: GCR Global Cache Revision (CACHE_REV) Register (offset = 0x00E0).......................... 94
5.14.1.13: GCR Global CPC Status (CPC_STATUS) Register (offset = 0x00f0)................................ 95
5.14.1.14: GCR Global Access (ACCESS) Register (offset = 0x0120) ... 96
5.14.1.15: GCR Global L2 Cache Configuration (L2_CONFIG) Register (offset = 0x0130)................ 98
5.14.1.16: GCR Global SDB Configuration (SDB_CONFIG) Register (offset = 0x0160) 100
5.14.1.17: GCR Global IOCU Revision (IOCU_REV) Register (offset = 0x0200) 101
5.14.1.18: GCR Global DBU Revision (DBU_REV) Register (offset = 0x0208) 102
5.14.1.19: GCR Global Interrupt Controller Revision (AIA_REV) Register (offset = 0x0208) 103
5.14.1.20: GCR Global L2 RAM Configuration (L2_RAM_CONFIG) Register (offset = 0x0240) 104
5.14.1.21: GCR Global Scratch0 (SCRATCH0) Register (offset = 0x0280)...................................... 105
5.14.1.22: GCR Global Scratch1 (SCRATCH1) Register (offset = 0x0288)...................................... 106
5.14.1.23: GCR Global L2 PFT Control (L2_PFT_CONTROL) Register (offset = 0x0300)............... 107
5.14.1.24: GCR Global L2 PFT Control B (L2_PFT_CONTROL_B) Register (offset = 0x0308)....... 108
5.14.1.25: GCR Global L2 Tag Address (L2_TAG_ADDR) Register (offset = 0x0600) 109

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83 6

5.14.1.26: GCR Global L2 Tag State (L2_TAG_STATE) Register (offset = 0x0608)........................ 110
5.14.1.27: GCR Global L2 Data (L2_DATA) Register (offset = 0x0610) ... 111
5.14.1.28: GCR Global L2 ECC (L2_ECC) Register (offset = 0x0618) ... 112
5.14.1.29: GCR Global L2SM CacheOp (L2SM_COP) Register (offset = 0x0620)........................... 113
5.14.1.30: GCR Global L2SM Tag Address CacheOp (L2SM_TAG_ADDR_COP) Register (offset =
0x0628).. 114
5.14.1.31: GCR Global Semaphore (SEM) Register (offset = 0x0640) ... 115
5.14.1.32: GCR Global Timeout Timer Limit (TIMEOUT_TIMER_LIMIT) Register (offset = 0x0650)116
5.14.1.33: GCR Global MMIO Requests Limit (MMIO_REQ_LIMIT) Register (offset = 0x06F8)...... 117
5.14.1.34: GCR Global MMIO0 Bottom (MMIO0_BOTTOM) Register (offset = 0x0700) 118
5.14.1.35: GCR Global MMIO0 Top (MMIO0_TOP) Register (offset = 0x0708) 120
5.14.1.36: GCR Global MMIO1 Bottom (MMIO1_BOTTOM) Register (offset = 0x0710) 121
5.14.1.37: GCR Global MMIO1 Top (MMIO1_TOP) Register (offset = 0x0718) 123
5.14.1.38: GCR Global MMIO2 Bottom (MMIO2_BOTTOM) Register (offset = 0x0720) 124
5.14.1.39: GCR Global MMIO2 Top (MMIO2_TOP) Register (offset = 0x0728) 126
5.14.1.40: GCR Global MMIO3 Bottom (MMIO3_BOTTOM) Register (offset = 0x0730) 127
5.14.1.41: GCR Global MMIO3 Top (MMIO3_TOP) Register (offset = 0x0728) 129
5.14.1.42: GCR Global MMIO4 Bottom (MMIO4_BOTTOM) Register (offset = 0x0740) 130
5.14.1.43: GCR Global MMIO4 Top (MMIO4_TOP) Register (offset = 0x0748) 132
5.14.1.44: GCR Global MMIO5 Bottom (MMIO5_BOTTOM) Register (offset = 0x0750) 133
5.14.1.45: GCR Global MMIO5 Top (MMIO5_TOP) Register (offset = 0x0758) 135
5.14.1.46: GCR Global MMIO6 Bottom (MMIO6_BOTTOM) Register (offset = 0x0760) 136
5.14.1.47: GCR Global MMIO6 Top (MMIO6_TOP) Register (offset = 0x0768) 138
5.14.1.48: GCR Global MMIO7 Bottom (MMIO7_BOTTOM) Register (offset = 0x0770) 139
5.14.1.49: GCR Global MMIO7 Top (MMIO7_TOP) Register (offset = 0x0778) 141

5.14.2: GCR.Debug Registers ... 142
5.14.2.1: GCR Debug TCB ControlD (TCBCONTROLD) Register (offset = 0x0810) 142
5.14.2.2: GCR Debug TCB ControlE (TCBCONTROLE) Register (offset = 0x0820)........................ 144
5.14.2.3: GCR Debug TCB Performance Counter Trace (TCBPERFCNTR) Register (offset = 0x0830)
145
5.14.2.4: GCR Debug Performance Counter Control (PC_CTL) Register (offset = 0x0900) 146
5.14.2.5: GCR Debug Performance Counter Overflowed (PC_OV) Register (offset = 0x0920) 148
5.14.2.6: GCR Debug Performance Counter Event (PC_EVENT) Register (offset = 0x0930).......... 149
5.14.2.7: GCR Debug Performance Counter Cycles (PC_CYCL) Register (offset = 0x0980) 150
5.14.2.8: GCR Debug Performance Counter Qualifier0 (PC_QUAL0) Register (offset = 0x0990).... 151
5.14.2.9: GCR Debug Performance Counter Value0 (PC_CNT0) Register (offset = 0x0998) 152
5.14.2.10: GCR Debug Performance Counter Qualifier1 (PC_QUAL1) Register (offset = 0x09A0) . 153
5.14.2.11: GCR Debug Performance Counter Value1 (PC_CNT1) Register (offset = 0x09a8) 154

5.14.3: GCR.Core Registers .. 155
5.14.3.1: GCR HART Reset Exception Base (RESET_BASE) Register (offset = see below)........... 157
5.14.3.2: GCR Core Enables Coherence (COH_EN) Register (offset = see below) 158

5.14.4: CPC.Global Registers .. 159
5.14.4.1: CPC Global Sequencer (SEQDEL_REG) Register (offset = 0x8008) 160
5.14.4.2: CPC Global Rail (RAIL_REG) Register (offset = 0x8010).. 161
5.14.4.3: CPC Global Reset Sequence (RESETLEN_REG) Register (offset = 0x8018) 162
5.14.4.4: CPC Global Revision (REVISION_REG) Register (offset = 0x8020) 163
5.14.4.5: CPC Global Clock Change Configuration, Control and Status. (CC_CTL_REG) Register
(offset = 0x8028).. 164
5.14.4.6: CPC Global Power Up Control (PWRUP_CTL_REG) Register (offset = 0x8030) 166
5.14.4.7: CPC Global Reset Release (RES_REL_REG) Register (offset = 0x8038) 167
5.14.4.8: CPC Global Core Rest Control (ROCC_CTL_REG) Register (offset = 0x8040)................ 168
5.14.4.9: CPC Global Controls Prescale Clock Changes Register (offset = 0x8048) 169
5.14.4.10: CPC Global RISC-V Mtime (MTIME_REG) Register (offset = 0x8050) 170
5.14.4.11: CPC Global RISC-V Mtime Control (TIMECTL_REG) Register (offset = 0x8058) 171
5.14.4.12: CPC Global Clock Gate Disabled (CLK_GATE_DIS_REG) Register (offset = 0x8060) .. 172
5.14.4.13: CPC Global Fault Status (FAULT_STATUS) Register (offset = 0x8068) 173

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83 7

5.14.4.14: CPC Global Fault Supported (FAULT_SUPPORTED) Register (offset = 0x8070) 174
5.14.4.15: CPC Global Fault Enable (FAULT_ENABLE) Register (offset = 0x0078) 176
5.14.4.16: CPC Global High Resolution Timer (HRTIME_REG) Register (offset = 0x8090)............. 178
5.14.4.17: CPC Global Configuration (CONFIG) Register (offset = 0x8138) 179

5.14.5: CPC.Core Registers... 180
5.14.5.1: CPC Power Command (CMD_REG) Register (offset = see below) 182
5.14.5.2: CPC Core Status and Domain Configuration (STAT_CONF_REG) Register (offset = see
below) .. 183
5.14.5.3: CPC Control Clock Change (CC_CTL_REG) Register (offset = see below)...................... 186
5.14.5.4: CPC Power VP Stop (VP_STOP_REG) Register (offset = see below) 188
5.14.5.5: CPC VP Run (VP_RUN_REG) Register (offset = see below) .. 189
5.14.5.6: CPC VP Running State (VP_RUNNING_REG) Register (offset = see below)................... 190
5.14.5.7: CPC Power Debug Interrupt (DBG_DBRK_REG) Register (offset = see below) 191
5.14.5.8: CPC Power Controls Deep Sleep (RAM_SLEEP_REG) Register (offset = see below) 192
5.14.5.9: CPC Power Fault Status (FAULT_STATUS) Register (offset = see below)....................... 193
5.14.5.10: CPC Power Fault Set (FAULT_SET) Register (offset = see below)................................. 195
5.14.5.11: CPC Power Fault Clear (FAULT_CLR) Register (offset = see below) 196
5.14.5.12: CPC Power Configuration (CONFIG) Register (offset = see below) 197

5.14.6: FDC.Global Registers .. 198
5.14.6.1: FDC Global Access Control and Status (FDACSR) Register (offset = 0x3F000)............... 199
5.14.6.2: FDC Global Configuration (FDCFG) Register (offset = 0x3F008 200
5.14.6.3: FDC Global Status (FDSTAT) Register (offset = 0x3F010).. 201
5.14.6.4: FDC Global Receive (FDRX) Register (offset = 0x3F018) ... 202
5.14.6.5: FDC Global Transmit (FDTX[0-15]) Register (offset = 0x3F020) 203

5.14.7: Trace Funnel (TRF) Global Registers .. 204
5.14.7.1: TRF Global Trace Funnel Control (CONTROL) Register (offset = 0x3F100)..................... 205
5.14.7.2: TRF Global Trace Funnel Configuration (CONFIG) Register (offset = 0x3F108)............... 208
5.14.7.3: TRF Global Trace Funnel Write Pointer (WRITEPTR) Register (offset = 0x3F110) 209
5.14.7.4: TRF Global Trace Funnel Read Pointer (READPTR) Register (offset = 0x3F118)............ 210
5.14.7.5: TRF Global Trace Data (DATA[0-7]) Register (offset = see below) 211
5.14.7.6: TRF Global System Trace User Control (STUSER) Register (offset = 0x3F160) 212
5.14.7.7: TRF Global System Trace Enable (STENABLE) Register (offset = 0x3F168) 213

5.14.8: GCR.U User Mode Registers... 214
5.14.8.1: GCR.U User Mode Timer (MTIME_REG) Register (offset = 0x7F050).............................. 215
5.14.8.2: GCR.U High Resolution Timer (L2_CONFIG) Register (offset = 0x7F090) 216

Chapter 6: Power Management ... 217
6.1: Overview.. 217

6.1.1: Power Domains.. 217
6.1.2: Clock Domains ... 218
6.1.3: Core and IOCU Selection... 218
6.1.4: Overview of Power States.. 218

6.2: Individual Clock Gating.. 219
6.3: Global Control Block Register Map ... 220
6.4: Local Control Blocks.. 221
6.5: CPC Register Programming .. 222

6.5.1: Cluster Power Controller Register Address Map ... 222
6.5.2: Global Control Block Register Map.. 223
6.5.3: Local Control Blocks .. 223
6.5.4: Requestor Access to CPC Registers ... 223

6.5.4.1: Register Interface ... 223
6.5.5: Enabling Coherent Mode ... 223
6.5.6: Master Clock Prescaler .. 224
6.5.7: Individual Device Clock Ratio Modification .. 225

6.5.7.1: Clock Domain Change Example — Register Programming Sequence................................ 225
6.5.7.2: Clock Change Delay... 226

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83 8

6.5.8: CM Standalone Powerup ... 226
6.5.8.1: Register Interface ... 226

6.5.9: Reset Detection.. 226
6.5.10: VP Run/Suspend.. 227
6.5.11: Local RAM Deep Sleep / Shutdown and Wakeup Delay ... 228

6.5.11.1: RAM Deep Sleep Mode.. 228
6.5.11.2: RAM Shut Down Mode ... 228

6.5.12: Fine Tuning Internal and External Signal Delays ... 229
6.5.12.1: Global Sequence Delay Count ... 229
6.5.12.2: Rail Delay ... 229
6.5.12.3: Reset Delay .. 230

Chapter 7: Control and Status Registers (CSR) .. 232
7.1: Machine Mode Registers... 232

7.1.1: Machine Architecture ID Register (MarchID) — offset = 0xF12... 233
7.1.2: Machine Cause Register (mcause) — offset = 0x342 ... 234
7.1.3: Machine Hart ID Register (mhartID) — 0xF14... 237
7.1.4: Machine Implementation ID Register (mimpid) — offset = 0xF13 ... 238
7.1.5: Machine Vendor ID Register (mvendorid) — offset = 0xF11 ... 239

7.2: User Mode Registers... 240
7.2.1: Time Register (time) — offset = 0xC01.. 240

7.3: MIPS Custom Registers .. 241
7.3.1: MIPS Trap Vector Base Address Register (mipstvec) — offset = 0x7C0 243
7.3.2: MIPS Trap Value Register (mipstval) — offset = 0x7C3.. 244
7.3.3: MIPS Scratch Register (mipsscratch) — offset = 0x7C4 ... 245
7.3.4: MIPS Cache Error Register (mipscacheerr) — offset = 0x7C5.. 246
7.3.5: MIPS Error Control Register (mipserrctrl) — offset = 0x7C6 ... 248
7.3.6: MIPS Interrupt Control Register (mipsintctl) — offset = 0x7CB ... 249
7.3.7: MIPS DSPRAM Base Register (mipsdsprambase) — offset = 0x7CC .. 250
7.3.8: MIPS Configuration 1 Register (mipsconfig1) — offset = 0x7D1 ... 251
7.3.9: MIPS Configuration 5 Register (mipsconfig5) — offset = 0x7D5 ... 252
7.3.10: MIPS Configuration 6 Register (mipsconfig6) — offset = 0x7D6 ... 254
7.3.11: MIPS Configuration 7 Register (mipsconfig7) — offset = 0x7D7 ... 255
7.3.12: MIPS Configuration 8 Register (mipsconfig8) — offset = 0x7D8 ... 258
7.3.13: MIPS Configuration 9 Register (mipsconfig9) — offset = 0x7D9 ... 259
7.3.14: MIPS Configuration 10 Register (mipsconfig10) — offset = 0x7DA... 260
7.3.15: MIPS Configuration 11 Register (mipsconfig11) — offset = 0x7DB... 261
7.3.16: PMA Configuration Registers... 262

7.3.16.1: PMA Configuration 0 Control and Status Register (PMACFG0) — offset = 0x7E0............ 263
7.3.16.2: PMA Configuration 1 Control and Status Register (PMACFG1) — offset = 0x7E1............ 264
7.3.16.3: PMA Configuration 2 Control and Status Register (PMACFG2) — offset = 0x7E2............ 265
7.3.16.4: PMA Configuration 3 Control and Status Register (PMACFG3) — offset = 0x7E3............ 266
7.3.16.5: PMA Configuration 4 Control and Status Register (PMACFG4) — offset = 0x7E4............ 267
7.3.16.6: PMA Configuration 5 Control and Status Register (PMACFG5) — offset = 0x7E5............ 268
7.3.16.7: PMA Configuration 6 Control and Status Register (PMACFG6) — offset = 0x7E6............ 269
7.3.16.8: PMA Configuration 7 Control and Status Register (PMACFG7) — offset = 0x7E7............ 270
7.3.16.9: PMA Configuration 8 Control and Status Register (PMACFG8) — offset = 0x7E8............ 271
7.3.16.10: PMA Configuration 9 Control and Status Register (PMACFG9) — offset = 0x7E9.......... 272
7.3.16.11: PMA Configuration 10 Control and Status Register (PMACFG10) — offset = 0x7EA 273
7.3.16.12: PMA Configuration 11 Control and Status Register (PMACFG11) — offset = 0x7EB 274
7.3.16.13: PMA Configuration 12 Control and Status Register (PMACFG12) — offset = 0x7EC 275
7.3.16.14: PMA Configuration 13 Control and Status Register (PMACFG13) — offset = 0x7ED 276
7.3.16.15: PMA Configuration 14 Control and Status Register (PMACFG14) — offset = 0x7EE 277
7.3.16.16: PMA Configuration 15 Control and Status Register (PMACFG15) — offset = 0x7EF...... 278
7.3.16.17: PMA0CFG - PMA63CFG Bit Assignments... 279

7.4: MIPS Hybrid Debug Registers... 280

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83 9

Chapter 8: Interrupt Controller .. 281
8.1: Overview.. 281

8.1.1: Multi-cluster Support .. 281
8.1.2: APLIC... 282
8.1.3: ACLINT .. 283

8.1.3.1: MTIMER ... 283
8.1.3.2: MSWI and SSWI... 284

8.1.4: Watchdog Timer... 284
8.2: ACLINT Memory Mapped Registers.. 285

8.2.1: ACLINT Machine Mode Memory Map.. 285
8.2.1.1: ACLINT Machine Software Interrupt Pending (MSIP[0-4094]) Register (offset = see below)
286
8.2.1.2: ACLINT Machine Time Compare (MTIMECMP[0-4094]) Register (offset = see below) 287
8.2.1.3: ACLINT WatchDog ConFiG (WDCFG[0-1023]) Register (offset = see below)..................... 288
8.2.1.4: ACLINT WatchDog Control and Status (WDCSR[0-1023]) Register (offset = see below) ... 289

8.2.2: Aclint Supervisor Mode Memory Map .. 290
8.2.2.1: ACLINT SET Supervisor Software Interrupt Pending (SETSSIP[0-4094]) Register (offset = see
below) .. 291

8.3: APLIC Memory Mapped Registers .. 292
8.3.1: APLIC Machine Domain Memory Map... 292
8.3.2: APLIC Supervisor Domain Memory Map ... 294
8.3.3: APLIC Custom Memory Map ... 296

8.3.3.1: APLIC Domain Configuration (DOMAINCFG) Register (offset = see below) 297
8.3.3.2: APLIC Source Configuration (SOURCECFG[1-1023]) Register (offset = see below) 298
8.3.3.3: APLIC SET Interrupt Pending (SETIP[0-31]) Register (offset = see below)......................... 299
8.3.3.4: APLIC Input/Clear Interrupt Pending (IN_CLRIP[0-31]) Register (offset = see below) 300
8.3.3.5: APLIC Set Interrupt-Pending Number (SETIPNUM) Register (offset = see below) 301
8.3.3.6: APLIC Clear IP Number (CLRIPNUM) Register (offset = see below) 302
8.3.3.7: APLIC Set Interrupt Enable (SETIE[0-31]) Register (offset = see below) 303
8.3.3.8: APLIC Clear Interrupt Enable (CLRIE[0-31]) Register (offset = see below) 304
8.3.3.9: APLIC Set Interrupt Enable Number (SETIENUM) Register (offset = see below)................ 305
8.3.3.10: APLIC Clear Interrupt Enable Number (CLRIENUM) Register (offset = see below) 306
8.3.3.11: APLIC Set Interrupt-Pending Number (SETIPNUM_LE) Register (offset = see below) 307
8.3.3.12: APLIC Target (TARGET[1-1023]) Register (offset = see below).. 308
8.3.3.13: APLIC Interrupt Delivery (HART[0-1023].IDELIVERY) Register (offset = see below)........ 309
8.3.3.14: APLIC Interrupt Force (HART[0-1023].IFORCE) Register (offset = see below)................. 310
8.3.3.15: APLIC Interrupt Threshold (HART[0-1023].ITHRESHOLD) Register (offset = see below) 311
8.3.3.16: APLIC Top Interrupt (HART[0-1023].TOPI) Register (offset = see below) 312
8.3.3.17: APLIC Claim Interrupt (HART[0-1023].CLAIMI) Register (offset = see below) 313
8.3.3.18: APLIC Set NMI Enable (SETNMIE[0-31]) Register (offset = see below)............................ 314
8.3.3.19: APLIC Set NMI Number (SETNMIENUM) Register (offset = 0x4C0DC)............................ 315
8.3.3.20: APLIC Clear NMI Enable (CLRNMIE[0-31]) Register (offset = see below) 316
8.3.3.21: APLIC Clear NMI Number (CLRNMIENUM) Register (offset = 0x4C1DC) 317

Chapter 9: Floating-Point Unit (FPU) .. 318
9.1: Features Overview .. 318
9.2: FPU Execution Units ... 318

9.2.1: Short Operations.. 318
9.2.2: Long Operations... 319

9.3: Data Formats... 319
9.3.1: Floating-Point Formats... 319

9.3.1.1: Normalized and Denormalized Numbers.. 321
9.3.1.2: Reserved Operand Values—Infinity and NaN .. 321
9.3.1.3: Infinity and Beyond ... 321
9.3.1.4: Signalling Non-Number (SNaN) ... 322
9.3.1.5: Quiet Non-Number (QNaN) .. 322

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

9.3.2: Signed Integer Formats.. 323
9.4: Floating-Point General Registers .. 323

9.4.1: FPRs and Formatted Operand Layout ... 323

Chapter 10: Multithreading .. 324
10.1: Instruction Flow ... 324
10.2: Data Flow .. 325
10.3: Independent Exception Model ... 325

Chapter 11: Performance Counters .. 327
11.1: Core Performance Counters.. 327

11.1.1: Performance Event Masking .. 327
11.1.2: Core Performance Event Control Register (mhpmevent[6:3]) ... 328
11.1.3: Core Performance Counter Count Register (mhpmcounter[6:3])... 329
11.1.4: Core Performance Counter Events .. 329

11.2: CM3 Performance Counters.. 332
11.2.1: CM3 Performance Counter Functionality ... 332
11.2.2: CM3 Performance Counter Usage Models .. 333

Chapter 12: Instruction Latencies and Repeat Rates.. 344
12.1: Definition of Terms .. 344

Chapter 13: MIPS On-Chip Instrumentation... 351
13.1: OCI Debug System Overview.. 351

13.1.1: Debug Unit (DBU) .. 351
13.1.1.1: APB Slave Port... 353
13.1.1.2: JTAG TAP .. 353
13.1.1.3: Debug Monitor .. 353
13.1.1.4: RAM.. 353

13.1.2: Register Bus... 353
13.1.3: Number of Breakpoints .. 353
13.1.4: Per Core/Hart Resources... 353

13.1.4.1: Breakpoint Controller.. 353
13.1.4.2: Dseg ... 353
13.1.4.3: Dmseg .. 353
13.1.4.4: Drseg .. 353
13.1.4.5: CSR Registers.. 354

13.1.5: Coherence Devices.. 354
13.1.5.1: CPC (Cluster Power Controller) ... 354
13.1.5.2: GCR (Global Configuration Registers) ... 354
13.1.5.3: CGCR - (Custom Global Configuration Registers) ... 354
13.1.5.4: CM - (Coherence Manager) (v3) .. 354
13.1.5.5: IOCU (I/O Coherence Unit) .. 354

13.2: More Information ... 354

Appendix A: Revision History ... 355

Appendix B: MIPS Defined Instructions ... 358

Chapter 1

11
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

Architecture Overview

This document describes the software-programmable aspects of the 64-bit RV64GCZba_Zbb1
P8700-F Multiprocessing System (MPS). The device consists of the logic blocks shown in
Figure 1.1. The majority of blocks in the diagram have at least one dedicated chapter that
describes how to control the hardware using registers and assembly code. The register-pro-
gramming examples describe a programming sequence of how to set or change a program-
mable parameter using registers. The assembly code examples show how the MIPS
instruction set can be used to perform the same function.

Each chapter provides the relevant background information required by the programmer in
order to understand the examples. Common examples such as enabling and initialization are
provided for each block, as well as more in depth examples relative to that block.

An overview of the material provided in this document is as follows:

• Memory Management (MMU): This chapter describes the programmable elements of the
Translation Lookaside Buffer or TLB of the P8700-F Multiprocessing System. The first sec-
tion gives an overview of the TLB architecture, a description of its functionality and a
description of the elements that go into programming the TLB. The sections that follow
cover specific information on programming for the Translation Lookaside Buffer (TLB).

• Caches: This chapter provides an overview of the cache architecture, a description of its
functionality, and a description of the elements that go into programing the caches. A
description of the CSR register interface to each cache is provided, as well as initialization
code for all three caches, setting up cache coherency, handling cache exceptions, and
testing the cache RAM.

• Exceptions: This chapter describes an overview of exception processing and a definition
of the interrupt modes. Information on how to program the reset, boot, and general
exception vectors in memory is also covered. A list of exception priorities is provided,
along with an assembly language example of an exception handler.

• Coherence Manager (CM): The P8700-F MPS contains a third generation Coherence Man-
ager. This chapter provides an overview of the CM register ring bus and associated table
that lists each device ID on the bus. The programmer uses this information to access
these devices. An overview of the CM register address space is also provided. In addition,
the chapter describes how to program the CM to perform various functions, including set-
ting the base addresses in memory, accessing another Hart in the same core, accessing a
Hart in another core, accessing the Interrupt Controller, Cluster Power Controller (CPC),
and/or Debug Unit (DBU) registers via the CM, and setting the clock ratios between the
various P8700-F system components. For the exact revision number of the Coherence
Manager, refer to the Release Notes.

1. Zba and Zbb are bit manipulation extensions.

12
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

This chapter also introduces the multi-cluster configuration that allows multiple P8700/
P8700-F Multiprocessing Systems to be connected through a Network-On-Chip (NOC)
interface. The section describes the registers used to perform a cluster-to-cluster access.

• Cluster Power Controller (CPC): This chapter provides an overview of how power is man-
aged in the P8700-F Multiprocessing System and identifies the various power and clock
domains the programmer can use to manage power consumption in the device. In addi-
tion, a procedure on how to set the CPC base address in memory is provided. Other pro-
gramming principles include setting the device to coherent or non-coherent mode,
requestor (core or IOCU) access of CPC registers, system power-up policy, programming
examples of a clock domain change and clock delay change, powering up the CPC in
standalone mode (no cores enabled), reset detection, Hart run/suspend mechanism,
local RAM shutdown and wake-up procedure, accessing registers in another power
domain, and fine tuning internal and external signal delays to help the programmer eas-
ily integrate the device into a system environment.

• Interrupt Controller: The Interrupt Controller processes internal and external interrupts
in the P8700/P8700-F Multiprocessing System. It supports up to 512 external interrupts
(configurable in multiples of 8), which are prioritized and routed to the selected hart for
servicing. The Interrupt Controller is compliant with the Advanced Interrupt Architecture
(AIA) standard.

• Floating Point Unit (FPU): This chapter provides information on how to enable the FPU,
how to handle floating point exceptions, how to set the rounding mode, and operation of
the Flush-to-Zero (FS) function.

• Multi-threading: This chapter provides an overview of the hardware multi-threading
mechanism in the P8700-F MPS.

• On-Chip Instrumentation (OCI): This chapter provides a brief overview of the interface
and external debugging environment required to debug MIPS processors that incorporate
the MIPS On-Chip Instrumentation (OCI) debug system for multi-core designs.

• Performance Counters: The P8700 core contains four performance counters. Each coun-
ter has a Control register (mhpmevent) and an associated Count (mhpmcounter) regis-
ter.

• Implementation Specific Instructions: This chapter describes the architectural definition
for the following implementation-specific instructions in the P8700/P8700-F Multipro-
cessing System.

• Latency and Repeat Rates: This chapter provides the instructions latency and repeat
rates

Throughout all of the aforementioned chapters, there are assembly language examples that
describe how various programming elements are handled in software. These examples can
be used by programmer’s writing their own code to program a particular block, or for writing
a low-level support library, RTOS, or their own tool chain.

This document is meant to be used with two other companion documents:

• MIPS RV64 P8700-F Multiprocessing System Integrator’s Guide (MD01041), This com-
panion document provides hardware details about the device, including functional verifi-
cation, system integration, and system implementation.

1.1 Product Overview

The P8700-F series is a high performance multi-core microprocessor system that provides a
best in class power efficiency for use in system-on-chip (SoC) applications. The P8700-F

13
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Coherence Manager maintains Level 2 (L2) cache and system level coherency between all
cores, main memory, and I/O devices. The P8700-F Multiprocessing System (MPS) can be
configured with a variable number of cores, I/O coherent interfaces, and L2 cache size.

Each P8700-F core implements the Release 6 of the RV64GCZba_ZbbZba_Zbb Instruction
Set Architecture with full hardware multithreading.

The P8700-F MPS supports both single-cluster and multi-cluster configurations as described
in the following subsections.

1.1.1 Single-Cluster Configuration

Figure 1.1 shows a block diagram of a single-cluster P8700-F Multiprocessing System. The
P8700-F MPS contains the following logic blocks:

• Up to six cores

• Up to eight I/O Coherence Units (IOCU)

• Coherence Manager (CM) with integrated L2-cache

• Cluster Power Controller (CPC)

• Interrupt Controller

• Global Configuration Registers (GCR)

• Multiprocessor debug via in-system Debug Unit (DBU)

In the P8700-F MPS the total number of cores and IOCUs together must be less than or equal
to eight. All cores and IOCU’s are optional and can be configured in any combination of up to
eight.

Figure 1.1 Block Diagram of Single Cluster P8700/P8700-F Multiprocessing System

For more information on the Cluster Power Controller (CPC) block, refer to the Cluster Power
Controller chapter of this manual.

14
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

For more information on the Interrupt Controller block, refer to the Interrupt Controller
chapter of this manual.

For more information on the Coherence Manager (CM), refer to the Coherence Manager
chapter of this manual.

For more information on the L2 Cache Memory, refer to the Caches chapter of this manual.

For more information on the Global Configuration Registers block, refer to the Coherence
Manager chapter of this manual to provide various CM register programming examples.

For more information on the programmable blocks within the Core, such as MMU, FPU, etc.
refer to the Figure 1.3.

1.1.2 Multi-Cluster Configuration

In addition to the single-cluster configuration shown above, the P8700-F also allows for clus-
ter-to-cluster accesses. This allows a core or Hart in one cluster to access a core or Hart in
another cluster through the Network-On-Chip (NOC) interface. This interface is shown in
Figure 1.2.

Figure 1.2 Cluster-to-Cluster Accesses Using the NOC

For example, a Hart within a core in Cluster 1 can access and update a register in a Hart in
Cluster 2 as shown. The access is processed by the CM3.7 and driven onto the NOC. The NOC
then routes the request to the appropriate cluster where the access is scheduled by the
CM3.7 in the destination cluster. The data is fetched and returned to the requesting Hart
through the NOC.

For more information, refer to Chapter 4, Coherency Manager.

Hart Hart

Core

Hart Hart

Core

CM3.7

Hart Hart

Core

Hart Hart

Core

CM3.7

Cluster 1 Cluster 2

Network on Chip (NoC)

15
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

1.2 P8700-F Features

The P8700/P8700-F Multiprocessing System has four key architectural features as described
in the following subsections.

• RISC-V RV64GCZba_Zbb architecture (Base ISA and Standard Extensions)

• User-Defined Custom Extensions

• MIPS Multithreading

• Hybrid Debug

• RISC-V Privileged Architecture

• Functional Safety

The P8700/P8700-F core is configured to support the RV64GCZba_Zbb (G = IMAFD) Stan-
dard ISA. It includes the RV64I base ISA, Multiply (M), Atomic (A), Single-Precision Floating
Point (F), Double-Precision Floating Point (D), Compressed (C) RISC-V extensions, as well as
the bit-manipulation extensions (Zba) and (Zbb).

The P8700/P8700-F provides memory management through on-chip configuration registers
and enables real-time operating systems and application code to be implemented once and
then reused.

1.2.1 MIPS Out-of-Order Multithreading

CPU performance depends on minimizing the latency to the system memory. Even with a
cache hierarchy, the CPU still stalls while waiting for data. To avoid this scenario, MIPS out-
of-order multithreading provides significant performance improvements by running additional
instructions concurrently.

This hardware out-of-order multithreading enables execution of multiple instructions from
multiple threads (harts) every clock cycle, providing higher utilization and CPU efficiency. In
this way, out-of-order multi-threading is a more area efficient alternative to the use of addi-
tional cores and offers a typical 60% performance boost for the execution of two harts simul-
taneously instead of sequentially.

1.2.2 Hybrid Debug

The P8700/P8700-F offers proven MIPS EJTAG with RISC-V Trace and GDB support for Multi-
Core/Cluster Debug.

1.3 P8700/P8700-F Privileged Architecture

The RISC-V privileged architecture covers all aspects of RISC-V systems beyond the unprivi-
leged ISA, including privileged instructions as well as additional functionality required for
running operating systems and attaching external devices.

The P8700/P8700-F implements the RISC-V compliant Privileged Architecture, as well as
Custom CSRs. The P8700/P8700-F Privileged Architecture includes:

• Privileged operating modes (Supervisor-mode, Machine-mode, Debug-mode)

• M-mode: All Machine-level CSRs and Privileged Instructions

16
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

• S-mode: All Supervisor-level CSRs and Supervisor Instructions

• D-mode: All Debug/Trace CSRs

1.4 Functional Safety

The P8700/P8700-F IP is designed to support the ASIL-B(D) functional safety standard. In so
doing, the P8700/P8700-F cluster includes the following fault detection features:

• Fault bus to report detected faults to external fault handling logic

• End-to-end parity protection on address and data buses

• Parity protection of software visible registers in the GCR, Interrupt Controller, and CPC
blocks

• Programmable transaction time out detection on memory requests originating from a
CPU or IOCU

• SRAM error detection and correction

• Protocol error detection on IOCU and REGTC AXI slave interfaces

• AXI/ACE interface parity protection of address and data compatible with third-party
interconnects

1.5 System-level Features

• Up to six coherent RV64GCZba_Zbb CPU cores

• Multi-Cluster support: Cluster composed of up to 0 - 6 CPUs and 0 - 8 IOCUs (sum being
no more than 8 agents) and a Level 2 cache connection to a coherent interconnect. Sup-
port for up to 64 clusters.

• Integrated L2 cache controller supporting a 8-way and 16-way set-associativity
– Inclusive of the L1 data caches

– 256 KB to 8 MB cache sizes

– Single bit correction and double bit detection

• CPC to shut down idle cores for power efficiency

• Up to 8 I/O coherence units (total of cores + IOCUs must be no greater than 8)

• Cache-to-cache data transfers

• Out-of-order data return

• Hardware L2 cache prefetch controller significantly improves performance of workloads
such as memory to memory data transfer/copy (memcpy)

• Independent clock ratios on core, memory, and IOCU ports

• SoC system interface supports AXI-4 (Advanced eXtensible Interface rev. 4, also known
as AMBA 4 AXI) or ACE (AXI Coherency Extensions) protocol with 48-bit address and
256-bit data paths. This interface can be configured to support up to 96 outstanding
requests.

• High bandwidth 128-bit data paths between each core and the Coherence Manager

• Software controlled core level and cluster level power management

• Debug port supporting multi-core debug (JTAG/APB)

• Program and Data trace (PDtrace) mechanism to debug software

17
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

1.6 CPU Core-Level Features

• Full 64-bit Instruction Set Architecture with Compressed Instructions via RISC-V
RV64GCZba_Zbb

• 48-bit virtual and physical addresses

• Power efficient design

• Quad issue instruction fetch, decode, issue, and graduate

• Hardware out-of-order multithreading

• L1 caches with Error Correction Code (ECC) protection

• L2 cache support — Implemented as shared L2 in the Coherence Manager

• Programmable Memory Management Unit with large first-level ITLB/DTLB backed by fast
on-core second-level variable page size TLB (VTLB) and fixed page size TLB (FTLB)

• Shared FTLB across all hardware threads (harts) in a CPU

• MIPS DVM support through Global Instruction cache and TLB invalidation
• Load and store bonding support

• Unaligned load / store support in hardware

• Program and Data Trace (PDtrace) support for Instructions and Data (Virtual Addresses
and Data Values)

1.7 P8700-F Core Block Diagram

Figure 1.3 shows a block diagram of a single P8700-F core.

18
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Figure 1.3 P8700-F Core-level Block Diagram

For more information on the Instruction TLB, Data TLB, and VTLB/FTLB blocks shown in
Figure 1.3, refer to the Memory Management chapter of this manual.

For more information on the L1 Instruction Cache and L1 Data Cache blocks, refer to the
Caches chapter of this manual.

For more information on the FPU block, refer to the FPU chapter of this manual.

1.8 MIPS Software Tools

MIPS offers a complete portfolio of tools that address all stages of product development,
including RISC-V Linux, RiscFree™ for RISC-V SDK, compilers, and MIPS boot loader. Some
of the tools provided are described in the following subsections.

1.8.1 RISC-V Linux

MIPS actively supports, develops and improves the Linux kernel for the RISC-V architecture.
Linux kernel and distributions that currently support the RISC-V architecture include Fedora,
Debian, GENTOO, and Ubuntu.

For more information on the RISC-V Linux, refer to the RISC-V website at www.riscv.org/
exchange/software.

1.8.2 MIPS RISC-V SDK

The RiscFree™ IDE is a third-party Integrated Development Environment (IDE) and Debug-
ger for RISC-V based development.

19
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

1.8.3 Compilers

MIPS ports and maintains the GNU Compiler Collection (GCC) and provides prebuilt tool
chains in the RiscFree™ for RISC-V SDK. A wide range of other industry leading compilers are
also available for MIPS processors.

For more information on the MIPS Compilers, refer to the MIPS website at www.mips.com.
Click on: Developer  Developer Tools  Compilers.

1.8.4 Boot Loader

MIPS offers a wide range of solutions for initializing MIPS cores and facilitating debugging.
These include open-source and proprietary solutions to suit any requirement.

For more information on the MIPS Boot Loader, refer to the MIPS website at www.mips.com.
Click on: Developer  Developer Tools  Boot Loaders.

1.9 Performance Considerations

MIPS recommends setting the following configuration registers to achieve maximum perfor-
mance in most scenarios:

• Enable speculation bit in pmacfg register for all harts

• Enable L1 Prefetching by writing 0xFF to mipsconfig11 for all cores

1.10 Instruction Set Architecture

The Shogun CPU core implements the RISC-V RV64GCH base architecture. In addition to this base archi-
tecture, the I8500 CPU implements multiple MIPS Technologies custom extensions, including CorExtend.
CorExtend provides customers the ability to add new compute capability to the I8500 in a well-defined
manner. The tables in the following sections list the features and extensions supported by the I8500.

1.10.1 RISC-V Unprivileged Architecture Extensions Implemented by the I8500

Table 1.1 lists the supported extensions for the RISC-V unprivileged architecture.

Table 1.1 RISC-V Unprivileged Architecture 20240411 + RVB23U64 v0.1 Summary

Name Version Description

RV64I 2.1 Base Integer Instruction Set

Zicclsm RVB23 Misaligned load/store

Zifencei 2.0 Instruction-Fetch Fence

Ziccif RVB23 Atomic instruction fetch up to 32 bits

Zicsr 2.0 Control and Status Register Instructions

Zicntr 2.0 Base Counters and Timers

Zihpm 2.0 Hardware Performance Counters

Zihintntl 1.0 Non-Temporal Locality Hints

Zihintpause 2.0 Pause Hint

Zimop 1.0 May-Be-Operations

20
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

1.10.2 RISC-V Privileged Architecture Extensions Implemented by the I8500

Table 1.2 lists the supported extensions for the RISC-V privileged architecture.

Zcmop 1.0 Compressed May-Be-Operations

Zicond 1.0.0 Integer Conditional Instructions

M 2.0 Integer Multiplication and Division

A 2.1 Atomic Instructions

Zawrs 1.01 Wait on Reservation Set

Za64rs RVB23 Reservation sets are 64 bytes

Ziccrse RVB23 LR/SC progress guarantees (RsrvEventual)

Ziccamoa RVB23 Main memory regions support AMO Arithmetic

RVWMO 2.0 RVWMO Memory Consistency Model

CMO 1.0.0 Base Cache Management Operations

Zicbom: Basic Cache Maintenance

Zicbop: Cache Prefetch

Zicboz: Cache Block Zero

Zic64b RVB23 Cache blocks must be 64 bytes.

F 2.2 Single Precision Floating Point

D 2.2 Double Precision Floating Point

Zfa 1.0 Additional Floating Point Instructions

C 2.0 Compressed Instructions

Zca: Base compressed instruction set

Zcd: Compressed double precision floating point load/store

Zcb 1.0.0 Additional Compressed Instructions

B 1.0.0 Bit manipulation instructions.

Zba: Address arithmetic

Zbb: General bit manipulation

Zbs: Single bit manipulation

Zbc 1.0.0 Carryless Multiply

Zkt 1.0.1 Data Independent Execution Latency

Table 1.2 RISC-V Privileged Architecture 20240411+ RVB23 S64 v0.1 Summary

Name Version Description

Ssstrict RVB23 No non-conforming extensions present.

M mode 1.13 Machine-Level ISA

Ssmstateen 1.0.0 Machine state enable

Ssstateen 1.0.0 Supervisor state enable

Table 1.1 RISC-V Unprivileged Architecture 20240411 + RVB23U64 v0.1 Summary (continued)

Name Version Description

21
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

1.10.3 RISC-V Debug Architecture Extensions Implemented by the I8500

Table 1.1 lists the supported extensions for the RISC-V debug architecture.

1.10.4 RV64I Instruction Set Details

The following bullet items provide addition details on the I8500 implementation of the RV64I instruction set.

1.10.4.1 Endianess

The I8500 supports both little-endian and big-endian and boots into the mode selected by the pin input .
The I8500 operates in a single, uniform endian mode at run time. Note that there is a GCR register that
specifies the endianness of the I8500, and if software wants to alter the endianness on a system that sup-

Ss1p13 1.13 Supervisor-Level ISA

Sv39: Page-based 39-bit virtual memory system

Sv48: Page-based 48-bit virtual memory system

Sstvecd RVB23 Supervisor trap vector (stvec) supports DIRECT

Sstvala RVB23 Faulting address written to stval

Ssccptr RVB23 Main memory supports hardware page-table reads

Svbare RVB23 No translation or protection

Svade RVB23 Manage A/D bits with page faults

Ssu64xl RVB23 Supports 64-bit user mode (sstatus.UXL = 2)

Sscounterenw RVB23 Implemented hpmcounter bits have corresponding scounteren bits.

Svnapot 1.0 Naturally Aligned Power-of-Two (NAPOT) Translation

Svpbmt 1.0 Page-Based Memory Types

Svinval 1.0 Fine-Grained Address-Translation Cache Invalidation

Sstc 1.0.0 Supervisor-mode Timer Interrupts

Sscofpmf 1.0.0 Count Overflow and Mode-Based Filtering

H 1.0 Hypervisor Support

Shcounterenw RVB23 Implemented hpmcounter bits have corresponding hcounteren bits

Shvstvala RVB23 Virt: writes vstval in all cases stval would be written

Shtvala RVB23 Virt: writes hvtal with faulting guest physical address

Shvstvecd RVB23 Virt: vstvec.MODE supports DIRECT w/ 4-byte aligned BASE

Shvstapa RVB23 Virt: vsatp supports same translation modes as satp

Shgatpa RVB23 Virt: hgatp supports ×4 versions of all supported satp modes

Table 1.3 RISC-V Debug Architecture v1.0.0-rc2 ISA Extension Summary

Name Version Description

Sdext 1.0.0-rc2 RISC-V compliant external debug.

Sdtrig 1.0.0-rc2 RISC-V Trigger Module™.

Table 1.2 RISC-V Privileged Architecture 20240411+ RVB23 S64 v0.1 Summary

Name Version Description

22
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

ports both endian modes, it must write to that register, and then do a warm reset of the cores and the clus-
ter for the endianness change to be observed.

1.10.4.2 misa[25:0] Extension Bits

The I8500 sets the misa extension bits listed below. misa is read only.

• A: Atomic extension.

• B: Bitmanip extension. Shogun implements the required Zba, Zbb, and Zbs extensions.

• C: Compressed instruction extension.

• D: Double-precision floating point extension.

• F: Single-precision floating point extension.

• H: Hypervisor extension.

• I: RV64I base ISA.

• M: Integer Multiply/Divide.

• S: Supervisor mode implemented.

• U: User mode implemented.

• X: Non-standard extensions present.

1.10.4.3 A Extension

The I8500 CPU implements LR/SC natively for both cacheable and uncacheable memory. For cacheable
LR/SC, it implements one monitor per hart in the LSU. For uncacheable LR/SC, the I8500 relies on a mon-
itor outside the core. The I8500 traps and emulates AMO arithmetic with LR/SC.

For LR/SC sequences, the I8500requires precise address and size matching; an LR of 8B and an SC of 4B
within that 8B address will fail. Also, a reservation by one hart will be cleared by any ownership request by
any other hart or core for the same 64B coherence granule.

1.10.4.4 F and D Extension

The I8500 implements both F and D extensions together. The I8500 does NOT provide a configuration
option to remove either or both F and D extensions

1.10.4.5 Zicntr Extension

The I8500 should serialize reads to mcycle and minstret, as well as all the performance monitor counters,
at issue. This is a change from Daimyo/current RTL.. The I8500 natively handles access to the time regis-
ter. The I8500 provides four programmable performance monitor counters per hart.

1.10.4.6 Zihintpause and Zawrs Extensions

Shogun implements (RISC-V) pause, (MIPS) MPAUSE, WRS.STO, and WRS.NTO with variations on the
behavior of the previous MIPS custom PAUSE instruction.

The WRS.NTO form should have a maximum delay of 1023 cycles. Note that the Zawrs specification has
some rules about WRS.NTO when in VS or VU that need to also be honored.

1.10.4.7 Zihintntl Extension

The I8500 implements trivial support for Zihintntl: all Zihintntl HINTs are no-ops.

23
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

1.10.4.8 Zkt Extension

The I8500 MDU provides an OpCache intended to speed up operations with repeated arguments. This is
(and must be) disabled for multiply instructions, to ensure compatibility with Zkt.

1.10.4.9 Zfa Extension

The I8500 implements the F and D extensions (single- and double-precision floating point). The I8500
does not support the Q and Vfh extensions (quad- and half-precision floating point). Any I8500 instantiation
which supports F and D extensions also supports the single- and double-precision subsets of the Zfa
extension. No I8500 configuration supports the quad-precision nor half-precision subset of the Zfa exten-
sion.

1.10.4.10 Zicbom Extension

The I8500 maps the RISC-V cache block operations to existing MCACHE behaviors as follows:

In the table above, CBIE refers to the effective CBIE value determined by menvcfg.CBIE, henvcfg.CBIE,
senvcfg.CBIE, and the current privilege level.

1.10.4.11 Zicbop Extension

The I8500 maps the RISC-V prefetch operations to existing MIPS custom instruction behaviors as follows:

The Zicbop extension does not provide a mechanism to specify which level of cache to prefetch into.
HINTs defined in Zihintntl can provide this information; however, the i8500 implements Zihintntl as NOPs.
For the I8500, the Zicbop prefetch operations prefetch to L1. Software can continue to use the MIPS cus-
tom PREF instructions to specify the target cache if desired.

1.10.4.12 Zicboz Extension

The I8500implements Zicboz as follows, based on the CCA encoding for the specified address. The CCA
meanings are specified in the MIPS internal specification for the pma*cfg registers.

Table 1.4 Equivalent MCACHE Instructions

Zicbom Equivalent MCACHE Comments

cbo.clean mcache L2HitWb op[4:2] == 6 && op[1:0] == 2

cbo.flush mcache L2HitWbInv op[4:2] == 5 && op[1:0] == 2

cbo.inval mcache L2HitWbInv op[4:2] == 5 && op[1:0] == 2 if CBIE == 01b // Flush if U and not dele-
gated to do invalidates via CBIE=11b

mcache L2HitInv op[4:2] == 4 && op[1:0] == 2 if CBIE == 11b // Inval

Table 1.5 Equivalent PREF Instructions

Zicbop
Equivalent MIPS Custom

Instruction Comments

prefetch.i pref IcacheLoad hint[4:0] == 0 ("Icache" "Load")

prefetch.r pref DcacheLoad hint[4:0] == 8 ("Dcache" "Load")

prefetch.w pref DcacheStore hint[4:0] == 9 ("Dcache" "Store")

24
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

• CCA ≠ 1: Data cache

– Miss in L1D cache: Commits a 64 byte write of zeros directly to L2.

– Hit in L1D cache: Commits a 64 byte write of zeros to L1D cache.

Note: Hit vs. Miss is determined by the ordinary rules regarding CCA and page-based memory types
(PBMT).

• CCA = 1: Buffer cache

– Miss in L1B cache: Allocates line in L1B and fills the line with zeros.

– Hit in L1B cache: Commits a 64 byte write of zeros to L1B cache.

1.10.4.13 Svpbmt Extension

The I8500 CPU honors Svpbmt PTE overrides, even for CCA = 1 buffer cache space. The PBMT encod-
ings are as shown in the table below:

1.10.4.14 Rationale

The RISC-V architecture defines Page-Based Memory Types (PBMTs) as overriding the memory type
specified in the PMAs, unless the PMA specifies the address range as vacant.

In the I8500, the L1 buffer cache and L2 buffer pipe function as a separate, parallel memory hierarchy dis-
tinct from the normal RISC-V memory hierarchy. Therefore, the I8500 address ranges with CCA = 1 (buffer
cache) should be treated as vacant with respect to PBMT.

1.10.4.15 Svinval Extension

The I8500 implements the Svinval implementation as described in the RISC-V Privileged Architecture
Specification.

1.11 Additional Information

For additional information on the functional safety features of the P8700/P8700-F device,
refer to the following documents and links:

MIPS RV64 P8700/P8700-F Multiprocessing System Functional Safety Technical Reference
Manual

https://riscv.org/technical/specifications/

Table 1.6 Svpbmt Extensions

Binary
Encoding Mode name Details Maps to this PMACCA Encoding

00 PMA Honor existing PMA attributes. --

01 NC Non-cacheable, idempotent, weakly-ordered
(RVWMO), main memory.

PMACCA = 3 (UCA) and S = 1

10 IO Non-cacheable, non-idempotent, strongly-
ordered (I/O ordering), I/O.

PMACCA = 2 (UC) and S = 0

11 -- Reserved.

https://riscv.org/technical/specifications/

Chapter 2

25
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

Memory Management Unit

The MMU translates virtual addresses generated by the core, to physical addresses used to
access caches, memory and other devices. Virtual-to-physical address translation is espe-
cially useful for operating systems that must manage physical memory to accommodate mul-
tiple tasks active in the same virtual address space. The MMU also enforces the protection of
memory areas and defines the cache attributes. The P8700-F MMU implements a Translation
Lookaside Buffer (TLB).

This chapter covers the programmable elements of the TLB in the P8700-F Multiprocessing
System. The first section gives an overview of the TLB architecture, a description of its func-
tionality and a description of the elements that go into programming the TLB. The sections
that follow cover specific information on programming for the TLB.

2.1 Overview

The P8700-F TLB translates 48-bit virtual addresses to 48-bit physical addresses and pro-
vides access control for different page segments of memory. The core writes to internal CSR
registers with the information used to initialize and modify entries in the TLB, then executes a
TLB write instruction (MTLBWR) to move the data from the registers to the TLB.

2.1.1 TLB Types

The Memory Management Unit (MMU) in the P8700-F core consists of four address-transla-
tion lookaside buffers (TLB):

• Instruction TLB (ITLB)1. Number of ITLB entries may be configured for 8 or 16 entries.
Supported page sizes are 4KB and 64KB. The Instruction TLB is fully associative, man-
aged by hardware and is transparent to software. It acts as a cache of translations
requested by the IFU.

• Data TLB (DTLB)1. The number of DTLB entries may be configured for 16, 32 or 64 dual
entries. A dual entry is defined as two adjacent pages of the same page size, differing
only in the bit above the page offset for page size of the entry. Supported page sizes are
4KB and 64KB. The Data TLB is fully associative, managed by hardware and is transpar-
ent to software. It acts as a cache to translations requested by the LSU.

• Programmable 16, 32, or 64 dual-entry VTLB. The VTLB is used as a shared second level
cache for translations of both the ITLB and DTLB. The VTLB is primarily used to store
translation request for page sizes of 2MB, 1 GB and 512G pages. It also supports 4k and
64k pages which are periodically diverted from the FTLB. The VTLB is a fully associative

1. The ITLB and DTLB perform address translations for the instruction and data caches respectively. These blocks are not soft-
ware visible and are shown only for completeness.

26
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

cache which uses a binary tree LRU for replacement selection.

If a fetch address cannot be translated by the ITLB or DTLB, the TLB attempts to translate
it in the following clock cycle or when available. If successful, the translation information
is copied into the ITLB/DTLB for future use. Entries are automatically refilled from the TLB
when required, and automatically cleared whenever the associated TLB is updated.

• 512 dual-entry Fixed TLB (FTLB) that is also a shared backup storage for both ITLB and
DTLB translation request. It functions as a second level cache of translation from the ITLB
and DTLB. The FTLB differs from the VTLB in that it stores translation for 4K and 64k
pages only. It is organized as a 128 way by 4 set associative way cache. Management of
the 4 sets in each of the ways is by a modified round robin replacement policy. Both the
VTLB and the FTLB are accessed in parallel. A specific translation can only reside in one of
the two second level caches.

Figure 2.1 shows an overview of the P8700-F MMU architecture.

Figure 2.1 Overview of MMU Architecture in the P8700-F Core

When an instruction address is to be translated, the ITLB is accessed first. If the translation
is not found, the VTLB/FTLB is accessed. If there is a miss in the VTLB/FTLB, an exception is
taken. Similarly, when a data reference is to be translated, the DTLB is accessed first. If the
address is not present in the DTLB, the VTLB/FTLB is accessed. If there is a miss in the VTLB/
FTLB, an exception is taken. The OS should process the exception by overwriting a TLB entry
from the appropriate VTLB or FTLB with the original translation requested.

2.1.2 Instruction TLB (ITLB)

The ITLB is a variable-entry high speed translation lookaside buffer dedicated to performing
translations for the instruction stream. The number of ITLB entries is configurable and the
entries are shared between harts. The ITLB maps only 4KB and 64KB pages. The ITLB is

Instruction
Address
Calculator

ITLB

VTLB/
FTLB

Data
Address
Calculator

DTLB

IVA

DVA

Comparator

Comparator

IVA

DVA

Entry

Entry

Instruction
Hit/Miss

Data
Hit/Miss

Instruction
Cache

Tag RAM

Data Cache
Tag RAM

27
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

managed by hardware and is transparent to software. The larger VTLB/FTLB is used as a
backup structure for the ITLB as described in Section 2.1, "Overview".

2.1.3 Data TLB (DTLB)

The DTLB is an variable-entry high speed translation lookaside buffer dedicated to perform-
ing translations for the data stream. The number of DTLB entries is configurable and the
entries are shared between harts. The DTLB maps only 4K and 64k pages. The DTLB is man-
aged by hardware and is transparent to software. The larger VTLB/FTLB is used as a backup
structure for the DTLB as described in Section 2.1, "Overview".

2.1.4 Variable Page Size TLB (VTLB)

The purpose of the VTLB is to translate virtual addresses and their corresponding ASID into a
physical memory address. The VTLB is configurable for 16-, 32-, or 64 entries. Each entry is
a dual entry containing a pair of even/odd translations. The translation is performed by com-
paring the upper bits of the virtual address (along with the ASID bits) against each of the
entries in the tag portion of the VTLB structure. The VTLB is used to translate both instruction
and data virtual addresses.

2.1.4.1 VTLB Organization

The VTLB supports the following page sizes:

• 4 KB, 64 KB, 2MB, 1 GB, 512G

The VTLB/FTLB is organized in pairs of page entries to minimize its overall size. Each virtual
tag entry corresponds to two physical data entries, an even page entry and an odd page
entry. The highest order virtual address bit not participating in the tag comparison is used to
determine which of the two data entries is used. Since page size can vary on a page-pair
basis, the determination of which address bits participate in the comparison and which bit is
used to make the even-odd selection must be done dynamically during the TLB lookup.

The page size for a TLB entry is determined by the level in the page table from which the PTE
was read. The level is part of the TLB tag, along with the VPN, ASID, and G bits.

2.1.5 Fixed Page Size TLB (FTLB)

The FTLB contains 512 dual-entries and is organized as 128-sets x 4-ways. Each set of each
way contains dual data RAM entries and one tag RAM entry. If the tag RAM contents match
the requested address, either the low or high RAM location of the dual data RAM is accessed
depending on the state of the least-significant-bit (LSB) of the virtual address (VPN2). Each
RAM location maps a fixed page size, which is configurable to either 4 KB or 64KB.

The FTLB64 bit in the MIPSConfig7 register selects between 4 KB and 64 KB page sizes as
shown in Table 2.1.

Table 2.1 FTLB Organization

FTLB Parameter Programmable Options FTLB64 Bit

Page Size 4 KB 0

64 KB 1

28
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

2.2 TLB ECC Errors

TLB ECC errors are reported using bits 31:26 of the CSR mipscacheerr register. Two fields are
used; the STATE field (bits 31:30) and the ARRAY field (bits 29:26). These bits are set by
hardware and are used to report errors within the L1 instruction and data caches, as well as
the TLB. A TLB ECC error can be reported for either the tag portion or the data portion of the
array as shown in Table 2.2. Note that this table only shows the TLB-specific errors. For a
complete encoding of the ARRAY and STATE fields, refer to the mipscacheerr register.

2.3 MIPS TLB Exception Handling

The MIPS TLB’s report exceptions as described in the RISC-V Privileged Specification

2.4 TLB Duplicate Entries

When writing to the TLB, all ways of a single set in the FTLB and all the entries of the VTLB
are searched for duplicates. If a large page is written to the VTLB and multiple duplicates
exist for that larger page in the FTLB (multiple sets in the FTLB), then not all the duplicates
are detected (and invalidated).

2.5 TLB Instructions

This section defines the various types of instructions used when accessing the TLB.

• MTLBWR — The TLB Write Random instruction causes a random TLB entry selected by
hardware to be written with the virtual address in mtval CSR and the leaf PTE value
stored in integer register $rs1.

2.6 Shared FTLB Translations

The P8700-F core supports shared FTLB translations across all Harts in a core. In many appli-
cations, there can be multiple threads that are working cooperatively or running the same
application on different data. In this situation, some translations are common across Harts
and sharing the translations increases the FTLB capacity and reduces contention. Even under
Linux, multiple threads can be associated with the same process and use the same transla-
tions on different Harts.

Table 2.2 TLB ECC Error Reporting in the MIPSCacheErr Register

STATE
(Bits 31:30)

ARRAY
(Bits 29:26) Condition

2’b00 4’b0100 No FTLB Tag RAM error

2’b01 4’b0100 Correctable FTLB Tag RAM error

2’b10 4’b0100 Uncorrectable FTLB Tag RAM error

2’b00 4’b0101 No FTLB Data RAM error

2’b01 4’b0101 Correctable FTLB Data RAM error

2’b10 4’b0101 Uncorrectable FTLB Data RAM error

29
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

2.7 Hardware Table Walker

The Hardware Table Walker (HTW) performs a hardware page table walk to translate virtual
addresses to physical. Its main functionality is supported by two state machines, called
sequencers (sequencer 0 and sequencer 1).

The CSR registers that relate to the Hardware Table Walker (HTW) are as follows:

1. The PPN and the MODE fields in SATP, VSATP and HGATP registers. The PPN field holds the
physical page number (PPN) of the root page table. The MODE field is the addressing
mode. The programmer shall choose one of either the Sv39 or SV48 addressing mode.

2. The DHTW (Disable HTW) bit in the mipsconfig7 register. If this bit is set the HTW is dis-
abled.

As mentioned above, the addressing mode that the HTW supports is either Sv39 or Sv48.
Thus, the HTW supports 4KB, 64KB, 2MB, 1GB and 512GB page sizes. At the end of the table
walk, the mapping is written to the FTLB or VTLB based on the page size.

• The 4KB page mappings are written to the FTLB if the FTLB64 bit of the MIPSConfig7
register is cleared. The 64KB page mappings are written to the FTLB if the FTLB64 bit
of the MIPSConfig7 register is set.

• For the 2MB, 1GB and 512GB pages sizes, their virtual to physical mappings are
written to the VTLB.

2.8 MMU Programming

The following subsections describe some of the programming options for the P8700-F MMU.
Each section provides CSR register information listing the register and field(s) used to deter-
mine the required information, as well as an assembly code example.

This section is intended to provide examples of how to program the custom features of the
MIPS RISC-V MMU implementation.

Chapter 3

30
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

Caches

The P8700-F Multiprocessing System contains the following caches: L1 instruction, L1 data,
and shared L2. These caches provide on-chip temporary storage of information that can be
retrieved much faster than accessing main memory. The dedicated L1 instruction and data
caches have the fastest access times and are accessed first. If the data is not present in the
L1 cache, the shared L2 cache is accessed. The L2 cache contains both data and instructions,
hence the name ‘shared’. If the requested data is not in the L2 cache, the main memory is
accessed.

This chapter provides an overview of the cache architecture and a description of the elements
that go into programming the caches. A description of the CSR register interface to each
cache is provided, as well as cache initialization code. Other programmable elements include
setting up cache coherency and handling cache exceptions.

3.1 Cache Configurations

The P8700-F Multiprocessing System contains three caches; L1 instruction, and L1 data, and
shared L2. These caches are non-optional and are always present. The size of each cache can
be configured as shown in Table 3.1.

The L1 instruction cache is attached to the Instruction Fetch Unit (IFU). The L1 data cache is
attached to the Load/Store Unit (LSU). The L2 cache is embedded within the Coherence Man-
ager (CM) and communicates with external memory via a 256-bit AXI interface.

For more information on the L1 instruction cache, refer to Section 3.3.1 “L1 Instruction
Cache”.

For more information on the L1 data cache, refer to Section 3.3.2 “L1 Data Cache”.

Table 3.1 P8700-F Cache Configurations

Attribute L1 Instruction Cache L1 Data Cache L2 Cache

Size 32 KB or 64 KB 32 KB or 64 KB 256 KB, 512 KB 1 MB,
2 MB, 4 MB, or 8 MB

Line Size 64-byte 64-byte 64-byte

Number of Cache Sets 128 or 256 128 or 256 512, 1024, 2048,
4096, 8192

Associativity 4-way 4-way 8-way (256 KB only)
16-way (all others)

31
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

3.2 LR and SC Instruction Considerations

The MIPS RISC-V CPUs support LR/SC to both Cached and Uncached addresses, but assume
that both instructions in the pair address memory regions with same RISC-V Cache and
Coherency PMA (CCA) type.

LR/SC to Uncached addresses with CCA set to MIPS UCA type will never succeed.

Atomic access is only supported for a memory location if all harts writing to that location use
the same CCA. The CCA may not be changed while an atomic access (LR/SC sequence) is in
progress.

MIPS King-V CPU depends on AXI exclusive access monitor for all Uncached LR/SC. If soft-
ware attempts an uncached LR to an address that does not have an exclusive access monitor,
a Bus Error will be generated to prevent software from relying on incorrect SC results.

For Cacheable LR/SC, the reservation set size is one cache line (aligned block of 64 bytes).

For uncached LR/SC, the reservation set size is determined by the AXI exclusive access mon-
itor

3.3 Cache Subsystem Overview

In the P8700-F MPS, the size of each cache can be configured as follows:

• L1 Instruction Cache: 32 KB or 64 KB

• L1 Data Cache: 32 KB or 64 KB

• L2 Cache: 256 KB, 512 KB, 1 MB, 2 MB, 4 MB, or 8 MB

Figure 3.1 shows the relative location of the caches within the P8700-F Multiprocessing Sys-
tem. The L1 instruction and L1 data caches are shared by all Harts in the same core. The L2
cache is shared by all cores.

32
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Figure 3.1 P8700-F Multiprocessing System Caches

3.3.1 L1 Instruction Cache

The L1 instruction cache contains two arrays: tag and data. The L1 instruction cache is virtu-
ally indexed and physically tagged.

Table 3.2 shows the key characteristics of the L1 instruction cache. Figure 3.2 shows the for-
mat of an entry in the three arrays comprising the instruction cache tag and data.

Table 3.2 L1 Instruction Cache Attributes

Attribute With EDC

Size1

1. For Linux based applications, MIPS recommends a 64 KB L1 instruction cache size.

32 KB or 64 KB

Line Size 64-byte

Number of Cache Sets 128 or 256

Associativity 4-way

Replacement LRU

Data Array

Read Unit (256b + 32-bit EDC) x number of ways

Write Unit 512b + 64-bit ECC

Tag Array

Read Unit (36-bit tag + 1-bit lock + 7-bit EDC + Valid bit) x 4-ways
(32K and 64K)

Write Unit 36-bit tag + 1-bit lock + 7-bit EDC + Valid bit
(32K and 64K)

Way-Select Array

Read Unit 6-bits (4-way)

Write Unit 6-bits (4-way)

Shared L2 Cache

Coherence Manager (CM3)

L1 Instruction Cache

Hart 0 Hart 1

L1 Data Cache

L1 Instruction Cache

Hart 0 Hart 1

L1 Data Cache

CPU 0 CPU n

33
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Figure 3.2 L1 Instruction Cache Read Unit — 32 KB and 64 KB Cache

Figure 3.3 L1 Instruction Cache Write Unit — 32 KB and 64 KB Cache

3.3.1.1 Level 1 Instruction Cache Error Detection

The P8700-F core includes detection of single and double-bit errors in the Level 1 Instruction
Cache. The error detection logic protects against data corruption caused by errors that may
occur while data is stored in RAM. When an error is found, the code is refetched from mem-
ory. The error is handled entirely by hardware and is software-transparent.

3.3.1.2 L1 Instruction Cache Organization

The P8700-F core level 1 instruction cache comprises two logical RAM arrays: a tag array, a
data array and a register-based way select array. With error detection, a 7-bit EDC is added
to the 36-bit tag stored in the tag array; a 16-bit EDC is also added to each 64-bit data dou-
bleword stored in the data array.

3.3.1.3 L1 Instruction Cache Error Types

On an L1 EDC error the Instruction Fetch Unit (IFU) re-fetches the data and bypasses the
desired instruction while overwriting the instruction in error. The EDC error gets counted by
the performance counters but the fetch continues. If the entire cache was to fail, the fetch
would effectively proceed uncached by this method. The IFU raises cache errors from L2 as
Cache Exceptions.

3.3.1.4 L1 Instruction Cache Replacement Policy

The L1 instruction cache replacement policy refers to how a way is chosen to hold an incom-
ing cache line on a miss which will result in a cache fill. The replacement policy is least-

PA[47:12]

36

ValidEDC

116Tag (per-way x 4 ways)
45-bits total per way

Read Unit

Word 3

32

EDC

16

Data (per-way x 4 ways)
288-bits total per way

Read Unit

Word 2

32

Lock

1

Word 1

32

Word 0

32

Word 7

32

EDC

16

Word 6

32

Word 5

32

Word 4

32

PA[47:12]

36

ValidEDC

17Tag
44-bits total

Write Unit

Word 3

32

EDC

16

Data
576-bits total

Write Unit

Word 2

32

Word 1

32

Word 0

32

Lock

1

Word 7

32

EDC

16

Word 6

32

Word 5

32

Word 4

32

Word 11

32

EDC

16

Word 10

32

Word 9

32

Word 8

32

Word 15

32

EDC

16

Word 14

32

Word 13

32

Word 12

32

34
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

recently used (LRU). The LRU bit(s) in the way-select array encode the order in which ways
on that line have been accessed.

On a cache miss, the LRU bits for the tag and way-select entries of the selected line may be
used to determine the way which will be chosen. In the P8700-F core, the way select infor-
mation is stored in registers and is not part of a memory array.

The LRU field in the way select array is updated as follows:

• On a cache hit, the associated way is updated to be the most recently used. The order of
the other ways relative to each another is unchanged.

• On a cache refill, the filled way is updated to be the most recently used.

3.3.1.5 L1 Instruction Cache Coherency Management

In the P8700-F core, the hardware does not automatically keep the instruction cache coher-
ent with the data cache, so code that modifies the instruction stream must invalidate stale
instruction cache lines.

3.3.1.6 FENCE.I Instruction Usage

The FENCE.I instruction provides a mechanism available to user-level code for ensuring that
previously written instructions are correctly presented for execution. Use of the FENCE.I
instruction is preferred to the traditional alternative of a D-cache writeback followed by an I-
cache invalidate.

3.3.2 L1 Data Cache

The L1 data cache contains two arrays: tag and data. The L1 Data cache is virtually indexed
and physically tagged, but contains logic to correct virtual aliasing.

The tag and data arrays hold 4 ways of information per set, corresponding to the 4-way set
associativity of the cache. A tag entry consists of the upper 34 or 35 bits of the physical
address (depending on cache size), two coherent state bits, and some ECC bits. A data entry
contains 64 bytes of data and associated ECC bits. All 64 bytes in the line are present in the
data array together, hence the coherent state bits (2) stored with the tag.

After a valid line is resident in the cache, a store operation can update all or a portion of the
words in that line depending on the type of store.

The data cache uses ECC so that single-bit errors can be corrected. ECC code is generated
across a 32-bit word. Sub-word stores are handled by doing a read-modify-write sequence.
The error checking and correction process is handled entirely by hardware and is transparent
to kernel software.

A way-select register holds bits choosing the way to be replaced according to a Least
Recently Used (LRU) algorithm. The LRU information applies to all the ways and there is one
way-select register for all the ways in the set. Note that this information is stored in a regis-
ter and is not part of a memory array.

Table 3.3 shows the key characteristics of the data cache. Figure 3.4 through Figure 3.7
shows the format of an entry in the arrays comprising the data cache: tag, data, and way-
select for 32 KByte and 64 KByte read and write units.

Table 3.3 L1 Data Cache Organization

Attribute With Parity

size 32 or 64KB

Line size 64-byte

35
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Figure 3.4 L1 Data Cache Read Unit — 32 KB Cache

Number of Cache Sets 128 or 256

Associativity 4-way

Replacement LRU

Data Array

Read Unit (128b + 28b ECC) x 4

Write Unit 512b + 112b ECC

Tag Array

Read Unit (34/35b PPN + 2b CohSt + 8b
ECC)

x 4

Write Unit 35b PPN + 2b CohSt + 8b ECC
(32K)

34b PPN + 2b CohSt + 8b ECC
(64K)

Way-Select

Read Unit 6-bit register field

Write Unit 6-bit register field

Dirty Bits

Read Unit 4-bit register field

Write Unit 1-bit register field

Table 3.3 L1 Data Cache Organization (continued)

Attribute With Parity

PA[47:13]

35

CohStECC

27Tag (per-way x 4 ways)
44-bits total per way

Read Unit

Data

32

ECC

 7Data (per-way x 4 ways)
156-bits total per way

Read Unit
Data

32

ECC

7

Data

32

ECC

 7

Data

32

ECC

7

36
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Figure 3.5 L1 Data Cache Write Unit — 32 KB Cache

Figure 3.6 L1 Data Cache Read Unit — 64 KB Cache

Figure 3.7 L1 Data Cache Write Unit — 64 KB Cache

3.3.3 Level 1 Data Cache Error Checking and Correction (ECC)

The P8700-F core includes error checking and correction (ECC) on the Level 1 Data Cache.
Error correction codes are added to information stored in data-cache. The error detection and

PA[47:13]

35

CohStECC

27Tag
44-bits total

Write Unit

Data
624-bits total

Write Unit

Data 12

32

ECC 12

 7

Data 13

32

ECC 13

7

Data 14

32

ECC 14

 7

Data 15

32

ECC 15

7

Data 8

32

ECC 8

 7

Data 9

32

ECC 9

7

Data 10

32

ECC 10

 7

Data 11

32

ECC 11

7

Data 4

32

ECC 4

 7

Data 5

32

ECC 5

7

Data 6

32

ECC 6

 7

Data 7

32

ECC 7

7

Data 0

32

ECC 0

 7

Data 1

32

ECC 2

7

Data 2

32

ECC 2

 7

Data 3

32

ECC 3

7

PA[47:14]

34

CohStECC

27 Tag (per-way x 4 ways)
43-bits total per way

 Read Unit

 Data (per-way x 4 ways)
 156-bits total per way

 Read Unit
Data

32

ECC

 7

Data

32

ECC

7

Data

32

ECC

 7

Data

32

ECC

7

PA[47:14]

34

CohStECC

27Tag
43-bits total
Write Unit

Data
624-bits total

Write Unit

Data 12

32

ECC 12

 7

Data 13

32

ECC 13

7

Data 14

32

ECC 14

 7

Data 15

32

ECC 15

7

Data 8

32

ECC 8

 7

Data 9

32

ECC 9

7

Data 10

32

ECC 10

 7

Data 11

32

ECC 11

7

Data 4

32

ECC 4

 7

Data 5

32

ECC 5

7

Data 6

32

ECC 6

 7

Data 7

32

ECC 7

7

Data 0

32

ECC 0

 7

Data 1

32

ECC 2

7

Data 2

32

ECC 2

 7

Data 3

32

ECC 3

7

37
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

correction logic protects against data corruption caused by single-bit transient errors that
may occur while data is stored in RAM. The error codes allow for single-bit error correction
and double-bit error detection. ECC generation and checking and error handling is done in
the Load/Store Unit (LSU).

3.3.3.1 L1 Data Cache Organization

As shown in the above figures, the P8700-F core level 1 data cache comprises two logical
RAM arrays: a tag array and a data array. With error detection and correction;

• A 7-bit ECC is added to each 34/35-bit tag stored in the tags array.

• A 7-bit ECC is added to each 32-bit data value stored in the data array.

3.3.3.2 L1 Data Cache Load/Store Operations

Cacheable loads and stores generate a data cache read to see if the memory operand is in
the cache. If an error is detected, incoming loads and stores are halted by hardware and the
LSU determines whether an ECC error is uncorrectable or correctable. Uncorrectable errors
generate an exception. If the error is correctable, and the load/store is retried.

3.3.3.3 L1 Data Cache Error Types

L1 data cache ECC errors can be correctable or uncorrectable. Single-bit errors are correct-
able. Multiple-bit errors cannot be repaired. Multiple-bit errors in a data word of an invalid
cache line are ignored. Note that a tag needs to be free of errors to affirm that a line is
invalid. Hence, tag errors are processed before processing multiple-bit data errors. A multi-
ple-bit error is uncorrectable if it occurs in (a) a tag, or (b) a data word in a dirty cache line.

3.3.3.4 Store Operations Less than 32-bits

The addition of ECC to the cache data array has special implications for stores into the data
cache when the operand is smaller than a single 32-bit word, or the store operation is not
32-bit aligned. When partial-word stores hit in the cache, the LSU may need to perform a
cache read-modify-write on the affected word because the ECC is a function of the entire 32-
bit word.

The store buffer keeps track of valid bytes and allows multiple stores to merge together. If
the entire word is valid, it can be written into the cache. If it is only partially valid, the data
array is read to fill in the missing bytes.

3.3.3.5 Examples of L1 Data Cache ECC Errors

Consider some data cache ECC error scenarios:

Loads and Stores

During CPU loads and stores, single-bit errors in the primary tags array are scrubbed on
detection. Multiple-bit errors in the tag array generate an exception. During CPU loads and
stores, single-bit errors in the data array of valid lines are scrubbed on detection. Double-bit
data errors generate an exception.

Evictions

During eviction of a dirty cache line, single-bit data errors are corrected on the fly as data is
written back to the Bus Interface Unit (BIU). Multiple-bit errors in an evicted line are
reported as an uncorrectable error to the BIU and generate an exception.

38
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Interventions

During interventions, single-bit errors in the tag array are scrubbed on detection. Multiple-bit
errors in the tag array generate an exception and return an ERROR response for the inter-
vention.

During an intervention write-back of an modified line, single-bit data errors are corrected on
the fly as data is forwarded to the BIU. Multiple-bit data errors during an intervention write-
back are reported to the BIU and an exception is generated.

3.3.4 L1 Data Cache Replacement Policy

The replacement policy refers to how a way is chosen to hold an incoming cache line on a
miss which results in a cache fill. The replacement policy is least-recently used (LRU). The
LRU bit(s) in the way-select array encode the order in which ways on that line have been
accessed.

On a cache miss, the LRU bits for the tag and way-select entries of the selected line may be
used to determine the way which will be chosen. In the P8700-F core, the way select infor-
mation is stored in registers and is not part of a memory array.

The LRU field in the way select array is updated as follows:

• On a cache hit, the associated way is updated to be the most recently used. The order of
the other ways relative to each another is unchanged.

• On a cache refill, the filled way is updated to be the most recently used.

If the way selected for replacement has its dirty bit asserted in the dirty array, then that 64-
byte line will be written back to memory before the new fill can occur.

3.3.5 L1 Data Cache Memory Coherence Protocol

The P8700-F core supports cache coherency in a multi-CPU system in conjunction with the
directory-based coherence manger (CM).

The L1 data cache utilizes a standard MESI protocol. Each cache line will be in one of the fol-
lowing four states:

Invalid: The line is not present in this cache.

Shared: This cache has a read-only copy of the line. The line may be present in other L1
data caches, also in a Shared state. The line will have the same value as it does in the L2
cache.

Exclusive: This cache has a copy of the line with the right to modify. The line is not present
in other L1 data caches. The line is still clean - consistent with the value in L2 cache.

Modified: This cache has a dirty copy of the line. The line is not present in other L1 data
caches. This is the only up-to-date copy of the data in the system (the value in the L2 cache
is stale).

Some of the basic characteristics of the coherence protocol are summarized below.

• Writeback cache - Uses a writeback cache to ensure high performance

• Cache-line based - Coherence and ownership is maintained per 64-byte cache line

• Invalidate - A line is invalidated from the cache (possibly with a writeback to memory)
when a store from another processor is seen.

39
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

3.3.6 Load/Store Bonding

Bonding is a technique where adjacent loads or adjacent stores are merged into a single
request in the IDU and sent to the LSU in one cycle.

Supported bonds:

• Only word and dword loads and stores.

• Only identical instruction (i.e., LW+LW and not LW+LD or LW+LWE).

• Only when using same base address register and the offset of the second instruction is
+4 (word size ops) or +8 (dword) from the first.

• First load does not use same base and destination register must not be UC (CCA2, dseg).

IDU bonding is based on instruction decode. It does not know the base address value or the
eventual alignment of operations. It attempts to bond any adjacent load/stores. If the opera-
tions turn out to not fall within an aligned double-quadword (LD/SD bonding) or double-word
(LW/SW bonding), the LSU will signal the GRU for an instruction re-fetch.

Bonding is invisible to software other than improved performance.

3.3.7 L2 Cache

The L2 cache processes transactions that miss in the L1 caches. The L2 cache is larger than
the L1 caches. In the P8700-F Multiprocessing System, the L2 cache is integrated into the
Coherence Manager (CMrev). The L2 communicates with external memory via an AXI-4
interface. The L2 communicates with the cores through the proprietary MIPS Coherence Pro-
tocol (MCP) bus.

The associativity of the L2 cache can be either 8 or 16 ways. The 8-way option is used when
the cache size is 256 KB. The 16-way option is used for all other cache sizes. The line size is
fixed at 64 bytes. The number of sets and ways is selected during the build process and can-
not be changed by the kernel software. Software can check the set size by reading the
GCR_L2_CONFIG register, which is part of the CMrev register address space. Refer to the
Coherence Manager chapter for more information.

Table 3.4 shows the list of possible L2 cache configurations.

The L2 cache processes transactions that are not serviced by the L1 cache. The L2 cache is
generally larger than the L1 cache, but slower, due to longer access latencies. In the P8700-
F Multiprocessing System, the L2 cache is integrated into the Coherence Manager (CM). The
L2 communicates with external memory via an AXI-4 interface.

The L2 also communicates with the CPU(s) through the proprietary MIPS Coherence Protocol
(MCP) bus. In addition, the L2 has the clock, reset, and bypass signals as well as some static
input signals which can be used to configure it for different operating modes.

Table 3.4 L2 Cache Configurations

Line Size Sets per Way Number of Ways Total L2 Cache Size

64 bytes 512 8 256 KBytes

64 bytes 512 16 512 KBytes

64 bytes 1024 16 1 MByte

64 bytes 2048 16 2 MBytes

64 bytes 4096 16 4 MBytes

64 bytes 8192 16 8 MBytes

40
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

3.3.8 L2 Cache General Features

• 5-stage pipeline.

• 48-bit address paths and 512-bit internal data paths

• Associativity: 8-way or 16-way

• Cache size: 256 KB, 512 KB, 1 MB, 2 MB, 4 MB, 8 MB

• Line Size: 64 bytes (8 doublewords)

• Locking Support: Yes

• Replacement Algorithm: Pseudo LRU

• Write policy: Write Back

• Write miss allocation policy: Write-Allocate

• Error Checking and Correction (ECC): 2-bit error detection and 1-bit error correction cov-
ering the tag and data arrays.

• Maximum read misses outstanding: 12 - 32. Build-time configuration option.

• 256-bit width on memory-side AXI-4 interface.

• AXI-4 Burst Size on the memory interface: 64-byte line size: 2 beats of 256-bit data

• Bypass Mode Support: In bypass mode, all processor requests are routed to the system.
This mode is used only for debug purposes and should not be used during normal opera-
tion.

• Multi-cycle Data Rams: Configurable for either 2-cycle or 4-cycle latency

• Multi-cycle Tag Rams: Configurable for either 1-cycle or 2-cycle latency

Multi-cycle Way-Select Rams: 0, 1, 2, or 3 stalls can set the Way-Select RAM access times to
1, 2, 3, or 4 clocks. In the table above, the associativity of the L2 cache is fixed at 16 ways
and the line size if fixed at 64 bytes. As a result, changes to the number of sets per way
determine the overall size of the L2 cache. The only exception is the 256 KB cache option,
which contains the same number of sets per way as the 512 KB option shown in Table 3.1,
but is selected using 8 ways instead of 16.

3.3.9 Overview of the AXI Interface

In the P8700-F core, the L2 cache is integrated into the CM. The following are some features
of the AXI interface to the CM.

• 256-bit AXI-4 data bus width between CM and memory.

• Each beat is at most 32 bytes

• Requests are either 1 beat of data or 2 beats of data

• Writes cannot receive an early response

3.3.9.1 AXI Channels

The AXI bus contains a 5-channel interface. Each channel is unidirectional and independent
of the other channels:

• Read address

• Write address

• Write data

• Read response

41
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

• Write response

The AXI interface between the CM is 256-bits wide with a fixed 64-byte line size. This is
shown in Figure 3.8.

Figure 3.8 AXI Interface Between CM and Memory

Flow control is similar to that in the previous generation OCP protocol.

3.3.9.2 Read Operations

On the AXI bus, each transaction is assigned an ID value. Depending on the type of transac-
tion, transactions can have either the same ID, or a different ID. Read operations with differ-
ent ID values can be processed and returned out of order. However, Read operations with the
same ID value are processed and returned in order.

3.3.9.3 Write Operations

On the AXI bus, write operations, the order of the write data must be the same as that on the
write address channel. However, the timing of the transactions can be different (transactions
do not have to be latched on the exact same clock).

Write responses can be returned out of order.

3.3.9.4 AXI Memory Bus Ordering

In the AXI architecture, there is no relationship between a requests on read address bus and
one driven on the write address bus, even for requests where the ID values or addresses
match. The CM ensures the proper ordering between the read and write address requests.

Cacheable accesses use different ID values to allow out-of-order responses. The CM recog-
nizes a Read/Write, Write/Read or Write/Write to the same cache line address. Hence, a 2nd
request is not issued onto AXI until response to the first request has been received. Read/
Read has no ordering constraints.

3.3.10 Cache Instructions

Operations are performed on the L1I, L1D, and L2 caches using the following instructions:

• PREF — This instruction causes data to be moved to or from the cache, to improve pro-
gram performance. PREF does not cause addressing-related exceptions, including TLB
exceptions.

Coherence Manager

L2 Cache

Main Memory

256 bits

42
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

• FENCE.I — This instruction synchronizes a data cache line with an instruction cache line.
This instruction should be used when writing to the program image in memory to make
the newly stored instruction opcodes visible to the instruction fetch logic via the I-Cache.
The SYNCI instruction operates on all instruction caches in a cluster. In a multi-cluster
system, this means all L1 instruction caches in all clusters.

3.4 Cache Coherency

The P8700-F core defines a set of Cache Coherency Attributes (CCA). The cache coherency is
set using the PMA Configuration registers. For more information, refer to the MIPS RISC-V
Customizations document that is part of the document suite.

The P8700-F core supports the following cacheability attributes:

• Cacheable, coherent, write-back, write-allocate, read misses request shared. (code #0):
Use coherent data. Load misses request data in the shared state (will get exclusive if the
data is not being shared by another CPU). Multiple caches can contain data in the shared
state. Stores bring data into the cache in an exclusive state - no other caches can contain
that same line. If a store hits on a shared line in the cache, the line is updated to the
exclusive state and any shared copies of the line in other L1 data caches are invalidated.

• Uncached (code #2): Addresses in a memory area indicated as uncached are not read
from the cache. Stores to such addresses are written directly to main memory, without
changing cache contents.

• Uncached Accelerated (code #3): Uncached stores are gathered together for more effi-
cient bus utilization.

3.5 L2 Cache Initialization Options

The P8700-F Multiprocessing System automatically selects hardware cache initialization at
reset.

There are two types:

• L2 Tag array only (fast)

• L2 Tag and data arrays (slow)

Automatically selected hardware cache initialization (fast mode) initializes only the L2 tag
array.

Each of these options are described in the following subsections.

3.5.1 Automatic Hardware Cache Initialization

The P8700-F MPS allows for the L2 cache to be automatically initialized by hardware when
the following conditions are met at reset:

• The external input pin (si_cpc_l2_hw_init_inhibit) is driven low, indicating that automatic
hardware initialization can proceed.

• Automatic hardware cache initialization is enabled by setting the L2_HW_INIT_EN bit in
the CPC Local Status and Configuration register (CPC_Core_STAT_CONF_REG) located at
offset 0x0008 in CPC CM-local address space.

• The L2 initialization delay has expired. Once this delay has expired, automatic hardware
cache initialization can begin.

43
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

• MBIST is not enabled. If it is enabled, the cache initialization does not begin until the
MBIST operation is complete. Even if the delay has expired, the cache initialization does
not begin until the MBIST has completed.

Once all of these conditions are met, the L2 cache Tag RAM is automatically initialized by
hardware. No initialization code is required. Once the initialization is complete, hardware sets
the HCI_DONE bit in the L2 RAM Configuration register (GCR_L2_RAM_CONFIG) at offset
address 0x0240 in GCR address space. Software can poll this bit to determine when the ini-
tialization is complete.

3.6 L2 Cache Flush, Burst, and Abort

This section describes the L2 cache flush, burst, and abort operations.

3.6.1 L2 Cache Flush

An L2 flush operation can only be initiated by software. To flush the entire L2 cache in one
operation, perform the following steps:

1. Read the L2SM_COP_REG_PRESENT bit in the L2 Cache Op State Machine Config/Control
register (GCR_L2SM_COP) at offset address 0x0620 in GCR address space to determine if
this register is present. A ‘1’ in this bit indicates that the flush cache operation is sup-
ported.

2. Read the L2SM_COP_MODE bit in the L2 Cache Op State Machine Config/Control register
to determine the state of the L2 state machine. This bit must be 0, indicating the state
machine is idle, in order for flush operation to proceed.

3. Program the L2SM_COP_TYPE field in bits 4:2 of the L2 Cache Op State Machine Config/
Control register to a value of 0x0. This selects the full cache flush operation.

4. Program the L2SM_COP_CMD field in bits 1:0 of the L2 Cache Op State Machine Config/
Control register to a value of 0x1. This starts the cache flush operation.

5. To determine the result of the flush operation, poll the L2SM_COP_RESULT field in bit 8:6
of the L2 Cache Op State Machine Config/Control register. A value of 0x0 indicates the
process is still running. A value of 0x1 indicates that the process completed with no
errors.

3.6.2 L2 Cache Burst Operations

The L2 Cache supports the following burst operations (CacheOps):

• Hit_Inv

• Hit_WB_Inv

• Hit_WB

These operations can be requested only by software and can be performed on a range of
addresses in the cache. Burst operations can be executed using the following procedure.
Note that the number of cache lines requested must be less than or equal to the available
cache lines in the cache and also less than 65,536.

1. Program the starting address where the flush operation begins into the
L2SM_COP_START_TAG_ADDR field in bits 47:6 of the GCR L2 Cache Op State Machine

44
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Tag Address register (GCR_L2SM_TAG_ADDR_COP) at offset address 0x0628 in GCR
address space.

2. Program the L2SM_COP_NUM_LINES field in bits 63:48 of the GCR L2 Cache Op State
Machine Tag Address register to indicate the number of lines to be flushed from the start-
ing address defined in step 1.

3. Program the type of operation to be performed on each line using the L2SM_COP_TYPE
field in bits 4:2 of the L2 Cache Op State Machine Config/Control register. A value of 0x4
in this field indicates Hit Invalidate. A value of 0x5 indicates Hit Writeback Invalidate, and
a value of 0x6 indicates Hit Writeback.

4. Read the L2SM_COP_MODE bit in the L2 Cache Op State Machine Config/Control register
to determine the state of the L2 state machine. This bit must be 0, indicating the state
machine is idle, in order for the CacheOp to proceed.

5. If the state machine is idle as determined in step 4, program the L2SM_COP_CMD field in
bits 1:0 of the L2 Cache Op State Machine Config/Control register to a value of 0x1. This
initiates the CacheOp starting from the address defined in step 1 and continuing for the
number of lines defined in step 2. The operation to be performed in each of the selected
cache lines is defined in step 3.

6. To determine the result of the flush operation, poll the L2SM_COP_RESULT field in bit 8:6
of the L2 Cache Op State Machine Config/Control register. A value of 0x0 indicates the
process is still running. A value of 0x1 indicates that the process completed with no
errors.

3.6.3 Abort Operations

During the automatic hardware initialization process described in the section entitled
Automatic Hardware Cache Initialization, no coherent requests are permitted. Even if a
coherent request is generated during the initialization procedure, it is not allowed to enter
the pipeline until the procedure is complete.

Chapter 4

45
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

 Exceptions and Interrupts

The P8700-F core receives exceptions from a number of sources, misses in the translation
lookaside buffer (TLB), I/O interrupts, and environment calls. When the CPU detects an
exception, the normal sequence of instruction execution is suspended and the processor
enters machine mode, disables interrupts, loads the Exception Program Counter (mepc) register
with the location where execution can restart after the exception has been serviced, and
forces execution of a software exception handler located at a specific address.

The software exception handler saves the context of the processor, including the contents of
the program counter, the current operating mode, and the status of the interrupts (enabled
or disabled). This context is saved so it can be restored when the exception has been ser-
viced.

Exceptions may be precise or imprecise. Precise exceptions are those for which the mepc can
be used to identify the instruction that caused the exception. For precise exceptions, the
restart location in the mepc register is the address of the instruction that caused the excep-
tion. LDA are examples of precise exceptions.
Imprecise exceptions, on the other hand, are those for which the instruction that caused the
exception cannot be identified. Bus error exceptions are examples of imprecise exceptions.
Imprecise exceptions are normally attached to the next instruction PC to be graduated. Basi-
cally uses the PC (program counter) of very next instruction to graduate as the return
address. The instructions which caused imprecise exception may get graduated even before
processing the exception, hence these are imprecise exceptions. STA related bus errors are
imprecise exceptions.

4.1 Exception Conditions

When an exception condition occurs, the instruction causing the exception and all those that
follow it in the pipeline are cancelled. Accordingly, any stall conditions and any later exception
conditions that may have referenced this instruction are inhibited.

The term epc in RISC-V can be DEPC, SEPC, or MEPC, where D = Debug, S = Supervisor, and
M = Machine.

When the exception condition is detected on an instruction fetch, the CPU aborts that instruc-
tion and all instructions that follow. When the instruction graduates, the exception flag
causes it to write various CSR registers with the exception state, change the current program
counter (PC) to the appropriate exception vector address, and clear the exception bits of ear-
lier pipeline stages.

For most types of exceptions, this implementation allows all preceding instructions to com-
plete execution and prevents all subsequent instructions from completing. Thus, the value in
the DEPC/SEPC/MEPC is sufficient to restart execution. It also ensures that exceptions are

46
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

taken in program order. An instruction taking an exception may itself be aborted by an
instruction further down the pipeline that takes an exception in a later cycle.

The Error PC or Exception PC of the instruction which raised the exception is updated to one
of the mepc registers available, based on the mode in which exception is being processed.

Imprecise exceptions are taken after the instruction that caused them has completed and
potentially after following instructions have completed.

4.2 Selecting the Exception Address

In the baseline RISC-V RV64 ISA, the exception vector address for several types of excep-
tions are provided by the trap vector address CSR. The processor mode (Machine, Supervi-
sor) in which exceptions or interrupts are processed will decide the trap vector address CSR.
It could be from mtvec CSR or stvec CSR.

MIPS custom exception trap vector address is provided by mipstvec CSR.

In the baseline MIPS RV64 ISA, the exception vector for several types of exceptions is con-
strained to the lower 512MB of memory. The mtvec, stvec, vstvec, or mipstvec CSR registers
can be used to position the base address anywhere in the 256TB 48-bit address space. The
GCR.HART.RESET_BASE register also supports specifying a separate reset vector for each
thread.

4.3 Debug Exception Processing

All debug exceptions are described in the MIPS Hybrid Debug Specification, which is part of
the document suite provided.

Chapter 5

47
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

Coherence Manager

The Coherence Manager (CM) communicates with all cores and other devices in the P8700-F
Multiprocessing System (MPS), as well as coherent devices external to the P8700-F MPS, to
achieve system-wide coherence. In a multi-cluster system, the CM also interfaces to an
external Network-on-Chip (NOC) controller, which facilitates communication between clus-
ters.

The CM includes an integrated low-latency shared L2 cache. A directory-based coherence
protocol is used to efficiently maintain coherence among the L1 data caches of each P8700-F
core, with up to eight I/O coherence units (IOCUs), providing the I/O subsystem coherent
access to the L1 Data and L2 caches.

This chapter provides an overview of the CM register ring bus and associated table that lists
each device ID on the bus. The programmer uses this information to access these devices. An
overview of the CM register address space is also provided. In addition, the chapter describes
how to program the CM to perform various functions, including setting the base addresses in
memory, accessing another Hart in the same core, accessing a Hart in another core, access-
ing the Interrupt Controller, Cluster Power Controller (CPC), and/or Debug Unit (DBU) regis-
ters via the CM, and setting the clock ratios between the various P8700-F system
components. For the exact revision number of the Coherence Manager, refer to the Release
Notes.

5.1 CM Overview

This section provides an overview of the CM and describes information necessary for pro-
gramming, including the register ring bus and device ID information, and the CM register
map. For details of the CM register MAP, refer to Chapter 3 CM Memory Mapped Registers of
MIPS® Technologies Coherence Manager and Advanced Interrupt Controller for RISC-V Cores
document.

5.1.1 CM Interface — Register Ring Bus and Device ID’s

The CM communicates with the various system devices via a register ring bus. The devices
connected to the CM are shown in Figure 5.1. The P8700-F Multiprocessing System can have
up to 6 cores per cluster.

48
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Figure 5.1 Interface Ports and Register Ring Bus Interface to the CM

Certain devices such as the cores and IOCU’s connect to the CM via an internal proprietary
bus called the MIPS Coherence Protocol (MCP) bus. This bus consists of three unidirectional
channels used to maximize throughput. The bus implements a credit-based protocol to allow
multiple simultaneous in-flight operations. In the above figure, note that the P8700-F sup-
ports up to a total of eight cores and IOCUs together. For example, if there are four cores,
there can only be up to four IOCUs.

The CM accesses the registers of the various devices shown in Figure 5.1 using a register ring
bus, indicated by the dotted line. As shown above, the CM and DBU can function as both
Master (M) and Slave (S). All other devices, including the cores, are slave devices. Each
device on the ring bus is assigned a 6-bit ID value stored in the destination ID (dest_id) or
source ID (src_id) fields of the packet being sent. When a device initiates an access to the
registers of another device, the corresponding ID is attached to the packet. Only the device
whose ID number matches that in the packet accepts the transaction. Table 5.1 lists the ID
values for each logic block shown in Figure 5.1. These values are used to write to registers in
these blocks as described in the following subsections. All values not shown are reserved.

Table 5.1 Register Ring Bus Device ID Values

dest_id / src_id
(Decimal value)

dest_id / src_id
(Hexadecimal value) Device Accessed

0 0x00 Core 0

1 0x01 Core 1

2 0x02 Core 2

3 0x03 Core 3

4 0x04 Core 4

5 0x05 Core 5

16 0x10 IOCU0

Core 0 Core 7 IOCU 0 IOCU 7

MCP MCPMCPMCP

Coherence Manager (CM)

GIC Memory NOC
Custom
GCR

S

M

S

S S

S

S

GCR

CPC

M

Debug
Unit
(DBU)

From I/O

AXI4
S S

From I/O

Legend:
M = Master
S = Slave

AXI4

AXI4ACEMCP

Register
Ring Bus

Int Ctlr

Core 5

49
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

The following example shows the path taken in order for core 0 to read a register from the
Interrupt Controller. The data path for this access is shown in Figure 5.2. This figure is similar
to Figure 5.1, except only those devices involved in the example transaction are shown. The
red color indicates the access request path, and the blue color indicates the data return path.
The following sequence is enumerated in Figure 5.2. In this example the following actions
would occur.

1. Core 0 sends a request to the CM over the MCP ‘Request’ bus. Note that Core 0 cannot access the
Interrupt Controller registers directly because it is only a Slave on the ring bus as indicated.

2. The CM processes this request, assigns the appropriate ID number as defined in Table 5.1, and drives
this request onto the register ring bus through its Master port.

3. The Interrupt Controller decodes the ID on the bus and gets a match.

4. The Interrupt Controller then fetches the requested data and drives the data onto the ring bus.

5. Data is returned to the CM through its dedicated register ring bus Slave port.

17 0x11 IOCU1

18 0x12 IOCU2

19 0x13 IOCU3

20 0x14 IOCU4

21 0x15 IOCU5

22 0x16 IOCU6

23 0x17 IOCU7

24 0x18 Interrupt Controller

25 0x19 User Defined GCR’s

26 0x1A Memory

32 0x20 CM

33 0x21 CPC

34 0x22 GCR

35 0x23 DBU Master

36 0x24 DBU dmxseg_normal

37 0x25 DBU dmxseg_debug

40 0x28 AUX 0

41 0x29 AUX 1

42 0x2A AUX 2

43 0x2B AUX 3

62 0x3E No Destination Error

63 0x3F No Destination OK

Table 5.1 Register Ring Bus Device ID Values (continued)

dest_id / src_id
(Decimal value)

dest_id / src_id
(Hexadecimal value) Device Accessed

50
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

6. The CM sends the requested data back to Core 0 over the dedicated MCP ‘Response’ bus.

Figure 5.2 Data Path of Core 0 Access of IOCU0 Registers

5.1.2 Cluster to Cluster Accesses

In addition to facilitating core-to-core and Hart-to-Hart accesses within the same cluster, the
P8700-F also allows for cluster-to-cluster accesses. This allows a core or Hart (VP) in one
cluster to access the registers in a core or Hart of another cluster through the Network-On-
Chip (NOC) interface. This interface is shown in Figure 5.3.

Figure 5.3 Cluster-to-Cluster Register Accesses Using the NOC

For example, a Hart within a core in Cluster 1 can access and update a register in a Hart in
Cluster 2 as shown. The access is processed by the CM and driven onto the NOC. The NOC
then routes the request to the appropriate cluster where the access is scheduled by the CM in
the destination cluster.

If a register access is within a given cluster as shown above, the NOC is not used and the
access is placed onto the Register Ring Bus (RRB) described in the section entitled CM

Coherence Manager 3

Core 0

3-channel

Int Ctlr

MCP

M

SS
Register Ring Bus

S

S = Slave
M = Master

Legend:

MCP bus 1

2

34

5

6

VP VP

Core

VP VP

Core

CM

VP VP

Core

VP VP

Core

CM

Network On Chip
(NOC)

51
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Interface — Register Ring Bus and Device ID’s. If the register access is to another cluster, the
NOC is used to transfer the access request where it is placed onto the RRB of the destination
cluster. There are dedicated unidirectional AXI bus interfaces that move the access from the
cluster to the NOC, and from the NOC to the cluster. A separate bidirectional bus is used to
manage coherence as shown above.

5.2 Verifying Overall System Configuration

At IP configuration time, the customer selects the number of cores in the system, the num-
ber of I/O coherency units (IOCU’s), and the number of address regions. When the device is
built, these values are hard wired into the Global Configuration register at offset address 0x0000.
All of these fields are read-only and allow kernel software to quickly determine the system
configuration.

CM GCR Register Interface

Reading the Global Configuration register provides the following information:

• Bits 7:0 — Number of cores in the system (up to 6)

• Bits 11:8 — Number of IOCU’s (up to 8)

• Bits 19:16 — Number of MMIO address regions

• Bits 22:20 — Number of auxiliary memory ports

• Bits 29:23 — Number of clusters in the system

• Bit 31 — Indicates if an Inter-Thread Communication Unit is present

• Bits 39:32 — Indicates the ID number for the current cluster. Each cluster has a
unique ID number.

• Bit 40 — Indicates if a Debug Unit is present

• Bits 43:41 — Indicates the type of hardware interface to the Network-On-Chip (NOC)
coherent interconnect.

52
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.3 Programming the Base Addresses in Memory

This section describes how to set the base address of the CM logic.

5.3.1 CM GCR Register Interface

The address map is programmable through the GCR_BASE register as summarized in Table
5.2.

5.4 CM Register Access Permissions

A requestor can request access to selected CM registers. A requestor can be either a core or
an IOCU. The CM allows up to eight requestors in a system in any combination of cores and
IOCU’s, from 6 cores and up to two IOCU’s, to 8 IOCU’s and no cores, or anywhere in
between. Note that there can only be a combined total of 8 cores/IOCU’s.

5.4.1 Enabling Access Permissions

Access permissions to the CM GCR registers follows the memory access permission rules as
defined in the Physical Memory Protection (PMP) section of the RISC-V Privileged Architecture
Manual. Privileged code can program the PMP registers to control which CM registers are
accessible from each privileged mode on each Hart.

5.5 Coherency Enable

The P8700-F Multiprocessing System allows each power domain to be placed in either a
coherent or non-coherent mode. Because the P8700-F implements a directory-based coher-
ence protocol, MIPS recommends that each domain be placed in coherent mode during nor-
mal operation. The non-coherent mode should only be used during boot-up and power-down.
Software should not execute any cacheable memory accesses (instruction fetch or load/
store) while coherence is disabled.

In the CM, coherency is either enabled or disabled using the Coherence Enable (COH_EN) register.
There is one of these registers per core. Each register can be accessed at address:
0x020f8 + 0x100 * CORENUM + GCR_BASE for Core 0 through 5.

5.6 L2 Cache Prefetch

The coherence manager in the P8700-F MPS contains an L2 prefetcher used to enhance L2
performance. The L2 prefetcher is managed using two CM GCR registers.

• L2 Prefetch Control register (GCR_L2_PFT_CONTROL) at offset 0x0300

Table 5.2 Setting the Base Address for the GCR_BASE Register

Block Register Name
Offset

Address Field Name Bits Description

GCR GCR_BASE 0x0008 GCR_BASE_ADDR 47:19 GCR Base Address register. Sets the
base address of the GCR registers.
Note that this region must reside on a
512 KB boundary.

53
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

• L2 Prefetch 2nd Control register (GCR_L2_PFT_CONTROL_B) at offset 0x0308

These registers control the following L2 capabilities:

• Minimum operating system page size (supports 4K - 64K pages in multiples of two)

• Prefetch enable

• Coherent invalidate requests

• Code prefetch enable

• L2 prefetching port ID. Each bit corresponds to a CM port ID. If the bit is set, the corre-
sponding CM port is monitored for prefetching.

5.6.1 Prefetch Enable

The number of prefetch units implemented in the P8700-F Multiprocessing System is deter-
mined by the user during IP configuration. This value is programmed by hardware into the
NPFT field (bits 7:0) of the L2 Prefetch Control register (GCR_L2_PFT_CONTROL) located at
offset address 0x0300 in the GCR Global register space. This read-only field allows kernel
software a convenient way to determine the number of prefetch units implemented.

CM GCR Register Interface

Prefetching is enabled by setting the PFTEN bit in the GCR_L2_PFT_CONTROL register. Note
that the number of prefetch units implemented as described above must be greater than 0 in
order for this bit to have meaning.

5.6.2 Select Ports for L2 Prefetching

The CM allows up to 8 ports to be selected for L2 prefetching. These ports correspond to the
(up to) six cores and (up to) eight IOCU’s as shown in Figure 5.1. L2 prefetching can be
selected for some of all of these ports using the 8-bit PORT_ID field in the
GCR_L2_PFT_CONTROL_B register. Each bit of this field corresponds to a single port. There
can be any number of cores and IOCU’s up to the maximum or eight. For example, if there
are 6 cores, then there can only be up to 2 IOCU’s to make a total or 8, or 4 cores and 4
IOCU’s, etc. If a given bit is set, L2 prefetching is monitored for that port. If the bit is cleared,
L2 prefetching does not occur.

The field is organized as cores followed by IOCU’s starting from bit 0. So in a 4-core and 2-
IOCU system, bits 0 - 3 of the field would represent cores 0 - 3 respectively. Bits 4 - 5 of the
field would represent IOCU 0 - 1 respectively. Bits 6 - 7 would not be used in this example.

5.6.3 Enabling Code Prefetch

In addition to data prefetching, the CM allows prefetching of the code stream. Code prefetch-
ing is enabled by setting the CEN bit in the GCR_L2_PFT_CONTROL_B register.

5.7 CM Uncached Semaphore Management

The P8700-F CM provides a mechanism for managing uncached semaphores. This mecha-
nism is managed by the Global CM Semaphore (GCR_SEM) register located at offset address
0x0640.

A write to this register with write data bit 31 = 1 is inhibited if the SEM_LOCK bit is already 1.
A write to this register proceeds normally if the write data has bit 31 = 0 or if the SEM_LOCK
bit is currently 0.

54
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

CM GCR Register Interface

To acquire the semaphore:

1. Write this register with bit 31 = 1 and the lower bits with the threads VPID.

2. Read the register.

3. If the value read in step #2 is the same as the value as written in step #1, then a semaphore has been
acquired, else go to step #1.

To release the semaphore:

1. Write the register with bit 31 = 0.

5.8 Custom GCR Implementation

The CM provides the ability for the system designer to implement a 64 KB block of custom
registers that can be used to control system level functions. These registers are defined by
the system designer and then instantiated into the design.

The existence of a custom GCR implementation in the system is selected during IP Configura-
tion. If this option is selected, the GGU_EX bit is set in the Global Custom Status register at offset
address 0x0068 in GCR Global address space. This bit indicates that a custom GCR block is
connected to the CM.

5.9 IOCU Interface

The P8700-F CM contains up to eight I/O Coherency Units (IOCU) for managing cache coher-
ency between the CM and external devices. The IOCU is a hardware block and is not directly
programmable. However, the IOCU can be indirectly controlled using the following register
fields:

• The read-only NUMIOCU field in bits 11:8 of the Global Config register (GCR_CONFIG)
located at offset 0x0000 of CM GCR address space and indicates the number of IOCUs
instantiated in the design. This field is filled by hardware during IP configuration.

• IOCU requests are prevented from being issued to MMIO regions by setting the bit 13 of
the Global CM Control register (GCR_CONTROL) at offset 0x0010 in CM GCR address
space.

• IOCU requests to external devices are counted toward the outstanding request limit when
bit 12 of the Global CM Control register (GCR_CONTROL) at offset 0x0010 in CM GCR
address space. If this bit is set, IOCU accesses to MMIO regions are blocked once the
MMIO outstanding limit is reached. Note that bit 13 of this register must be 0 for this bit
to have meaning as described above.

• Software can select which IOCUs are allowed to access the CM GCR registers by program-
ming bits 23:16 of the Global CSR Access Privilege register (GCR_ACCESS) at offset
0x0120 in CM GCR address space. Each bit corresponds to one of eight IOCUs. If the cor-
responding bit is set, accesses from that IOCU are allowed to write the GCR and Cluster
Power Controller (CPC) registers.

55
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.10 MMIO Address Regions

As described in the section entitled Verifying Overall System Configuration, the number of
MMIO address regions is determined at IP configuration time. The P8700-F supports up to
four MMIO regions. Each region is assigned an upper and lower address bound.

The MMIO regions are intended to be used with communicating with external PCIe devices.
The MMIO registers allow for counting of number of non-speculative code fetches of
uncached requests in order to avoid potential deadlock condition by having too many
requests outstanding. This is accomplished by programming the MMIO_REQ_LIMIT field.

5.10.1 CM GPR Register Interface

Software can set the number of MMIO requests that can be in-flight at any given time by pro-
gramming the MMIO_REQ_LIMIT field of the MMIO Request Limit register
(GCR_MMIO_REQ_LIMIT) at offset 0x6F8.

In addition, the address range of each MMIO region is defined using the Upper and Lower
Bound MMIO region registers. A pair of registers are used for each MMIO region, with each
register containing a 32-bit address bound value. These registers are located at:

• Lower bound of MMIO region 0 (GCR_MMIO0_BOTTOM) at offset 0x0700

• Upper bound of MMIO region 0 (GCR_MMIO0_TOP) at offset 0x0708

• Lower bound of MMIO region 1 (GCR_MMIO1_BOTTOM) at offset 0x0710

• Upper bound of MMIO region 1 (GCR_MMIO1_TOP) at offset 0x0718

• Lower bound of MMIO region 2 (GCR_MMIO2_BOTTOM) at offset 0x0720

• Upper bound of MMIO region 2 (GCR_MMIO2_TOP) at offset 0x0728

• Lower bound of MMIO region 3 (GCR_MMIO3_BOTTOM) at offset 0x0730

• Upper bound of MMIO region 3 (GCR_MMIO3_TOP) at offset 0x0738

5.10.2 MMIO Region Control

Each of the four MMIO regions listed above can be enabled or disabled by programming the
MMIO_EN bit that resides in the Lower Bound register for each MMIO region (GCR_MMIO[0-
3]_BOTTOM). If the MMIO region is enabled, then the request address and CCA are used to
determine if the request falls into an MMIO Region. The decoded address is used to deter-
mine if the access is to a MMIO region as shown in the following equation:

MMIO_BOTTOM_ADDR[47:16] <= phys_address[47:16] <= MMIO_TOP_ADDR[47:16]

If bits 47:16 of the physical address fall between the value in MMIO_BOTTOM_ADDR[47:16]
and MMIO_TOP_ADDR[47:16], then the access is to the corresponding MMIO region.

If MMIO_CCA is set to 0x0, just the request address is used to determine whether the
request is to an MMIO region as shown above. If MMIO_CCA is set to 0x01, then the address
comparison above is further qualified by whether the request has CCA = UC. In other words,
only UC requests will be considered eligible to hit the MMIO region. If MMIO_CCA is set to
0x2, then the request is qualified by CCA = UCA. If MMIO_CCA = 0x3, then the request is
qualified by CCA = UC or CC = UCA. In other words, either UC or UCA requests can match
the MMIO region.

If an address hits in multiple MMIO register address regions, then the lowest-numbered
enabled MMIO region hit takes precedence for determining which MMIO region the request

56
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

matches. Once a request is determined to reside in an MMIO region, that region MMIO_PORT
field in the Lower Bound register determines where the request will be routed. Options are
the main memory port or an Auxiliary interface. See section 5.13.

The user can limit the total number of MMIO requests issued by the CM, which can be useful
to avoid deadlock when accessing PCIe bridges that also service incoming coherent requests.
The limit is defined by the MMIO_REQ_LIMIT field in bits 7:0 of the MMIO Request Limit
(GCR_MMIO_REQ_LIMIT) register at offset 0x06F8 in GCR address space. Once the limit is
reached, the CM stops serializing uncached and code fetches until a response to an MMIO
request has been received. For example, a value of 0x01 in this field indicates one outstand-
ing MMIO request is permitted. Setting this value to 0x00 disables the MMIO limiting feature,
allowing any amount of outstanding requests to occur. The MMIO_DISABLE_REQ_LIMIT bit in
the region's Lower Bound Register can be set to indicate that requests to the particular MMIO
region should not be limited.

By default, IOCU uncached requests are never considered part of the MMIO limit (to allow for
forward progress). However, this is controllable via the
GCR_CONTROL.CM_MMIO_IOCU_ENABLE_REQ_LIMIT. When this bit is set, IOCU uncached
requests are counted as outstanding MMIO requests. In this case, IOCU uncached requests
are blocked if the MMIO request limit has been reached.

5.11 Auxiliary Interfaces

The CM supports up to four non-coherent Auxiliary AXI4 buses, called AUX0 - AUX3. The AUX
master ports are intended to be used for lower latency access to peripherals or instruction
SRAM. Each cluster supports up to four AUX ports. Each AUX interface has a configurable
data width. Values of 32, 64, 128, 256 and 512 are supported. The data width is determined
during IP configuration. Each AUX address width is 48 bits. The number of AUX ports is
stored in the 3-bit NUMAUX field of the Global Configuration register (GCR_CONFIG) at offset
0x0000 in GCR address space.

The clock for each AUX interface can be provided internally by the cluster or provided exter-
nally from outside the cluster. Each internally provided AUX clock can have an independent
clock ratio. An externally provided clock can be provided on the external AUX clock pin. An
externally provided clock is assumed to be asynchronous to the cluster. Selection between an
internal versus external clock is done during IP configuration.

The AUX ports are memory mapped by the MMIO GCR control registers. There are up to 4
MMIO regions. Each GCR_MMIO<x>_BOTTOM register listed above contains an MMIO_PORT
field in bits 5:2 that indicates which auxiliary port the request should be routed to. This field
is encoded as shown in Table 5.3.

Table 5.3 Encoding of MMIO_PORT Field

Field Name Register Bits Encoding Port Accessed

MMIO_PORT 5:2 0x0 Main memory

0x8 AUX port 0

0x9 AUX port 1

0xA AUX port 2

0xB AUX port 3

57
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.12 Error Processing

The CM detects, reports, and handles several types of errors that may be caused by errant
software or hardware soft or hard errors. When an error is detected, information that may be
useful in debugging the error is captured in the Global CM Error Cause Register and Global CM Error
Address Register.

When an error occurs, hardware updates the read-only ERR_TYPE field in bits 63:58 of the
Global CM Error Cause register with one of the values listed in Table 5.3 above. When this field is
written, hardware also updates the 58-bit ERROR_INFO field that provides additional infor-
mation about the error. The organization of this field varies depending on the value in the
ERR_TYPE field.

When a second error is detected, it will overwrite the first error if the first error was an L2
ram correctable error (MP_CORRECTABLE_ECC_ERR). Otherwise, the second error is cap-
tured in the CM Error Multiple Register. Note that for the second error, only the error type is
captured, not the associated error address or error information.

The GCR_ERROR_CAUSE.ERR_TYPE field and the GCR_ERROR_MULT.ERR_TYPE fields can be
cleared by either a reset or by writing the current value of GCR_ERROR_CAUSE.ERR_TYPE to
the GCR_ERROR_CAUSE. ERR_TYPE register.

When the Global CM Error Cause Register is loaded, an interrupt may be generated if the corre-
sponding bit for that type of error is set in the Global CM Error Mask Register located at offset
address 0x0040.

One distinction between error management in the CM and the previous generation CM2-
based products is in error responses when the Error Mask register is set. In CM2-based prod-
ucts;

• If the error was generated by a request that requires a response and the corresponding
Global CM2 Error Mask Register bit is 0, then the CM2 issues an ERROR response.

• If the corresponding Global CM2 Error Mask Register bit is 1, then the CM2 issues a normal
response and an interrupt is generated instead.

In the CM version in the P8700-F, the error response is independent of the mask setting. If
the normal response should be an ERROR, then an ERROR response is returned regardless of
the Error Mask Register setting. The mask setting controls whether an interrupt is generated in
addition to the normal error response.

Table 5.4 lists the errors detected by the CM. The following subsections describe each type of
error in more detail and provide the encoding of the ERR_INFO field for each error type.

Table 5.4 CM Error Types

Error
Type Error Name Description Action

0 - Reserved -

1 MP_CORRECTABLE_ECC_ERR A correctable ECC error occurred
during an L2 cache access.

The error is corrected.
Signal an interrupt if
CM_ERROR_MASK[1] = 1

2 MP_REQUEST_DECODE_ERR A decoding error was detected in
the request.

Respond with an error to the
original requestor.
Signal an interrupt if
CM_ERROR_MASK[2] = 1

58
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

3 MP_UNCORRECTABLE_
ECC_ERR

An uncorrectable ECC error
occurred during an L2 cache
access.

Signal an interrupt if
CM_ERROR_MASK[3] = 1

4 MP_PARITY_ERR A parity error was detected in the
L2 data coming from either the
core or the memory.

Signal an interrupt if
CM_ERROR_MASK[4] = 1

5 MP_FNL_ERR If an L2 fetch and lock (FNL)
cacheop is processed when only
one or zero ways of the cache are
unlocked, including pseudo-locks,
then the FNL fails.

Signal an interrupt if
CM_ERROR_MASK[5] = 1

6 CMBIU_REQUEST_
DECODE_ERR

A decoding error was detected
during a request on the BIU.

Signal an interrupt if
CM_ERROR_MASK[6] = 1

7 CMBIU_PARITY_ERR The BIU detected a parity error. Signal an interrupt if
CM_ERROR_MASK[7] = 1

8 CMBIU_AXI_RESP_ERR The BIU detected a response
error was detected on the AXI
bus.

Signal an interrupt if
CM_ERROR_MASK[8] = 1

9 Reserved Reserved Reserved

10 RBI_BUS_ERR An error occurred during a register
ring bus during a register access.

Signal Interrupt if
CM_ERROR_MASK[10] = 1

11 IOC_REQUEST_ERR An error occurred on an IOCU
request on the AXI bus.

Signal Interrupt if
CM_ERROR_MASK[11] = 1

12 IOC_PARITY_ERR The IOCU detected a parity error. Signal Interrupt if
CM_ERROR_MASK[12] = 1

13 IOC_RESP_ERR The IOCU detected a response
error.

Signal Interrupt if
CM_ERROR_MASK[13] = 1

14 Reserved Reserved Reserved

15 RBI_REGTC_REQ_ERR An illegal request was received by
the REGTC bus during a NOC
access.

Signal Interrupt if
CM_ERROR_MASK[15] = 1

Table 5.4 CM Error Types (continued)

Error
Type Error Name Description Action

59
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.12.1 Error Codes 1 and 3 — Tag ECC Error

If the decimal value in the ERR_TYPE field is either 1 or 3 and there is a Tag ECC error, the
ERROR_INFO field in the Global CM Error Cause register is organized as shown in Table 5.5

Table 5.5 State of ERR_INFO Field for Tag Error Types 1 or 3

Bit Meaning

57 Error type
0: Tag error
1: Data error

56:45 Reserved

44:29 Indicates the way of the cache that caused the error. There is one bit per way as follows:
Bit 29: way 0
Bit 30: way 1
Bit 31: way 2
...
Bit 44: way 15

28 Bank in which the error occurred.
0: Bank 0
1: Bank 1

27:22 Core ID value.

The first IOCU encoding is always directly after the last core encoding. For example, in a system with
four cores and two IOCU’s, the cores would occupy encoding 0x0 - 0x3, and the IOCU’s would
occupy encoding 0x4 - 0x5.

So 0x0 - 0x[n] = cores, and 0x[n+1] - 0x[m] = IOCU’s. The following example shows the encoding for
a system with six cores and two IOCU’s.

0x0: core 0
0x1: core 1
0x2: core 2
0x3: core 3
0x4: core 4
0x5: core 5
0x6: IOCU 0
0x7: IOCU 1

21:18 Hart ID value.
0x0: Hart 0
0x1: Hart 1
0x2: Hart 2
0x3: Hart 3

17:14 Command. This field indicates the command type. Refer to Table 5.7 through Table 5.10 for the
encoding of this field.

13:11 Command Group. This field indicates the command group. Refer to Table 5.6 for the encoding of this
field.

10:8 Cache Coherency Attribute (CCA) value. This field indicates the CCA value corresponding to the
transaction. Refer to Table 5.11 for the encoding of this field.

60
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.12.1.1 Command Group Field Encoding

Bits 13:11 indicate the type of command group. The command group is used along with the
command to specify the operation to be performed. Memory reads and writes (cacheable as
well as non-cacheable) usually use the "NORM" command group. Some special cache mainte-
nance operations (L1I, L1D, L2, L3) must be able to target a specific cache level as well as
specify the operation to be performed. The encoding for the different values is given in the
table below.

This field is decoded as shown in Table 5.6. The encoding table for each of these command
group types are described in the following subsections.

7:5 MCP bus transfer size. Indicates the size of the transfer on the bus. This field is encoded as 2(MCP

size).

0x0: 1 byte
0x1: 2 bytes
0x2: 4 bytes
0x3: 8 bytes
0x4: 16 bytes
0x5: 32 bytes (Reserved. Not used in the P8700-F)
0x6: 64 bytes
0x7: 128 bytes (Reserved. Not used in the P8700-F)

4:1 Transaction type. This field indicates the type of bus transaction that caused the error. Refer to Table
5.12 for the encoding of this field.

0 Scheduler. The P8700-F core can be configured at build time with either 1 or 2 pipeline schedulers. If
the build is configured with one scheduler, this bit is always 0. If configured with two schedulers, this
bit can be either 0 or 1 and indicates the scheduler involved in the error.

Table 5.6 Command Group Field Encoding

Encoding Mnemonic Description Usage

0 NORM Normal loads and stores use this space. Normal loads and stores

1 REGS Register reads / writes and sync operations. Register access and
sync

2 GBL Globalized (to local and other clusters) I-cache and TLB
invalidates.

Global instruction cache
and TLB maintenance

3 Reserved N/A

4 L1I The command is targeted at the level 1 instruction cache. Cache maintenance
operations.

5 L1D The command is targeted at the level 1 data cache.

6 L3 The command is targeted at the level 3 cache.

7 L2 The command is targeted at the level 2 cache.

Table 5.5 State of ERR_INFO Field for Tag Error Types 1 or 3 (continued)

Bit Meaning

61
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

NORM Command Field Encoding

Bits 17:14 in Table 5.6 indicate the type of command to be performed. When the Command
Group field in bits 13:11 is set to 3’b000, indicating the NORM field encoding, the Command
field in bits 17:14 is decoded as shown in Table 5.7.

Table 5.7 NORM Command Field Encoding

Encoding Mnemonic Description

0 Read Legacy read.

1 Write Legacy write.

2 CohReadOwn Requests an exclusive copy of the cache line.

3 CohReadShare Requests a shared copy of the cache line.

4 CohReadDiscard Request the latest copy of the cache line and is leaving the coherent domain.

5 CohEvict The line has been evicted from the cache without a change. The directory can
be updated.

6 CohUpgrade Request ownership of a shared cache line.

7 CohUpgradeSC Request ownership of a shared cache line for the purpose of executing a Store
Conditional instruction.

8 CohWriteBack Transfers ownership of a cache line back to the next level along with the new
copy of the line data.

9 CohWriteInvali-
date

Injects new, possibly sub cache line data into a coherent system. This com-
mand is only valid from the L1 to the L2 and is also called a Commit to L2.

10 CohReadDiscar-
dAlloc

Request the latest copy of the cache line and is leaving the coherent domain.
The next level cache should allocate the line if no present. This command is
expected to be used for cacheable instruction fetches.

11 CohPrefOwn This command attempts to pre-fetch the specified line in to the L2 cache in the
“exclusive” state. If the line already exists in the cache in the exclusive or modi-
fied states, then this command does not change the line. Otherwise, a com-
mand needs to get sent to the next level to gain ownership of the line. No data
is returned to the requestor.

12 CohPrefShr This command attempts to pre-fetch the specified line in to the L2 cache in the
“shared” state. If the line already exists in the cache, then this command does
not change the line. Otherwise, a command needs to get sent to the next level
to obtain a shared copy of the line. No data is returned to the requestor.

13 CohPrefWriteInv This prefetch command is similar to the CohPrefOwn command but in addition
to bringing the cache line in to the L2 in one of the ‘exclusive’ states, it makes
sure that the line is not currently owned by any L1. This command is not
expected to be issued by a core but can be used by the L2 prefetcher within the
CM main pipeline.

14 CohGetOwn This command is used to get ownership of the cache line from the next level
without asking for the data. This command can only be issued when the entire
cache line is being overwritten and is not expected to be issued by the core.

62
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

REGS Command Field Encoding

Bits 17:14 in Table 5.6 indicate the type of command to be performed. When the Command
Group field in bits 13:11 is set to 3’b001, indicating the REGS field encoding, the Command
field in bits 17:14 is decoded as shown in Table 5.8.

15 TagErr This command is used to indicate that a tag error has been detected by the
requestor as it tried to send out a command. This command is typically used on
a write type command where the data has already been sent out on the WID
channel and an error is detected while trying to generate the address for the
request. This command is sent to the next level so that the SDB Id is not left
hanging. The receiver just frees up the resources as it processes the command
sending back a response without data.

Table 5.8 REGS Command Field Encoding

Encoding Mnemonic Description

0 DbgRead Debug Read. This is used by the core (and CM to CMBIU) for debug register
reads (DMXSEG, DRSEG and CSR).

1 DbgWrite Debug Write. This is used by the core (and CM to CMBIU) for debug register
writes (DMXSEG, DRSEG and CSR).

2 RegRead Register Read. This is used by the core for Fast Debug Channel (FDC) reads.
This is used by CM to CMBIU for both FDC reads and memory mapped register
reads.

3 RegWrite Register Write. This is used by the core for Fast Debug Channel (FDC) writes.
This is used by CM to CMBIU for both FDC writes and memory mapped regis-
ter writes.

4 - 7 Reserved.

8 MemSync0 This is used for memory synchronization operations and has a type of 0. This
value does not correspond to the "stype" field of a SYNC instruction.

9 MemSync1 This is used for memory synchronization operations and has a type of 1. This
value does not correspond to the "stype" field of a SYNC instruction.

10 MemSync2 This is used for memory synchronization operations and has a type of 2. This
value does not correspond to the "stype" field of a SYNC instruction.

11 MemSync3 This is used for memory synchronization operations and has a type of 3. This
value does not correspond to the "stype" field of a SYNC instruction.

12 - 15 Reserved.

Table 5.7 NORM Command Field Encoding (continued)

Encoding Mnemonic Description

63
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

GBL Command Field Encoding

Bits 17:14 in Table 5.6 indicate the type of command to be performed. When the Command
Group field in bits 13:11 is set to 3’b010, indicating the GBL field encoding, the Command
field in bits 17:14 is decoded as shown in Table 5.9.

Cache Maintenance (L1I, L1D, L2, L3) Command Field Encoding

Bits 17:14 in Table 5.6 indicate the type of command to be performed. When the Command
Group field in bits 13:11 is set to 3’b100 through 3’b111, indicating the Cache Maintenance
encodings, the Command field in bits 17:14 is decoded as shown in Table 5.10.

The first set of encodings correspond to the encoding of bits [20:18] of the CACHE instruc-
tion. The last encoding is only valid for the L1I command group.

Table 5.9 GBL Command Field Encoding

Encoding Mnemonic Description

0 GBL_HIT_INVI Invalidate the specified Physical Address (PA) in all I-caches.

1 GBL_ONE_INVI Invalidate all addresses in one I-cache, selected by the General Number Regis-
ter (GNR).

2 GBL_ALL_INVI Invalidate all addresses in all I-cache.

3 Reserved

4 GBL_GINVGT Guest invoked, Invalidate one or many lines except for wired in matching Guest
TLB.

5 GBL_RINVGT Root invoked, Invalidate one or many lines including wired in matching Guest
TLB

6 GBL_INVT Invalidate one or many lines in Root TLB, except for wired entries.

7 GBL_SYNC Sync and return only when all previous Global group commands have com-
pleted their tasks.

8 - 15 Reserved.

Table 5.10 Cache Maintenance Command Field Encoding

Encoding Mnemonic Description

0 IdxWbInval This command corresponds to the "Index invalidate / Index write-
back invalidate" CacheOp. Write-back caches flush out the data to
the next level if the line was dirty. All caches invalidate the line at the
end of the operation.

1 IdxLdTag This command corresponds to the "Index load tag / data" type
CacheOp. The tag and data RAMs are read out at the location spec-
ified by the index and returned with the response.

2 IdxStTag This command corresponds to the "Index store tag" type CacheOp.
This command is accompanied with write data that contains the tag
bits to be written.

64
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.12.1.2 CCA Field Encoding

Bits 10:8 indicate the cache coherency attribute. This field is decoded as shown in Table 5.11.

3 Impl / Reserved This command corresponds to the "Implementation Dependent"
CacheOp. This command is currently unsupported and considered
reserved.

4 ConInvalidate / HitInvl This command corresponds to the "Hit invalidate" type CacheOp or
the "Coherent Invalidate" command on the OCP 3.0 bus protocol. It
indicates that the addressed line needs to be invalidated irrespec-
tive of its ownership status.

5 CohCopyBackInval / Hit-
WbInvl

This command corresponds to the "Hit Write Back Invalidate" type
CacheOp or the "Coherent Copy Back Invalidate" command on the
OCP 3.0 bus protocol. It indicates to the system that the addressed
line needs to be flushed from the system if in a dirty state and invali-
dated.

6 CohCopyBack / HitWb This command corresponds to the "Hit Write Back" type CacheOp
or the "Coherent Copy Back" command on the OCP 3.0 bus proto-
col. It indicates that the addressed line needs to be written out to
memory if in a dirty state. The line can continue to stay valid in the
caches if already present.

7 FetchNLock This command corresponds to the "Fetch and Lock" type CacheOp.
The line should be brought in to the cache and locked so that it does
not get evicted due to random replacement.

8 - 15 Reserved.

Table 5.11 Cache Coherency Attributes Field Encoding

CCA[10:8] Attribute

3’b000 Mapped to ‘3b101 (Cached Coherent Read-Share).

3’b001 Mapped to ‘3b101 (Cached Coherent Read-Share).

3’b010 Uncached.

3’b011 Mapped to ‘3b101 (Cached Coherent Read-Share).

3’b100 Mapped to ‘3b101 (Cached Coherent Read-Share).

3’b101 Cached Coherent Read-Share.

3’b110 Mapped to ‘3b101 (Cached Coherent Read-Share).

3’b111 Uncached Accelerated.

Table 5.10 Cache Maintenance Command Field Encoding (continued)

Encoding Mnemonic Description

65
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.12.1.3 Type Field Encoding

Bits 4:1 indicate the type of transaction when the error occurred. This field is decoded as
shown in Table 5.11.

5.12.2 Error Codes 1 and 3 — Data ECC Error

If the decimal value in the ERR_TYPE field is either 1 or 3 and there is a Data ECC error, the
ERROR_INFO field in the Global CM Error Cause register is organized as shown in Table 5.13

Table 5.12 Type Field Encoding

 Encoding Mnemonic Description

0 ReqNoData Normal request with no associated data. Used for most requests.

1 Reserved

2 ReqWData Normal request with associated data. Used for stores & write back requests.

3 Reserved

4 IReqNoResp Intervention request with no response required.

5 IReqWResp Intervention request with a response required.

6 IReqNoRespDat Intervention request with associated data and no response required.

7 IReqWRespDat Intervention request with associated data and response required.

8 RespNoData Normal response with no data returned.

9 RespDataFol Normal response with data to follow on a different transaction.

10 RespWData Normal response with data being returned (3 clocks later).

11 RespDataOnly Normal response with data being returned (3 clocks later) as a consequence of
a "data-to-follow" response.

12 IRespNoData Intervention response with no data returned.

13 IRespDataFol Intervention response with data to follow on a different transaction.

14 IRespWData Intervention response with data being returned (3 clocks later).

15 IRespDataOnly Intervention response with data being returned (3 clocks later) as a conse-
quence of a "data-to-follow" response.

Table 5.13 State of ERR_INFO Field for Data Error Types 1 or 3

Bit Meaning

57 Error type
0: Tag error
1: Data error

56:49 DWORD with error. This field indicates the DWORD that caused the error.

48:45 Indicates the way of the cache that caused the error. This field is encoded as follows. Note that this
field is handled differently from the Tag error shown in Table 5.5, where the field is one bit per way.
0x0: way 0
0x1: way 1
0x2: way 2
...
0xF: way 15

66
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

44:29 Indicates which one of up to 8K sets of the cache that caused the error. This field is encoded as fol-
lows:
0x0000: set 0
0x0001: set 1
0x0002: set 2
...
0x1FFE: set 8,190
0x1FFF: set 8,191

28 Bank in which the error occurred.
0: Bank 0
1: Bank 1

27:22 Core ID value.

The first IOCU encoding is always directly after the last core encoding. For example, in a system
with four cores and two IOCU’s, the cores would occupy encoding 0x0 - 0x3, and the IOCU’s would
occupy encoding 0x4 - 0x5.

So 0x0 - 0x[n] = cores, and 0x[n+1] - 0x[m] = IOCU’s. The following example shows the encoding for
a system with six cores and two IOCU’s.

0x0: core 0
0x1: core 1
0x2: core 2
0x3: core 3
0x4: core 4
0x5: core 5
0x6: core 6
0x7: core 7
0x8: IOCU 0
0x9: IOCU 1
0xA: IOCU 2
0xB: IOCU 3
0xC: IOCU 4
0xD: IOCU 5
0xE: IOCU 6
0xF: IOCU 7

21:18 Hart ID value.
0x0: Hart 0
0x1: Hart 1
0x2: Hart 2
0x3: Hart 3

17:14 Command. This field indicates the command type. Refer to Table 5.7 for more information.

13:11 Command Group. This field indicates the command group. Refer to Table 5.6 for the encoding of
this field.

10:8 Cache Coherency Attribute (CCA) value. This field indicates the CCA value corresponding to the
transaction. Refer to Table 5.11 for the encoding of this field.

Table 5.13 State of ERR_INFO Field for Data Error Types 1 or 3 (continued)

Bit Meaning

67
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.12.3 Error Code 2 — Request Decode Error

If the decimal value in the ERR_TYPE field is 2, indicating a decode request error, the
ERROR_INFO field in the Global CM Error Cause register is organized as shown in Table 5.14.

7:5 MCP bus transfer size. Indicates the size of the transfer on the bus. This field is encoded as 2(MCP

size).

0x0: 1 byte
0x1: 2 bytes
0x2: 4 bytes
0x3: 8 bytes
0x4: 16 bytes
0x5: 32 bytes (Reserved. Not used in the P8700-F)
0x6: 64 bytes
0x7: 128 bytes (Reserved. Not used in the P8700-F)

4:1 Transaction type. This field indicates the type of bus transaction that caused the error. Refer to
Table 5.12 for the encoding of this field.

0 Scheduler. The P8700-F core can be configured at build time with either 1 or 2 pipeline schedulers.
If the build is configured with one scheduler, this bit is always 0. If configured with two schedulers,
this bit can be either 0 or 1 and indicates the scheduler involved in the error.

Table 5.14 State of ERR_INFO Field for Data Error Type 2

Bit Meaning

57 Reserved.

56 GIC access error. Hardware sets this bit to indicate a code fetch was sent GIC address
space.

55 Non-Coherent MMIO error. Hardware sets this bit to indicate if an invalid MMIO access
was made to MMIO address space.

54 Coherent MMIO error. Hardware sets this bit to indicate that coherent access was made to
MMIO address space.

53 Reserved.

52 CCA or LL/SC error. Hardware sets this bit to indicate that the error occurred in the decod-
ing of the CCA field, either a register access with CCA not equal to UC was attempted, or
or an LLSC request was made to a register.

51 Size error. Hardware sets this bit to indicate that the error occurred in the decoding of the
Size field. A register access with size not equal to 4 or 8 bytes was attempted.

50 Multiple regions error. Hardware sets this bit to indicate that the error occurred in the
decoding of multiple regions.

49 Coherency request or redirect error. Hardware sets this bit to indicate that a coherent
request was made to either a register-mapped address, or a redirect access was made to
a block redirect that does not exist.

48 Debug register access error. Hardware sets this bit to indicate a Debug register access.

47 FDC Register Access. Hardware sets this bit to indicate a Fast Debug Channel (FDC)
access.

Table 5.13 State of ERR_INFO Field for Data Error Types 1 or 3 (continued)

Bit Meaning

68
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

46 Normal Register Access. Hardware sets this bit to indicate a normal register mapped
access.

45 GCR Hit. Hardware sets this bit to during a hit to the GCR registers.

44 User GCR Hit. Hardware sets this bit to during a hit to the User GCR registers.

43 CPC Hit. Hardware sets this bit to during a hit to the Cluster Power Controller (CPC).

42 GIC Hit. Hardware sets this bit to during a hit to the Global Interrupt Controller (GIC).

41 IOCU Hit. Hardware sets this bit to during a hit to the I/O Coherence Unit (IOCU).

40:37 Decode CMD. This field indicates the command sent to memory on a register request.
This field has the same encoding as the Command field. The bit orientation of this field
depends on the type of error as listed in Table 5.6 through Table 5.10.

36:34 Decode CMD Group. This field indicates the indicates the Command Group sent to mem-
ory on a register request. The field has the same encoding as Table 5.6.

33:28 Decode Destination ID. This field indicates the destination ID sent to memory on a register
request.

27:22 Port ID value. This field indicates the port ID value of all cores and IOCU’s in the system.

The first IOCU encoding is always directly after the last core encoding. For example, in a
system with four cores and two IOCU’s, the cores would occupy encoding 0x0 - 0x3, and
the IOCU’s would occupy encoding 0x4 - 0x5.

So 0x0 - 0x[n] = cores, and 0x[n+1] - 0x[m] = IOCU’s. The example below shows the
encoding for a six core and two IOCU system.

0x0: core 0
0x1: core 1
0x2: core 2
0x3: core 3
0x4: core 4
0x5: core 5
0x6: IOCU 0
0x7: IOCU 1

21:18 Hart ID value.
0x0: Hart 0
0x1: Hart 1
0x2: Hart 2
0x3: Hart 3

17:14 Command. This field indicates the command type. Refer to Refer to Table 5.7 for the
encoding of this field.

13:11 Command Group. This field indicates the command group. Refer to Table 5.6 for the
encoding of this field.

10:8 Cache Coherency Attribute (CCA) value. This field indicates the CCA value corresponding
to the transaction. Refer to Table 5.11 for the encoding of this field.

Table 5.14 State of ERR_INFO Field for Data Error Type 2 (continued)

Bit Meaning

69
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.12.4 Error Code 4 — Parity Error

If the decimal value in the ERR_TYPE field is 4, indicating a parity error, the ERROR_INFO
field in the Global CM Error Cause register is organized as shown in Table 5.15.

7:5 MCP bus transfer size. Indicates the size of the transfer on the bus. This field is encoded

as 2(MCP size).

0x0: 1 byte
0x1: 2 bytes
0x2: 4 bytes
0x3: 8 bytes
0x4: 16 bytes
0x5: 32 bytes (Reserved. Not used in the P8700-F)
0x6: 64 bytes
0x7: 128 bytes (Reserved. Not used in the P8700-F)

4:1 Transaction type. This field indicates the type of bus transaction that caused the error.
Refer to Table 5.12 for the encoding of this field.

0 Scheduler. The P8700-F core can be configured at build time with either 1 or 2 pipeline
schedulers. If the build is configured with one scheduler, this bit is always 0. If configured
with two schedulers, this bit can be either 0 or 1 and indicates the scheduler involved in the
error.

Table 5.15 State of ERR_INFO Field for Data Error Type 4

Bit Meaning

57:36 Reserved.

35:28 DWORD with error. This field indicates the DWORD that caused the error.

27:22 Port ID value. This field indicates the port ID value of all cores and IOCU’s in the system.

The first IOCU encoding is always directly after the last core encoding. For example, in a system
with four cores and two IOCU’s, the cores would occupy encoding 0x0 - 0x3, and the IOCU’s
would occupy encoding 0x4 - 0x5.

So 0x0 - 0x[n] = cores, and 0x[n+1] - 0x[m] = IOCU’s. The example below shows the encoding for
a six core and two IOCU system.

0x0: core 0
0x1: core 1
0x2: core 2
0x3: core 3
0x4: core 4
0x5: core 5
0x6: IOCU 0
0x7: IOCU 1

Table 5.14 State of ERR_INFO Field for Data Error Type 2 (continued)

Bit Meaning

70
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.12.5 Error Code 5 — Fetch and Lock Error

If the decimal value in the ERR_TYPE field is 5, indicating a fetch and lock error, the
ERROR_INFO field in the Global CM Error Cause register is organized as shown in Table 5.16.

21:18 Hart ID value.
0x0: Hart 0
0x1: Hart 1
0x2: Hart 2
0x3: Hart 3

17:14 Command. This field indicates the command type. The encoding of this field depends on the type
of error. Refer to Table 5.7 through Table 5.10 for the encoding of this field.

13:11 Command Group. This field indicates the command group. Refer to Table 5.6 for the encoding of
this field.

10:8 Cache Coherency Attribute (CCA) value. This field indicates the CCA value corresponding to the
transaction. Refer to Table 5.11 for the encoding of this field.

7:5 MCP bus transfer size. Indicates the size of the transfer on the bus. This field is encoded as

2(MCP size).

0x0: 1 byte
0x1: 2 bytes
0x2: 4 bytes
0x3: 8 bytes
0x4: 16 bytes
0x5: 32 bytes (Reserved. Not used in the P8700-F)
0x6: 64 bytes
0x7: 128 bytes (Reserved. Not used in the P8700-F)

4:1 Transaction type. This field indicates the type of bus transaction that caused the error. Refer to
Table 5.12 for the encoding of this field.

0 Scheduler. The P8700-F core can be configured at build time with either 1 or 2 pipeline schedul-
ers. If the build is configured with one scheduler, this bit is always 0. If configured with two sched-
ulers, this bit can be either 0 or 1 and indicates the scheduler involved in the error.

Table 5.16 State of ERR_INFO Field for Data Error Type 5

Bit Meaning

57:29 Reserved.

28 Bank in which the error occurred.
0: Bank 0
1: Bank 1

Table 5.15 State of ERR_INFO Field for Data Error Type 4 (continued)

Bit Meaning

71
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

27:22 Port ID value. This field indicates the port ID value of all cores and IOCU’s in the system.

The first IOCU encoding is always directly after the last core encoding. For example, in a system
with four cores and two IOCU’s, the cores would occupy encoding 0x0 - 0x3, and the IOCU’s
would occupy encoding 0x4 - 0x5.

So 0x0 - 0x[n] = cores, and 0x[n+1] - 0x[m] = IOCU’s. The example below shows the encoding for
a six core and two IOCU system.

0x0: core 0
0x1: core 1
0x2: core 2
0x3: core 3
0x4: core 4
0x5: core 5
0x6: IOCU 0
0x7: IOCU 1

21:18 Hart ID value.
0x0: Hart 0
0x1: Hart 1
0x2: Hart 2
0x3: Hart 3

17:14 Command. This field indicates the command type. The encoding of this field depends on the type
of error. Refer to Table 5.7 through Table 5.10 for the encoding of this field.

13:11 Command Group. This field indicates the command group. Refer to Table 5.6 for the encoding of
this field.

10:8 Cache Coherency Attribute (CCA) value. This field indicates the CCA value corresponding to the
transaction. Refer to Table 5.11 for the encoding of this field.

7:5 MCP bus transfer size. Indicates the size of the transfer on the bus. This field is encoded as

2(MCP size).

0x0: 1 byte
0x1: 2 bytes
0x2: 4 bytes
0x3: 8 bytes
0x4: 16 bytes
0x5: 32 bytes (Reserved. Not used in the P8700-F)
0x6: 64 bytes
0x7: 128 bytes (Reserved. Not used in the P8700-F)

4:1 Transaction type. This field indicates the type of bus transaction that caused the error. Refer to
Table 5.12 for the encoding of this field.

0 Scheduler. The P8700-F core can be configured at build time with either 1 or 2 pipeline schedul-
ers. If the build is configured with one scheduler, this bit is always 0. If configured with two sched-
ulers, this bit can be either 0 or 1 and indicates the scheduler involved in the error.

Table 5.16 State of ERR_INFO Field for Data Error Type 5 (continued)

Bit Meaning

72
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.12.6 Error Codes 6, 7, 8 — Bus Interface Unit (BIU) Errors

If the decimal value in the ERR_TYPE field is between 6 and 8, the ERR_INFO field in the
Global Error Cause register is organized as shown in Table 5.17.

Table 5.17 State of ERR_INFO Field for Error Types 6 through 8

Bit Meaning

57:54 Subcode. This field indicates the type of bus error and is encoded as follows:

0: Internal MCP request decode error
1: AXI parity error
2: Internal MCP parity error
3: AXI xRESP error (SLVERR or DECERR)
4: Unexpected AXI RID
5: Unexpected AXI BID
6: Reserved
7: AXI CD parity error
8: MMIO port error
9: NOC_REG_ACCESS error

53:49 Reserved

48:41 AXI ID value. Valid if TYPE = 8. This value applies to subcodes 1, 3, 4, and 5 in bits 57:54 above.
Refer to Table 5.3 for a list of error types.

40:37 RRESP/BRESP. Valid if TYPE = 8. This value applies to subcodes 1, 3, 4, and 5 in bits 57:54 above.
Refer to Table 5.3 for a list of error types.

36 Request data buffer lock (rdb_lock). This field is valid for subcodes 0 - 3, 6, 8 and 9.

35:31 Request data buffer thread ID (req_thrd_id). This field is valid for subcodes 0 - 3, 6, 8 and 9.

30:27 Request port (req_port). This field is valid for subcodes 0 - 3, 6, 8 and 9. See the table below for
encoding.

26 Request data buffer write (rdb_wr). This field is valid for subcodes 0 - 3, 6, 8 and 9.

25 Request data buffer uncached accelerated (rdb_uca). This field is valid for subcodes 0 - 3, 6, 8 and
9.

24 Request data buffer uncached (rdb_uc). This field is valid for subcodes 0 - 3, 6, 8 and 9.

23:0 Reserved.

Table 5.18 BIU Error Request Port (req_port) Field Encoding — Bits 30:27

Bits 30:27 Output Channel

0x0 C_MEM_AR (memory read)

0x1 C_MEM_AW (memory write)

0x2 AUX0_AR (Aux port 0 read)

0x3 AUX0_AW (Aux port 0 write)

0x4 AUX1_AR (Aux port 1 read)

0x5 AUX1_AW (Aux port 1 write)

0x6 AUX2_AR (Aux port 2 read)

73
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.12.7 Error Code 10 — Ring Bus Error

If the decimal value in the ERR_TYPE field is 10, the ERR_INFO field in the Global CM Error Cause
register is organized as shown in Table 5.19.

0x7 AUX2_AW (Aux port 2 write)

0x8 AUX3_AR (Aux port 3 read)

0x9 AUX3_AW (Aux port 3 write)

0x10 REGTN_AR (inter-cluster Reg-to-NOC register read)

0x11 REGTN_AW (inter-cluster Reg-to-NOC register write)

0x12 ITU_AR (ITU read)

0x13 ITU_AW (ITU write)

0x14 Reserved

0x15 RBI local registers read and write

Table 5.19 State of ERR_INFO Field for Error Type 10

Bit Meaning

57:54 Sub-code
0: reserved
1: Master endpoint response error (see CMD[1:0] field for error type)
2: Register ring bus error
3. Byte enable error

53:48 Reserved

47 cmd[3]. In the P8700-F, this bit is always 0.
0: Standard packets
1: Extended packets (reserved for future implementations)

46 cmd[2]. Identifies the packet as a read or write packet. This field is encoded as follows:
0: Read
1: Write

45:44 cmd[1:0]
0: No error (packet is valid)
1: Endpoint not available. When an endpoint is powered down or in the clock-off state, the slave
node responds with an "Endpoint Unavailable Error".
2: Destination not found or byte enable error on MCP/REGTC requests. If the master acting as the
request terminator finds an unclaimed request, it turns the packet into a response packet swapping
the src/dest ID’s and signal a "Destination Not Found Error". This error can also indicate that a byte
enable error has occurred attempting to not write all bytes of the word or double-word transaction
3: Parity error on RRB. If a bus parity error occurs, the endpoint responds with a "Bus Parity Error".
Normal request packets created by the master endpoints set this field to zero.

Table 5.18 BIU Error Request Port (req_port) Field Encoding — Bits 30:27(continued)

Bits 30:27 Output Channel

74
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

43:38 Destination ID. Indicates the destination of the operation when the error occurred. This field is
encoded in decimal as follows:

0 - 5: Core 0 through Core 5. Values 6 - 7 are reserved
8 - 15: Reserved
16 - 23: IOCU 0 through IOCU 7
24: GIC
25: User-defined GCR block
26: Memory
27 - 31: Reserved
32: CM master
33: CPC
34: GCR block
35: DBU master
36: DBU dmxseg normal
37: DBU dmxseg debug
38 - 39: Reserved
40: AUX 0
41: AUX 1
42: AUX 2
43: AUX 3
44 - 61: Reserved
62: No destination error
63: No destination OK

The values 36-37 accommodate DBU dmxseg normal and debug mode accesses. The slave node
connected to the Debug Unit slave block allows multiple dest_id's to match the slave node and be
forwarded to the Debug Unit slave interface. This allows access the Debug Unit dmxseg block
memory mapping using two modes of operation (normal and debug/privileged).

The values 62-63 allow the address decode block of the CM to indicate to the register bus interface
that there is no destination for an enabled memory mapped register area or that a write from a
requestor has been blocked by global access control. The register bus interface returns a
response packet to the initiator without sending a packet over the register bus. If the register bus
interface decodes a dest_id of "No Dest Err", an error response packet is returned. If the register
bus interface decodes a dest_id of "No Dest OK", a normal response packet is returned. Read
responses for dest_ids of "No Dest Err" and "No Dest OK" will return data that is all zeros.

37:32 Destination cluster ID.
This field indicates the destination ID number of the cluster where the error occurred. Each register
bus cluster request node and cluster response node is enumerated with a CLUSTER_ID. The
CLUSTER_ID input is hardwired to its associated identifier when it is instantiated. This value of the
CLUSTER_ID is compared against the value in this field to determine if the register bus cluster
node should send the packet along its own cluster ring or sent it to the multi-cluster ring.

31:24 Shared data buffer ID (sbd_id)
This identifier is used to match the response to the original request. This field is determined by the
originating master of the transaction, i.e. CM or Debug Unit, and will be returned to that master.

23:18 Source ID. Indicates the source of the operation when the error occurred. This field is encoded the
same as the destination ID field in bits 43:38.

Table 5.19 State of ERR_INFO Field for Error Type 10 (continued)

Bit Meaning

75
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.12.8 Error Code 11 — IOCU Request Error

If the decimal value in the ERR_TYPE field is 11, the ERR_INFO field in the Global CM Error Cause
register is organized as shown in Table 5.20.

17:12 Source cluster ID.
This field indicates the source ID number of the cluster where the error occurred. Each register bus
cluster request node and cluster response node is enumerated with a CLUSTER_ID. The
CLUSTER_ID is hardwired to its associated identifier when it is instantiated. This value of the
CLUSTER_ID is compared against the value in this field to determine if the register bus cluster
node should send the packet along its own cluster ring or sent it to the multi-cluster ring.

11:6 Address (reads only)
This field gives the byte address for the register bus transaction.

5:3 Size (reads only).

The data byte length is interpreted as 2size. The protocol supports 1 to 64 bytes of data in powers
of two. For register transactions only 32-bit (4 byte) and 64-bit (8-byte) sizes are supported. This
field is encoded as follows:

3’b000: Byte
3’b001: Half -word (2 bytes)
3’b010: Word (4 bytes)
3’b011: Double-word (8 bytes)
3’b100: Quad-word (16 bytes)
3’b101: Reserved (32 bytes)
3’b110: Cache line (64 bytes)
3’b111: Reserved (128 bytes)

2:0 Reserved

Table 5.20 State of ERR_INFO Field for Error Type 11

Bit Meaning

57:54 Sub-code
0x0: FIXED mode. AXI burst is set to FIXED mode. This mode is not supported by the IOCU.
0x1: WRAP mode. On a read request, if burst mode is set to WRAP, then the LEN field must be
either 0 or 3. If the LEN field is neither 0 or 3, an error is generated.
0x2: LEN > 0 and SIZE < 128. If the LEN field is greater than 0 and the SIZE field is <128, an error
is generated.
0x3: For a write request with the Burst mode set to WRAP and the LEN field set to 3, the starting
offset must be 0. If the offset is non-zero, an error is generated.
0x4 - 0xF: Reserved

53:0 Reserved

Table 5.19 State of ERR_INFO Field for Error Type 10 (continued)

Bit Meaning

76
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.12.9 Error Code 12 — IOCU Parity Error

If the decimal value in the ERR_TYPE field is 12, the ERR_INFO field in the Global CM Error Cause
register is organized as shown in Table 5.21.

5.12.10 Error Code 13 — IOCU Response Error

If the decimal value in the ERR_TYPE field is 13, the ERR_INFO field in the Global CM Error Cause
register is organized as shown in Table 5.22.

Table 5.21 State of ERR_INFO Field for Error Type 12

Bit Meaning

57:56 Reserved

55:54 IOCU command
0: Reserved
1: Write
2: Read
3: Reserved

53:52 IOCU Cache coherency attribute
0: Reserved
1: Coherent
2: Non-coherent
3: Reserved

51:50 Reserved

49:44 AXI device ID. This field is configurable and can be any value up to a maximum of 64 device ID’s.

49:44 = 6’b000000: AXI device ID 0
....
49:44 = 6’b111111: AXI device ID 63

43 Reserved

42:39 AXI request ID. This field is configurable and can be any value up to a maximum of 16 request
ID’s. Note that there can be up to 16 read requests and 16 write requests.

42:39 = 0x0: AXI request ID 0
....
42:39 = 0xF: AXI request ID 15

38:0 Reserved

Table 5.22 State of ERR_INFO Field for Error Type 13

Bit Meaning

57:56 Error type.
0: No RIN error
1: Bus error
2. Cache error

55:54 IOCU command
0: Reserved
1: Write
2: Read
3: Reserved

77
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.12.11 Error Code 15 — RBI REGTC Bus Request Error

If the decimal value in the ERR_TYPE field is 15, the ERR_INFO field in the Global CM Error Cause
register is organized as shown in Table 5.23.

53:52 IOCU Cache coherency attribute
0: Reserved
1: Coherent
2: Non-coherent
3: Reserved

51:50 Reserved

49:44 AXI device ID. This field is configurable and can be any value up to a maximum of 64 device ID’s.

49:44 = 6’b000000: AXI device ID 0
....
49:44 = 6’b111111: AXI device ID 63

43 Reserved

42:39 AXI request ID. This field is configurable and can be any value up to a maximum of 16 request ID’s.
Note that there can be up to 16 read requests and 16 write requests.

42:39 = 0x0: AXI request ID 0
....
42:39 = 0xF: AXI request ID 15

38:0 Reserved

Table 5.23 State of ERR_INFO Field for Error Type 15

Bit Meaning

57:56 Subcode.
0: Burst error
1: Size error
2. Length error

53 Reserved

52:42 AxID. This field stores the REGTC AxID of the REGTC request that generated the error.

41 Read/write.
0: Write
1: Read

40:20 AxUSER. This field stores the AxUSER of the REGTC request that generated the error.

19:0 AxADDR. This field stores the AxADDR of the REGTC request that generated the error.

Table 5.22 State of ERR_INFO Field for Error Type 13 (continued)

Bit Meaning

78
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.13 Memory Mapped Registers

Each cluster in a MIPS® Technologies multi-core RISC-V system contains a MIPS® Coher-
ence Manager (CM) and a MIPS® Technologies implementation of a RISC-V Advanced Inter-
rupt Controller (AIA), also known as the Interrupt Controller. The CM includes the MIPS®
Cluster Power Controller (CPC) and the MIPS® Fast Debug Channel (FDC).

The CM and Interrupt Controller blocks are controlled by a set of memory mapped registers
which we will refer to a GCRs (General Control Registers) arranged in a 512KB block of mem-
ory starting at a physical address which we refer to as GCR_BASE. At reset, GCR_BASE is set
to the first naturally aligned 512KB block of memory below the reset PC of the cluster’s core
number 0, unless the GCR_BASE reset value has been overridden in the system configura-
tion. GCR_BASE can be reprogrammed by writing to the GCR.Global.GCR_BASE register
within the GCR block.

A cluster accesses its own GCRs at the physical address in GCR.Global.GCR_BASE. In addi-
tion, a system level NoC may be present that can be programmed to intercept memory
accesses to specific addresses and direct them to access to the GCR blocks of any cluster in
the system.

Within the GCR block, the GCRs are arranged in the following sections, which are described in
detail in the subsequent sections of this chapter:

Table 1: Memory Mapped Registers

Offset from GCR_BASE Register Block Name Description

0x00000 - 0x01FFF GCR.Global Per-cluster CM registers.

0x02000 - 0x05FFF GCR.Core Per-core CM registers.

0x06000 - 0x07FFF Reserved.

0x08000 - 0x09FFF CPC.Global Per-cluster CPC registers.

0x0A000 - 0x0EFFF CPC.Core Per-core/Per-device CPC registers.

0x0F000 - 0x0FFFF Reserved.

0x10000 - 0x1FFFF uGCR Reserved for user defined CM registers.

0x20000 - 0x3EFFF Reserved.

0x3F000 - 0x3F0FF FDC.Global FDC.Global registers.

0x3F100 - 0x3FFFF TRF.Global TRF.Global registers

0x40000 - 0x4BFFF APLIC.M APLIC Machine registers.

0x4C000 - 0x4CFFF APLIC.custom APLIC custom registers.

0x4D000 - 0x4FFFF Reserved.

0x50000 - 0x5FFFF ACLINT.M ACLINT Machine registers.

0x60000 - 0x6BFFF APLIC.S APLIC Supervisor registers.

0x6C000 - 0x6FFFF ACLINT.S ACLINT Supervisor registers.

0x70000 - 0x7EFFF Reserved.

0x7F000 - 0x7FFFF GCR.U User Mode GCRs.

79
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14 Coherence Manager (CM) Memory Mapped Registers

The GCR.Global region contains the following registers, which are described in detail in the
subsequent per-register descriptions:

Table 2: CM Memory Mapped Registers

Offset from
GCR_BASE Register Block Name Description

0x00000 GCR.Global.CONFIG CM global configuration

0x00008 GCR.Global.GCR_BASE Base address of GCR block

0x00010 GCR.Global.CONTROL Control bits for the Coherence Manager

0x00030 GCR.Global.REV RevisionID of the GCR hardware

0x00038 GCR.Global.ERR_CONTROL Controls Error Checking/Correct logic within the
CM3

0x00040 GCR.Global.ERR_MASK

0x00048 GCR.Global.ERR_CAUSE Captures info when an error occurs within the
CM3

0x00050 GCR.Global.ERR_ADDR Captures address which caused the CM3 error.

0x00058 GCR.Global.ERR_MULT Captures information for subsequent CM3 errors.

0x00068 GCR.Global.CUSTOM_STATUS Existence and status of the custom user-defined
GCR

0x000D0 GCR.Global.AIA_STATUS Existence and status of Interrupt Controller.

0x000E0 GCR.Global.CACHE_REV Revision of cache attached to the coherent Clus-
ter

0x000F0 GCR.Global.CPC_STATUS Existence and status of CPC

0x00120 GCR.Global.ACCESS Controls which Cores/IOCUs can modify the
GCR and CPC Registers

0x00130 GCR.Global.L2_CONFIG Provides L2 cache configuration

0x00160 GCR.Global.SDB_CONFIG Defines the Memory, Intervention, PFU and total
SDB for the cluster

0x00200 GCR.Global.IOCU_REV Revision of IOCU

0x00208 GCR.Global.DBU_REV Revision of Debug Unit

0x00210 GCR.Global.AIA_REV Revision of the Interrupt Controller.

0x00240 GCR.Global.L2_RAM_CONFIG Configuration of the L2 cache and control the
dynamic L2 RAM low power states

0x00280 GCR.Global.SCRATCH0 General Purpose Read/Write Register

0x00288 GCR.Global.SCRATCH1 General Purpose Read/Write Register

0x00300 GCR.Global.L2_PFT_CONTROL Controls the L2 prefetcher

0x00308 GCR.Global.L2_PFT_CONTROL_B L2 prefetch 2nd control register

0x00600 GCR.Global.L2_TAG_ADDR Holds Address Portion of CACHE L2 Load or
Store Tag & Data CACHE instruction

80
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

0x00608 GCR.Global.L2_TAG_STATE

0x00610 GCR.Global.L2_DATA Holds results of CACHE L2 Load or Store Tag &
Data instruction

0x00618 GCR.Global.L2_ECC Holds State Portion of CACHE L2 Load or Store
Tag & Data CACHE

0x00620 GCR.Global.L2SM_COP Holds CMD, TYPE, MODE, RESULT and PRES-
ENT bit info of L2 Cache Op State machine

0x00628 GCR.Global.L2SM_TAG_ADDR_COP Holds Tag address details L2 CacheOp State
Machine

0x00640 GCR.Global.SEM Provides Uncached Semaphore

0x00650 GCR.Global.TIMEOUT_TIMER_LIMIT Time-out limit for transaction time-out timer in
number of CM clocks

0x006F8 GCR.Global.MMIO_REQ_LIMIT Number of MMIO requests that the CM3 will allow
to be in flight.

0x00700 GCR.Global.MMIO0_BOTTOM Lowest address of MMIO Region 0

0x00708 GCR.Global.MMIO0_TOP Highest address of MMIO Region 0

0x00710 GCR.Global.MMIO1_BOTTOM Lowest address of MMIO Region 1

0x00718 GCR.Global.MMIO1_TOP Highest address of MMIO Region 1

0x00720 GCR.Global.MMIO2_BOTTOM Lowest address of MMIO Region 2

0x00728 GCR.Global.MMIO2_TOP Highest address of MMIO Region 2

0x00730 GCR.Global.MMIO3_BOTTOM Lowest address of MMIO Region 3

0x00738 GCR.Global.MMIO3_TOP Highest address of MMIO Region 3

0x00740 GCR.Global.MMIO4_BOTTOM Lowest address of MMIO Region 4

0x00748 GCR.Global.MMIO4_TOP Highest address of MMIO Region 4

0x00750 GCR.Global.MMIO5_BOTTOM Lowest address of MMIO Region 5

0x00758 GCR.Global.MMIO5_TOP Highest address of MMIO Region 5

0x00760 GCR.Global.MMIO6_BOTTOM Lowest address of MMIO Region 6

0x00768 GCR.Global.MMIO6_TOP Highest address of MMIO Region 6

0x00770 GCR.Global.MMIO7_BOTTOM Lowest address of MMIO Region 7

0x00778 GCR.Global.MMIO7_TOP Highest address of MMIO Region 7

0x00810 GCR.Debug.TCBCONTROLD Controls CM3 PDTrace

0x00820 GCR.Debug.TCBCONTROLE Status reg for CM3 PDTrace

0x00830 GCR.Debug.TCBPERFCNTR Config reg for CM3 PDTrace

0x00900 GCR.Debug.PC_CTL Starting/stopping of Performance Counters

0x00920 GCR.Debug.PC_OV Which performance counters have overflowed

0x00930 GCR.Debug.PC_EVENT Select event type of each CM3 performance
counter

Table 2: CM Memory Mapped Registers

Offset from
GCR_BASE Register Block Name Description

81
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

0x00980 GCR.Debug.PC_CYCL Counts Cycles

0x00990 GCR.Debug.PC_QUAL0 Performance counter 0 event qualifiers

0x00998 GCR.Debug.PC_CNT0 Performance Counter 0 value

0x009A0 GCR.Debug.PC_QUAL1 Performance counter 1 event qualifiers

0x009A8 GCR.Debug.PC_CNT1 Performance Counter 1 value

Table 2: CM Memory Mapped Registers

Offset from
GCR_BASE Register Block Name Description

82
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1 GCR.Global Registers

The GCR global space registers are defined below.

5.14.1.1 GCR Global Configuration Register (offset = 0x0000)

Indicates the number of processor cores, number of interrupts, number of IOCUs, etc.

This register provides information on the overall system configuration. These fields are read-
only and their reset state is determined at IP configuration time.

Figure 5.4 GCR Global Configuration Register Bit Assignments

63 44 43 42 41 40 39 38 37 36 35 34 33 32

0 CLUSTER_COH_
CAPABLE

REGTC_
PRESENT

REGTC_
PRESENT

DBU_
PRESENT

CFG_CLUSTER_ID

31 30 29 23 22 20 19 16 15 12 11 8 7 0

ITU_
PRESENT

0 NUM_CLUSTERS NUMAUX ADDR_
REGIONS

0 NUMIOCU PCORES

Table 3: GCR Global Configuration Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:44 Reserved. R 0

CLUSTER_COH_
CAPABLE

43 Set to 1 if this cluster supports ACE coherent inter-
connect.

R From
configuration

REGTC_PRESENT 42 Set to 1 if REGTC is present in this cluster. R From
configuration

REGTN_PRESENT 42 Set to 1 if REGTN is present in this cluster. R From
configuration

DBU_PRESENT 41 Set to 1 if DBU is present in this cluster. R From
configuration

CFG_CLUSTER_ID 39:32 Indicates the cluster_id of current cluster. R Cluster ID

ITU_PRESENT 31 Set to 1 if ITU is present in the design. R From
configuration

0 30 Reserved. R

NUM_CLUSTERS 29:23 Indicates total number of clusters present in the
design.

R From
configuration

NUMAUX 33:20 Indicates the number of auxiliary memory ports in this
cluster.

R From
configuration

ADDR_REGIONS 19:16 Indicates the number of MMIO address region regis-
ters. This value is determined by the IP configuration.

R From
configuration

0 15:12 Reserved. R

NUMIOCU 11:8 Indicates the total number of IOCUs in this cluster. R From
configuration

PCORES 7:0 Total number of CPU Cores - 1 in this cluster, not
including the IOCUs.

R From
configuration

83
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.2 Global GCR_BASE Register (offset = 0x0008)

The default GCR_BASE reset value is the first naturally aligned address which allows the GCR
region to fit below the CPU reset PC. For example, if the reset PC is 0x1fc00000, then the
reset value of GCR_BASE is 0x1fbf8000 for pre-AIA CM implementations, and 0x1fb80000 for
AIA CM implementations. A different default value may be specified at IP configuration time.

The number of writable bits in GCR_BASE depends on the number of supported physical
address bits, and the size of the GCR address region. For pre-AIA CM implementations, 48
physical address bits are supported, and the GCR address region is 0x8000 bytes, meaning
that bits 47:15 of GCR_BASE are writable. For AIA CM implementations, 48 physical address
bits are supported, and the GCR address region is 0x80000 bytes, meaning that bits 47:19 of
GCR_BASE are writable.

When writing this register with a 64b write the register acts normally and all bits are updated
immediately. However, when this register is written with 32b writes, then the bits 63:32 must
be written first, followed by the write to the lower 32b. A 32b write to the upper portion of
the register does not immediately change the GCR_BASE value. Instead, the write data is
stored in an internal shadow register. A subsequent 32b write to the lower portion of this reg-
ister causes GCR_BASE[63:32] to be loaded with the value stored in the internal shadow reg-
ister and GCR_BASE[31:0] to be loaded with the value being written. Note that GCR[63:32]
is only updated on a 32b write if there was a previous 32b write to GCR_BASE[63:32].

Figure 5.5 Global GCR Base Register Bit Assignments

63 32

GCR_BASE[63:32]

31 0

GCR_BASE[31:0]

Table 4: Global GCR Base Configuration Register Bit Descriptions

Name Bits Description R/W Reset State

GCR_BASE[63:32] 63:32 Upper 32 bits of GCR_BASE. R/W 0

GCR_BASE[31:0] 31:30 Lower 32 bits of GCR_BASE. R/W 0

84
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.3 GCR Global Control Register (offset = 0x0010)

This register contains the control bits for the Coherence Manager (CM).

Figure 5.6 Global GCR Control Register Bit Assignments

63 40 39 32

0 MEM_UC_PORT_READ_
WRITE_UNORDER

31 30 25 24 23 22 21 20 19

0 ARB_PRI_RAISE_CNT MEM_CACHED_
BUFFERABLE

MEM_UC_
BUFFERABLE

MEM_UCA_
BUFFERABLE

0 MEM_UC_FORCE_
PEND_RESP

MEM_AXPROT1_
ROOT_SECURE

18 14 13 12 11 9 8 7 6 5 0

0 CM3_MMIO_IOCU_
DISABLE_UC_REQS

CM3_MMIO_IOCU_
ENABLE_REQ_LIMIT

0 MEM_GCR_
CHANGE_PENDING

IOC_FIFOS_1
_1_DISABLE

MEM_FIFOS_1
_1_DISABLE

0

Table 5: Global GCR Control Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:40 Reserved R 0

MEM_UC_PORT_READ_W
RITE_UNORDER

39:32 When set, uncached (UC) requests enforce order
between reads and writes by waiting for request
responses on the AXI bus before issuing the next
request.

When cleared, read and write requests are allowed to
be issued on the AXI bus independent from each other.
This may cause read followed by write, or write fol-
lowed by read errors unless order is protected else-
where in the system.

Bits 0 to (n-1) for n cores, n to (n+m-1) for m iocus.

R/W 0

ARB_PRI_RAISE_CNT 30:25 This field determines how the main arbiter treats low
priority requests. Normally, high priority requests are
always selected for serialization ahead of low priority
requests.

However, setting ARB_PRI_RAISE_CNT to a non-zero
value ensures that a low priority request will be ser-
viced after waiting ARB_PRI_RAISE_CNT cycles.

R/W 32

MEM_CACHED_
BUFFERABLE

24 Sets the BUFFERABLE bit on the memory AXI port for
cached requests.

R/W 0

MEM_UC_BUFFERABLE 23 Sets the BUFFERABLE bit on the memory AXI port for
uncached requests.

R/W 0

MEM_UCA_BUFFERABLE 22 Sets the BUFFERABLE bit on the memory AXI port for
uncached accelerated requests.

R/W 0

0 21 Reserved. R 0

MEM_UC_FORCE_
PEND_RESP

20 Causes UC requests not be issued on AXI bus until
previous UC response has been received.

R/W 0

85
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

MEM_AXPROT1_
ROOT_SECURE

19 When set, this bit causes AxPROT[1] to be 0 (secure)
for any access from a zero guestID.

R/W 0

0 18:14 Reserved R 0

CM3_MMIO_IOCU_
DISABLE_UC_REQS

13 When set, incoming IOCU uncached requests are pre-
vented from being issued to MMIO regions and will
receive a BUSERR response.

(This can be enabled by software to assist in MMIO
debugging if required).

R/W 0

CM3_MMIO_IOCU_
ENABLE_REQ_LIMIT

12 When set, this bit allows IOCU uncached requests to
be counted in MMIO outstanding request limit and to
have its UC requests blocked if the MMIO outstanding
request limit is reached. This field only has an effect if
CM3_MMIO_IOCU_DISABLE_UC_REQS = 0.

R/W 0

0 11:9 Reserved R 0

MEM_GCR_CHANGE
_PENDING

8 Indicates that a change to one of the MEM_* bits
changed it that CM has not yet observed the change.

R/W 0

IOC_FIFOS_1_1_
DISABLE

7 When set, this bit disables the IOC clock-crossing
FIFO’s ability to use 1:1 mode.
Typically this bit should be programmed to 0.

R/W 0

MEM_FIFOS_1_
1_DISABLE

6 When set, this bit disables the mem clock-crossing
FIFOs ability to use 1:1 mode.
Typically this should be programmed to 0.

R/W 0

0 5:0 Reserved. R 0

Table 5: Global GCR Control Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

86
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.4 Global Revision ID Register (offset = 0x0030)

This register contains the Revision ID value for the GCR hardware.

Figure 5.7 Global Revision ID Register Bit Assignments

31 16 15 8 7 0

0 MAJOR_REV MINOR_REV

Table 6: Global Revision ID Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:16 Reserved. R 0

MAJOR_REV 15:8 CM3 Major revision number. This field reflects the major
revision of the GCR block. A major revision might reflect
the changes from one product generation to another. This
value changes based on the processor revision. Refer to
the errata sheet for the exact value of this field.

R From
configuration

MINOR_REV 7:0 CM3 Minor revision number. This field reflects the minor
revision of the GCR block. A minor revision might reflect
the changes from one release to another. This value
changes based on the processor revision. Refer to the
errata sheet for the exact value of this field.

R From
configuration

87
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.5 GCR Global Error Control (ERR_CONTROL) Register (offset = 0x0038)

This register controls the Error Checking/Correction logic within the CM3.

Figure 5.8 Global Error Control Register Bit Assignments

31 6 5 4 3 2 1 0

0 MEM_PARITY_EN MEM_PARITY_
SUPPORTED

0 L2_ECC_EN L2_ECC_
SUPPORTED

Table 7: Global Error Control Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:6 Reserved. R 0

MEM_PARITY_EN 5 Parity on CM3 Memory bus is enabled. R/W 0

MEM_PARITY_
SUPPORTED

4 Parity on CM3 Memory Bus is supported. R From
configuration

0 3:2 Reserved. R 0

L2_ECC_EN 1 Enables L2 ECC checking and error reporting. R/W 1

L2_ECC_
SUPPORTED

0 L2 ECC is supported. Currently L2 ECC is always avail-
able.

R 1

88
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.6 GCR Global Error Mask (ERR_MASK) Register (offset = 0x0040)

This register controls what errors are reported as interrupts. It is used in conjunction with
the Global CM3 Error Cause and Global CM3 Error Address registers to determine the type of
error and the address which caused the error.

Figure 5.9 Global Error Mask Register Bit Assignments

63 0

ERR_MASK

Table 8: Global Error Mask Register Bit Descriptions

Name Bits Description R/W Reset State

ERR_MASK 63:0 CM3 Error Mask field. Each bit in this field represents an
Error Type. If the bit is set, an interrupt is generated if an
error of that type is detected. If the bit is set, the transac-
tion for Read-Type Errors completes with OK response to
avoid double reporting of the error.

R/W 0

89
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.7 GCR Global Error Cause (ERR_CAUSE) Register (offset = 0x0048)

This register captures info when an error occurs within the CM3. It is used in conjunction with
the Global CM3 Error Mask and Global CM3 Error Address registers to determine the type of
error and the address which caused the error. NOTE: this register is reset on a cold reset
only.

Figure 5.10 Global Error Cause Register Bit Assignments

63 58 57 32

ERR_TYPE ERR_INFO[57:32]

31 0

ERR_INFO[31:0]

Table 9: Global Error Cause Configuration Register Bit Descriptions

Name Bits Description R/W Reset State

ERR_TYPE 63:58 Indicates type of error detected. When
CM3_ERROR_TYPE is zero, no errors have been
detected. When CM3_ERROR_TYPE is non-zero,
another error will not be reloaded until a power-on reset or
this field is written to current value of ERR_TYPE.

R/W 0

ERR_INFO 57:0 Information about the error. Refer to the System Program-
mer’s Reference for more information.

R 0

90
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.8 GCR Global Error Address (ERR_ADDR) Register (offset = 0x0050)

This register captures address which caused the CM3 error. It is used in conjunction with the
Global CM3 Error Mask and Global CM3 Error Address registers to determine the type of error
and the address which caused the error. NOTE: this register is reset on a cold reset only.

Figure 5.11 Global Error Address Register Bit Assignments

63 48 47 32

0 ERR_ADDR[47:32]

31 0

ERR_ADDR[31:0]

Table 10: Global Error Address Configuration Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved R 0

ERR_ADDR 47:0 Request address which caused error. Loaded when the
Global Error Cause Register is loaded.

R Undefined

91
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.9 GCR Global Error Mult (ERR_MULT) Register (offset = 0x0058)

This register captures information for subsequent CM3 errors.

The Global CM3 Error Cause, Global CM3 Error Address, and Global CM3 Error Mask registers
described above provide information on the type of error, and the address which caused the
error. This register is used to log the type of secondary error. NOTE: this register is reset on a
cold reset only.

Figure 5.12 Global Error Mult Register Bit Assignments

63 58 57 48 47 32

ERR_2ND 0

31 0

0

Table 11: Global Error Mult Configuration Register Bit Descriptions

Name Bits Description R/W Reset State

ERR_2ND 63:58 Type of second error. Loaded when the Global CM3 Error
Cause Register has valid error information and a second
error is detected. When ERR_2ND is zero, a second error
has not been detected. When ERR_2ND is non-zero, this
field will not be reloaded until a power-on reset or this field
is written to current value of ERR_TYPE.

R 0

0 57:0 Reserved R 0

92
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.10 GCR Global Custom Status (CUSTOM_STATUS) Register (offset = 0x0068)

This register describe the existence and status of the custom user-defined GCR block.

Figure 5.13 Global Custom Status Register Bit Assignments

31 1 0

0 GGU_EX

Table 12: Global Custom Status Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:1 Reserved R 0

GGU_EX 0 If this bit is set, the Custom GCR block is connected to the
CM3. The state of this bit is set based on whether or not
this block is implemented at build time as determined by
the state of the GU_Present signal.

If a Custom GCR block is not present, the GU_Present
pin is driven to 0. If there is a custom GCR block present,
then the user must drive GU_Present = 1 inside their cus-
tom GCR module.

R 0

93
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.11 GCR Global Interrupt Status (AIA_STATUS) Register (offset = 0x00D0)

This register describe the existence and status of the Interrupt Controller.

Figure 5.14 Global Interrupt Status Register Bit Assignments

31 1 0

0 AIA_EX

Table 13: Global Interrupt Status Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:1 Reserved R 0

AIA_EX 0 If this bit is set, the Interrupt Controller is present in the
CM3.

R 1

94
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.12 GCR Global Cache Revision (CACHE_REV) Register (offset = 0x00E0)

This register describe the revision of cache attached to the coherent cluster.

Figure 5.15 Global Cache Revision Register Bit Assignments

31 16 15 8 7 1 0

0 MAJOR_REV MINOR_REV

Table 14: Global Cache Revision Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:16 Reserved R 0

MAJOR_REV 15:8 This field reflects the major revision of the Cache block
inside the CM3.

R From
configuration

MINOR_REV 7:0 This field reflects the minor revision of the Cache block
inside the CM3.

R From
configuration

95
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.13 GCR Global CPC Status (CPC_STATUS) Register (offset = 0x00f0)

This register describe the existence and status of CPC.

Figure 5.16 Global CPC Status Register Bit Assignments

31 1 0

0 CPC_EX

Table 15: Global CPC Status Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:1 Reserved R 0

CPC_EX 0 This bit is always 1 as the CPC is always connected to the
CM3.

R 1

96
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.14 GCR Global Access (ACCESS) Register (offset = 0x0120)

This register controls which Cores/IOCUs can modify the GCR and CPC Registers.

It can be used to inhibit specific cores or IOCUs from writing GCR and CPC registers. Each bit
in this registers controls the access from a particular requestor. Bits 7:0 control access for
cores 7-0 and bits 23:16 control access from IOCU7 to IOCU0. If the bit is set, the corre-
sponding requester is able to write to the GCR, CPC registers (this includes all registers
within the Global, Core-Local, Core-Other, and Global Debug control blocks. The GIC is
always writable by all requestors). If the bit is clear, any write request from that requestor to
the GCR registers (Global, Core-Local, Core-Other, or Global Debug control blocks) will be
dropped. NOTE: Care must be taken to not write a 0 to all fields in this register. Writing all
zeros inhibit writes from all requestors to all registers until reset.

Figure 5.17 Global Access Register Bit Assignments

31 24 23 22 21 20 19 18 17 16

0 ACCESS_EN
_IOCU_7

ACCESS_EN
_IOCU_6

ACCESS_EN
_IOCU_5

ACCESS_EN
_IOCU_4

ACCESS_EN
_IOCU_3

ACCESS_EN
_IOCU_2

ACCESS_EN
_IOCU_1

ACCESS_EN
_IOCU_0

15 8 7 0

0 ACCESS_EN

Table 16: Global Access Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:24 Reserved R 0

ACCESS_EN_IOCU_7 23 When this bit is 1 accesses from IOCU7 (if implemented)
are enabled to write GCR and CPC registers. When this
bit is 0 accesses from IOCU7 (if implemented) are inhib-
ited.

R/W 1

ACCESS_EN_IOCU_6 22 When this bit is 1 accesses from IOCU6 (if implemented)
are enabled to write GCR and CPC registers. When this
bit is 0 accesses from IOCU6 (if implemented) are inhib-
ited.

R/W 1

ACCESS_EN_IOCU_5 21 When this bit is 1 accesses from IOCU5 (if implemented)
are enabled to write GCR and CPC registers. When this
bit is 0 accesses from IOCU5 (if implemented) are inhib-
ited.

R/W 1

ACCESS_EN_IOCU_4 20 When this bit is 1 accesses from IOCU4 (if implemented)
are enabled to write GCR and CPC registers. When this
bit is 0 accesses from IOCU4 (if implemented) are inhib-
ited.

R/W 1

ACCESS_EN_IOCU_3 19 When this bit is 1 accesses from IOCU3 (if implemented)
are enabled to write GCR and CPC registers. When this
bit is 0 accesses from IOCU3 (if implemented) are inhib-
ited.

R/W 1

ACCESS_EN_IOCU_2 18 When this bit is 1 accesses from IOCU2 (if implemented)
are enabled to write GCR and CPC registers. When this
bit is 0 accesses from IOCU2 (if implemented) are inhib-
ited.

R/W 1

97
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

ACCESS_EN_IOCU_1 17 When this bit is 1 accesses from IOCU1 (if implemented)
are enabled to write GCR and CPC registers. When this
bit is 0 accesses from IOCU1 (if implemented) are inhib-
ited.

R/W 1

ACCESS_EN_IOCU_0 16 When this bit is 1 accesses from IOCU0 (if implemented)
are enabled to write GCR and CPC registers. When this
bit is 0 accesses from IOCU0 (if implemented) are inhib-
ited.

R/W 1

0 15:8 Reserved. R 0

ACCESS_EN 7:0 When bit i is 1 accesses from Core i (if implemented) are
enabled to write GCR and CPC registers. When bit is 0
accesses from Core i (if implemented) are inhibited.

R/W 255

Table 16: Global Access Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

98
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.15 GCR Global L2 Cache Configuration (L2_CONFIG) Register (offset = 0x0130)

This register provides the L2 cache configuration. The L2 cache size (in bytes) can be com-
puted as associa-tivity * line_size * sets_per_way. For example, if SET_SIZE = 4 (1K),
LINE_SIE = 5 (64 Bytes), and ASSOC = 15 (16-ways), the L2 cache is 1024 * 64 * 16 =
1MB.

Figure 5.18 Global L2 Cache Configuration Register Bit Assignments

31 30 27 26 25 24 23 21 20 19 16 15 12 11 8 7 0

REG_EXI
STS

0 COP_LRU_
WE

COP_TAG_
ECC_WE

COP_DATA_
ECC_WE

0 L2_BYPASS 0 SET_SIZE LINE_SIZE ASSOC

Table 17: Global L2 Cache Configuration Register Bit Descriptions

Name Bits Description R/W Reset State

REG_EXISTS 31 This bit is hardwired to “1” to indicate the presence of the
L2_CONFIG register.

R 1

0 30:27 Reserved R 0

COP_LRU_WE 26 When set to 1, the TAG_LRU field of
GCR_L2_TAG_STATE field is written into the L2 LRU
RAM when an L2 Store Tag & Data Cache Op is exe-
cuted. When set to 0, the L2 LRU RAM is not updated
when an L2 Store Tag & Data Cache Op is executed.

R/W 1

COP_TAG_ECC_WE 25 When set to 1, the TAG_ECC field of GCR_L2_ECC reg-
ister is written into the ECC portion of the L2 Tag RAM
when an L2 Store & Data Tag Cache Op is executed.
When set to 0, the ECC written is computed for the values
in GCR_L2_TAG_ADRR and
GCR_L2_TAG_STATE when the L2 Store Tag & Data
Cache Op is executed.

R/W 0

COP_DATA_ECC_WE 24 When set to 1, the DATA_ECC field of GCR_L2_ECC reg-
ister is written into the ECC portion of the L2 Data RAM
when an L2 Store Tag & Data Cache Op is executed.
When set to 0, the ECC written is computed for the values
in GCR_L2_DATA and GCR_L2_ when the L2 Store Tag
& Data Cache Op is executed.

R/W 0

0 23:21 Reserved R 0

L2_BYPASS 20 When set to 1 the L2 is placed in bypass mode. R/W 0

0 19:16 Reserved R 0

SET_SIZE 15:12 Set Size. L2 cache number of sets per way. SET_SIZE
sets/way:

2 256
3 512
4 1024
5 2048
6 4096
7 8192
8 16K
9 32K
10 64K

R From
configuration

99
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

LINE_SIZE 11:8 L2 data cache line size. 0x5 indicates 64 byte cache line
size.

R 5

ASSOC 7:0 L2 cache associativity. 0xF indicates 16-way associativity. R From
configuration

Table 17: Global L2 Cache Configuration Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

100
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.16 GCR Global SDB Configuration (SDB_CONFIG) Register (offset = 0x0160)

This register Defines the Memory, Intervention, PFU and total SDB for the cluster.

Figure 5.19 Global SDB Configuration Register Bit Assignments

63 56 55 48 47 40 39 32

0 CM3_SDB_NUM_ENT_REQUIRED CM3_PFU_SDB_COUNT CM3_PFU_BASE_SDB_ID

31 24 23 16 15 8 7 0

CM3_INTV_SDB_COUNT CM3_INTV_BASE_SDB_ID CM3_MEM_SDB_COUNT CM3_MEM_BASE_SDB_ID

Table 18: Global SDB Configuration Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:56 Reserved R 0

CM3_SDB_NUM_ENT
_REQUIRED

55:48 Provides total number of SDBs required. R From
configuration

CM3_PFU_SDB_
COUNT

47:40 Provides SDB count for PFU. R From
configuration

CM3_PFU_BASE_
SDB_ID

39:32 Provides BASE_SDB_ID for PFU SDBs. R From
configuration

CM3_INTV_SDB_
COUNT

31:24 Provides SDB count for Intervention. R From
configuration

CM3_INTV_BASE_
SDB_ID

23:16 Provides BASE_SDB_ID for Intervention SDBs. R From
configuration

CM3_MEM_SDB_
COUNT

15:8 Provides SDB count for Memory. R From
configuration

CM3_MEM_BASE_
SDB_ID

7:0 Provides BASE_SDB_ID for Memory SDBs. R From
configuration

101
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.17 GCR Global IOCU Revision (IOCU_REV) Register (offset = 0x0200)

This register reflects the revision of IOCU.

Figure 5.20 Global IOCU Revision Register Bit Assignments

31 16 15 8 7 0

0 MAJOR_REV MINOR_REV

Table 19: Global IOCU Revision Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:16 Reserved R 0

MAJOR_REV 15:8 This field reflects the major revision of the IOCU attached
to the CM3. A major revision might reflect the changes
from one product generation to another. The value of 0x0
means that no IOCU is attached.

R From
configuration

MINOR_REV 7:0 This field reflects the minor revision of the IOCU attached
to the CM3. A minor revision might reflect the changes
from one release to another.

R From
configuration

102
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.18 GCR Global DBU Revision (DBU_REV) Register (offset = 0x0208)

This register reflects the revision of Debug Unit.

Figure 5.21 Global DBU Revision Register Bit Assignments

31 16 15 8 7 0

0 MAJOR_REV MINOR_REV

Table 20: Global DBU Revision Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:16 Reserved R 0

MAJOR_REV 15:8 This field reflects the major revision of the DBU attached
to the CM3. A major revision might reflect the changes
from one product generation to another. The value of 0x0
means that no DBU is attached.

R From
configuration

MINOR_REV 7:0 This field reflects the minor revision of the DBU attached
to the CM3. A minor revision might reflect the changes
from one release to another.

R From
configuration

103
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.19 GCR Global Interrupt Controller Revision (AIA_REV) Register (offset = 0x0208)

This register reflects the revision of Interrupt Controller.

Figure 5.22 Global Interrupt Controller Revision Register Bit Assignments

31 16 15 8 7 0

0 MAJOR_REV MINOR_REV

Table 21: Global Interrupt Controller Revision Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:16 Reserved R 0

MAJOR_REV 15:8 This field reflects the major revision of the Interrupt Con-
troller implemented in the CM. A major revision might
reflect the changes from one product generation to
another. The value of 0x0 means that no Interrupt Con-
troller is attached.

R From
configuration

MINOR_REV 7:0 This field reflects the minor revision of the Interrupt Con-
troller implemented in the CM. A minor revision might
reflect the changes from one release to another.

R From
configuration

104
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.20 GCR Global L2 RAM Configuration (L2_RAM_CONFIG) Register (offset = 0x0240)

This register provides information about the configuration of the L2 cache and controls the
dynamic L2 RAM low power states.

Figure 5.23 Global L2 RAM Configuration Register Bit Assignments

63 62 61 60 59 56 55 48 47 32

0 GCR_L2_DYN_SLEEP_MODE 0 GCR_L2_DYN_SLEEP_WAKEUP_DELAY 0

31 30 29 28 10 9 8 7 6 5 4 3 2 1 0

PRESENT HCI_DONE HCI_SUPPORTED 0 L2_TAGRAM_
STALLS

0 L2_WSRAM_
STALLS

0 L2_DATARAM_
STALLS

Table 22: Global L2 RAM Configuration Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:62 Reserved R 0

GCR_L2_DYN_
SLEEP_MODE

61:60 Controls the L2 cache RAM low power mode entered
when all cores are in “sleep” mode and the IOCUs are
idle.
0: No low power mode
1: Light Sleep
2: Reserved
3: Reserved

R/W From
configuration

0 59:56 Reserved R 0

GCR_L2_DYN_
SLEEP_WAKEUP_

DELAY

55:48 Indicates number of CM clock cycles it takes to wake up
the L2 Cache RAMs upon wakeup.

R/W From
configuration

0 47:32 Reserved R 0

PRESENT 31 Indicates this register exists. R 1

HCI_DONE 30 Indicates Hardware Cache Initialization is complete. R 1

HCI_SUPPORTED 29 Indicates Hardware Cache Initialization is supported. R 0

0 28:10 Reserved R 0

L2_TAGRAM_STALLS 9:8 Indicates the number of waitstates assumed when
accessing the L2 Tag RAMS.

R From
configuration

0 7:6 Reserved R 0

L2_WSRAM_STALLS 5:4 Indicates the number of waitstates assumed when
accessing the L2 Way Select RAMS.

R From
configuration

0 3:2 Reserved R 0

L2_DATARAM_
STALLS

1:0 Indicates the number of waitstates assumed when
accessing the L2 Data RAMS.

R From
configuration

105
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.21 GCR Global Scratch0 (SCRATCH0) Register (offset = 0x0280)

This register general purpose read/write register.

Figure 5.24 Global Scratch0 Register Bit Assignments

63 32

SCRATCH0[63:32]

31 0

SCRATCH0[31:0]

Table 23: Global Scratch0 Register Bit Descriptions

Name Bits Description R/W Reset State

SCRATCH0 63:0 General purpose read/write register. R/W 0

106
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.22 GCR Global Scratch1 (SCRATCH1) Register (offset = 0x0288)

This register general purpose read/write register.

Figure 5.25 Global Scratch1 Register Bit Assignments

63 32

SCRATCH1[63:32]

31 0

SCRATCH1[31:0]

Table 24: Global Scratch1 Register Bit Descriptions

Name Bits Description R/W Reset State

SCRATCH1 63:0 General purpose read/write register. R/W 0

107
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.23 GCR Global L2 PFT Control (L2_PFT_CONTROL) Register (offset = 0x0300)

This register controls the L2 hardware prefetcher.

Figure 5.26 Global L2 PFT Control Register Bit Assignments

31 12 11 9 8 7 0

PAGE_MASK 0 PFTEN NPFT

Table 25: Global L2 PFT Control Register Bit Descriptions

Name Bits Description R/W Reset State

PAGE_MASK 31:12 This field is a mask that indicates the minimum operating
system page size. Address bits larger than 31 default to a
bit mask of 1. The following settings are supported:
4K page = 0xFFFFF
8K page = 0xFFFFE
16K page = 0xFFFFC
32K page = 0xFFFF8
64K page = 0xFFFF0

R/W From
configuration

0 11:9 Reserved R 0

PFTEN 8 Prefetch enable. This bit should be set by software only if
the number of prefetch units in the NPFT field is greater
than zero.

R/W From
configuration

NPFT 7:0 Number of prefetch units. Note that if this field contains a
value greater than 0, the PFTEN bit must be set in order
for prefetching to occur.

R From
configuration

108
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.24 GCR Global L2 PFT Control B (L2_PFT_CONTROL_B) Register (offset = 0x0308)

This register L2 prefetch 2nd control register.

Figure 5.27 Global L2 PFT Control B Register Bit Assignments

31 14 13 12 11 10 9 8 7 0

0 PFU_PAUSED PFU_IDLE 0 WRI_MODE CEN PORT_ID

Table 26: Global L2 PFT Control B Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:14 Reserved R 0

PFU_PAUSED 13 Indicates that the L2 Prefetcher is paused. R 0

PFU_IDLE 12 Indicates that all Prefetch trackers have aged out and the
Prefetcher is idle.

R 0

0 11 Reserved R 0

WRI_MODE 10:9 Determines how the Prefetch unit handles Coherent Write
Invalidate requests.
00: No prefetch
01: Prefetch by reading memory data.
10: Prefetch optimized for ownership when possible, else
read memory data
11: Reserved.

R/W 2

CEN 8 Code Prefetch enable. R/W From
configuration

PORT_ID 7:0 Enable port ID for L2 prefetching. Each bit in this field cor-
responds to a CM3 port ID. Each bit of this field is
encoded as follows:
0: Requests from the corresponding CM3 port are not
monitored for L2 prefetching.
1: Requests from the corresponding CM3 port are moni-
tored for L2 prefetching.

R/W 255

109
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.25 GCR Global L2 Tag Address (L2_TAG_ADDR) Register (offset = 0x0600)

This register holds address portion of CACHE L2 Load or Store Tag & Data CACHE instruction.

It is loaded with the address information from the L2 Tag RAMs when the L2 Load Tag & Data
CACHE instruction is executed. The value of this register is written to the address portion of
L2 Tag RAM when an L2 Store Tag and Data CACHE instruction is executed.

Figure 5.28 Global L2 Tag Address Register Bit Assignments

63 48 47 32

0 TAG_ADDR[32:17]

31 15 14 0

TAG_ADDR[16:0] 0

Table 27: Global L2 Tag Address Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved R 0

TAG_ADDR 47:15 This field holds the 32-bit address portion of L2 Tag RAM
entry. The format of this field changes depending up the
cache configuration as described in the System Program-
mer’s Reference.

R/W 0

0 14:0 Reserved R 0

110
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.26 GCR Global L2 Tag State (L2_TAG_STATE) Register (offset = 0x0608)

This register holds State portion of cache L2 Load or Store Tag and Data CACHE instruction.

This register is loaded with the state information from the L2 Tag RAMs when the L2 Load Tag
and Data CACHE instruction is executed. The value of this register is written to the state por-
tion of L2 Tag RAM when an L2 Store Tag and Data CACHE instruction is executed.

Figure 5.29 Global L2 Tag State Register Bit Assignments

63 47 46 32

0 TAG_LRU

31 12 11 0

0 TAG_STATE

Table 28: Global L2 Tag State Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:47 Reserved R 0

TAG_LRU 46:32 This field holds the LRU state. R/W 0

0 31:12 Reserved R 0

TAG_STATE 11:0 This field holds the L2/L1 state for the L2 Tag RAM entry.
The format of this field changes depending up the value of
L1_SHARED and the number of CPU cores in the cluster

R/W 0

111
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.27 GCR Global L2 Data (L2_DATA) Register (offset = 0x0610)

This register holds results of CACHE L2 Load or Store Tag & Data instruction.

This register is loaded with the information from the L2 Data RAMs when the L2 Load Tag &
Data CACHE instruction is executed. The value of this register is written to the L2 Data RAM
when a L2 Store Tag and Data CACHE instruction is executed.

Figure 5.30 Global L2 Data Register Bit Assignments

63 32

DATA[63:32]

31 12 11 0

DATA[31:0]

Table 29: Global L2 Data Register Bit Descriptions

Name Bits Description R/W Reset State

DATA 63:0 This register is loaded with the information from the L2
Data RAMs when the L2 Load Tag and Data CACHE
instruction is executed. This value in this register is stored
in the L2 Data RAMs when the L2 Store Tag & Data
CACHE instruction is executed.

R/W 0

112
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.28 GCR Global L2 ECC (L2_ECC) Register (offset = 0x0618)

This register holds Tag and Data ECC field of CACHE L2 Load Tag & Data or Store Tag & Data
CACHE instructions.

It is loaded with the ECC information from the L2 Tag and Data RAMs when the L2 Load Tag &
Data CACHE instruction is executed. If the GCR_L2_CONFIG.COP_DATA_ECC_WE bit is set
then value of the DATA_ECC register is written to the ECC portion of the L2 Data RAM when a
L2 Store Tag and Data CACHE instruction is executed.

If the GCR_L2_CONFIG.COP_TAG_ECC_WE bit is set then value of the TAG_ECC register is
written to the ECC portion of the L2 Tag RAM when a L2 Store Tag and Data CACHE instruc-
tion is executed.

Figure 5.31 Global L2 ECC Register Bit Assignments

63 62 40 39 32

TAG_ECC_DET 0 TAG_ECC

31 30 8 7 0

DATA_ECC_DET 0 DATA_ECC

Table 30: Global L2 ECC Register Bit Descriptions

Name Bits Description R/W Reset State

TAG_ECC_DET 63 Tag ECC Error was detected during the most recent L2
CacheOp load Tag and Data CACHE Instruction.

R/W 0

0 62:40 Reserved R 0

TAG_ECC 39:32 This register is loaded with the ECC information from the
L2 Tag RAMs when the L2 Load Tag & Data CACHE
instruction is executed.

If the GCR_L2_CONFIG.COP_TAG_ECC_WE bit is set
then the value in this register is stored in the ECC portion
L2 Tag RAMs when the L2 Store Tag and Data CACHE
instruction is executed.

R/W 0

DATA_ECC_DET 31 Data ECC Error was detected during the most recent L2
CacheOp load Tag & Data CACHE Instruction.

R/W 0

0 30:8 Reserved R 0

DATA_ECC 7:0 This register is loaded with the ECC information from the
L2 Data RAMs when the L2 Load Tag and Data CACHE
instruction is executed.

If the GCR_L2_CONFIG.COP_DATA_ECC_WE bit is set
then the value in this register is stored in the ECC portion
L2 Data RAMs when the L2 Store Tag and Data CACHE
instruction is executed.

R/W 0

113
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.29 GCR Global L2SM CacheOp (L2SM_COP) Register (offset = 0x0620)

This register holds CMD, TYPE, MODE, RESULT and PRESENT bit info of the L2 Cache Op
State machine.

Figure 5.32 Global L2SM Cache Op Register Bit Assignments

31 30 9 8 6 5 4 2 1 0

L2SM_COP_REG_
PRESENT

0 L2SM_COP_
RESULT

L2SM_COP_MODE L2SM_COP_TYPE L2SM_COP_CMD

Table 31: Global L2SM Cache Op Register Bit Descriptions

Name Bits Description R/W Reset State

L2SM_COP_REG_
PRESENT

31 Present. Indicates that this register is present. R 1

0 30:9 Reserved R 0

L2SM_COP_RESULT 8:6 0x0: DON’T CARE [During RUNNING mode or after
reset]
0x1: DONE - NO_ERR [When completes the COP and
switches to IDLE mode]
0x2: DONE - ERR [When completes the COP and
switches to IDLE mode]
0x3: ABORT - NO_ERR [When completes the COP and
switches to IDLE mode]
0x4: ABORT- ERR [When completes the COP and
switches to IDLE mode]

R 0

L2SM_COP_MODE 5 0x0: IDLE
0x1: RUNNING

R 0

L2SM_COP_TYPE 4:2 0x0: Index WB inv/Index Inv [Full cache Flush]
0x1: Index Store Tag [Full Cache Init - Fast - Only Tag
RAM]
0x2: Index Store Tag [Full cache init - Norm - Tag & Data
RAM]
0x3: Reserved
0x4: Hit Inv
0x5: Hit WB Inv
0x6: Hit WB
0x7: Fetch & Lock
This field can only be written when the COP SM is in IDLE
mode.

R/W 0

L2SM_COP_CMD 1:0 0x0: NOP
0x1: START [START can only be issued in IDLE mode]
0x2: Reserved
0x3: ABORT [ABORT can only be issued in RUNNING
mode] Note: It may take few cycles for SM to be IDLE
after ABORT is issued

R/W 0

114
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.30 GCR Global L2SM Tag Address CacheOp (L2SM_TAG_ADDR_COP) Register (offset =
0x0628)

This register holds Tag address details L2 CacheOp State Machine.

Figure 5.33 Global L2SM Tag Address CacheOp Register Bit Assignments

63 48 47 32

L2SM_COP_NUM_LINES L2SM_COP_START_TAG_ADDR[41:26]

31 6 5 0

L2SM_COP_START_TAG_ADDR[25:0] 0

Table 32: Global L2SM Tag Address CacheOp Register Bit Descriptions

Name Bits Description R/W Reset State

L2SM_COP_NUM_
LINES

63:48 • Number of lines (from starting address) to be operated
for Requested burst COP.

• Max supported number is 65536 (2^16)
• This field can only be written when the COP SM is in

IDLE mode.
• Not valid for index type cache ops.

R/W 0

L2SM_COP_START_
TAG_ADDR

47:6 • Starting address (tag) of Burst COP
• This field can only be written when the COP SM is in

IDLE mode.
• Not valid for index type cache ops.

R/W 0

0 5:0 Reserved R 0

115
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.31 GCR Global Semaphore (SEM) Register (offset = 0x0640)

This register provides an uncached semaphore mechanism. A write to this register with write
data bit 31 = 1 is inhibited if the SEM_LOCK bit is already 1. A write to this register proceeds
normally if the write data has bit 31 = 0 or if the SEM_LOCK bit is currently 0.

To acquire the semaphore:

1. Write this register with bit 31 = 1 and the lower bits with the threads VPID.

2. Read the register.

3. If the value read in step #2 is the same as the value as written in step #1, then semaphore has been
acquired, else go to step #1.

To release the semaphore:

1. Write the register with bit 31 = 0.

Figure 5.34 Global Semaphore Register Bit Assignments

31 30 0

SEMLOCK SEMDATA

Table 33: Global Semaphore Register Bit Descriptions

Name Bits Description R/W Reset State

SEMLOCK 31 Lock bit on semaphore. A value of 1 indicates that this
register is locked. In which case, subsequent writes trying
to set this bit to 1 will be inhibited, i.e., the SEMDATA field
will not be updated.

R 0

SEMDATA 30:0 Data value on semaphore. R 0

116
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.32 GCR Global Timeout Timer Limit (TIMEOUT_TIMER_LIMIT) Register (offset = 0x0650)

This register provides the timeout limit for the transaction timeout timer in number of CM
clocks.

Figure 5.35 Global Timeout Timer Limit Register Bit Assignments

63 32

0

31 20 19 0

0 TT_DELAY

Table 34: Global Timeout Timer Limit Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:20 Reserved R 0

TT_DELAY 19:0 Timeout limit for transaction timeout timer in number of
CM clocks.

R/W From
configuration

117
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.33 GCR Global MMIO Requests Limit (MMIO_REQ_LIMIT) Register (offset = 0x06F8)

This register determines the number of MMIO requests that the CM3 will allow to be in flight.

Figure 5.36 Global MMIO Requests Limit Register Bit Assignments

31 24 23 16 15 8 7 0

0 MMIO_REQ_CNT 0 MMIO_REQ_LIMIT

Table 35: Global MMIO Requests Limit Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:24 Reserved R 0

MMIO_REQ_CNT 23:16 Provides current count of requests in flight to MMIO
regions that have REQ_LIMIT request limitations
enabled.

R 0

0 15:8 Reserved R 0

MMIO_REQ_LIMIT 7:0 Determines the number of requests to the regions with
request limits enabled that the CM3 will allow to be in
flight. Setting a value of 1 allows one outstanding MMIO
request. Setting a value of 0 disables the MMIO limiting
feature.

R/W From
configuration

118
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.34 GCR Global MMIO0 Bottom (MMIO0_BOTTOM) Register (offset = 0x0700)

This register holds lowest address of MMIO Region 0.

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than 0.

Figure 5.37 Global MMIO0 Bottom Register Bit Assignments

63 48 47 32

0 MMIO_BOTTOM_ADDR[31:16]

31 16 15 10 9 8 7 6 5 2 1 0

MMIO_BOTTOM_
ADDR[15:0]

0 MMIO_CCA 0 MMIO_FORCE_
NONCOH_REQ

MMIO_PORT MMIO_DISABLE_
REQ_LIMIT

MMIO_EN

Table 36: Global MMIO0 Bottom Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved R 0

MMIO_BOTTOM_
ADDR

47:16 Lower limit of Address bits 47:16 for MMIO region 0. R/W From
configuration

0 15:10 Reserved R 0

MMIO_CCA 9:8 Allows MMIO region hit to be qualified by CCA in addition
to address.
If this field is zero, then all CCA types may fall into this
MMIO region. MMIO region hit is determined based upon
just address hit.
If bits in MMIO_CCA are set, then MMIO qualification is
based upon address and CCA.
MMIO_CCA = 2’b00: CCA is not considered as part of the
match
MMIO_CCA = 2’b01: This region will only match if the
CCA is Uncached (UC)
MMIO_CCA = 2’b10: This region will only match if the
CCA is Uncached Accelerated (UCA)
MMIO_CCA = 2’b11: This region will only match if the
CCA is Uncached (UC) or Uncached Accelerated (UCA)

R/W From
configuration

0 7 Reserved R 0

MMIO_FORCE_
NONCOH_REQ

6 If a transaction that hits this region generates a request
out to a coherent interconnect, force the request to be
non-coherent. The request will be externalized to ACE as
ReadNoSnoop/WriteNoSnoop.

R/W From
configuration

119
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

MMIO_PORT 5:2 Specify which port issues requests to:

15:12 - reserved
11 - AUX3
10 - AUX2
9 - AUX1
8 - AUX0
7:1 - reserved
0 - Main memory port; MEM

R/W From
configuration

MMIO_DISABLE_
REQ_LIMIT

1 Determines whether this MMIO region is subject to CMD
type,CCA and number of requests outstanding limits
imposed by MMIO_REQ_LIMIT. Set to 1 to disable CMD
type, CCA and MMIO REQ_LIMIT limitations.

R/W From
configuration

MMIO_EN 0 Enable MMIO region 0. R/W From
configuration

Table 36: Global MMIO0 Bottom Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

120
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.35 GCR Global MMIO0 Top (MMIO0_TOP) Register (offset = 0x0708)

This register holds highest address of MMIO Region 0.

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than 0.

Figure 5.38 Global MMIO0 Top Register Bit Assignments

63 48 47 32

0 MMIO_TOP_ADDR[31:16]

31 16 15 0

MMIO_TOP_ADDR[15:0] 0

Table 37: Global MMIO0 Top Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved R 0

MMIO_TOP_ADDR 47:16 Upper limit of Address bits 31:0 for MMIO region 0. R/W From
configuration

0 15:0 Reserved R 0

121
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.36 GCR Global MMIO1 Bottom (MMIO1_BOTTOM) Register (offset = 0x0710)

This register holds lowest address of MMIO Region 1.

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than 1.

Figure 5.39 Global MMIO1 Bottom Register Bit Assignments

63 48 47 32

0 MMIO_BOTTOM_ADDR[31:16]

31 16 15 10 9 8 7 6 5 2 1 0

MMIO_BOTTOM_
ADDR[15:0]

0 MMIO_CCA 0 MMIO_FORCE_
NONCOH_REQ

MMIO_PORT MMIO_DISABLE_
REQ_LIMIT

MMIO_EN

Table 38: Global MMIO1 Bottom Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved R 0

MMIO_BOTTOM_
ADDR

47:16 Lower limit of Address bits 31:0 for MMIO region 1. R/W From
configuration

0 15:10 Reserved R 0

MMIO_CCA 9:8 Allows MMIO region hit to be qualified by CCA in addition
to address.
If this field is zero, then all CCA types may fall into this
MMIO region. MMIO region hit is determined based upon
just address hit.
If bits in MMIO_CCA are set, then MMIO qualification is
based upon address and CCA.
MMIO_CCA = 2’b00: CCA is not considered as part of the
match
MMIO_CCA = 2’b01: This region will only match if the
CCA is Uncached (UC)
MMIO_CCA = 2’b10: This region will only match if the
CCA is Uncached Accelerated (UCA)
MMIO_CCA = 2’b11: This region will only match if the
CCA is Uncached (UC) or Uncached Accelerated (UCA)

R/W From
configuration

0 7 Reserved R 0

MMIO_FORCE_
NONCOH_REQ

6 If a transaction that hits this region generates a request
out to a coherent interconnect, force the request to be
non-coherent. The request will be externalized to ACE as
ReadNoSnoop/WriteNoSnoop.

R/W From
configuration

MMIO_PORT 5:2 Specify which port issues requests to:

15:12 - reserved
11 - AUX3
10 - AUX2
9 - AUX1
8 - AUX0
7:1 - reserved
0 - Main memory port; MEM

R/W From
configuration

122
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

MMIO_DISABLE_
REQ_LIMIT

1 Determines whether this MMIO region is subject to cmd
type,CCA and number of requests outstanding limits
imposed by
MMIO_REQ_LIMIT. Set to 1 to disable cmd type, CCA
and MMIO REQ_LIMIT limitations.

R/W From
configuration

MMIO_EN 0 Enable MMIO region 1. R/W From
configuration

Table 38: Global MMIO1 Bottom Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

123
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.37 GCR Global MMIO1 Top (MMIO1_TOP) Register (offset = 0x0718)

This register holds highest address of MMIO Region 1.

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than 1.

Figure 5.40 Global MMIO1 Top Register Bit Assignments

63 48 47 32

0 MMIO_TOP_ADDR[31:16]

31 16 15 0

MMIO_TOP_ADDR[15:0] 0

Table 39: Global MMIO1 Top Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved R 0

MMIO_TOP_ADDR 47:16 Upper limit of Address bits 31:0 for MMIO region 1. R/W From
configuration

0 15:0 Reserved R 0

124
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.38 GCR Global MMIO2 Bottom (MMIO2_BOTTOM) Register (offset = 0x0720)

This register holds lowest address of MMIO Region 2.

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than 2.

Figure 5.41 Global MMIO2 Bottom Register Bit Assignments

63 48 47 32

0 MMIO_BOTTOM_ADDR[31:16]

31 16 15 10 9 8 7 6 5 2 1 0

MMIO_BOTTOM_
ADDR[15:0]

0 MMIO_CCA 0 MMIO_FORCE_
NONCOH_REQ

MMIO_PORT MMIO_DISABLE_
REQ_LIMIT

MMIO_EN

Table 40: Global MMIO2 Bottom Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved R 0

MMIO_BOTTOM_
ADDR

47:16 Lower limit of Address bits 31:0 for MMIO region 2. R/W From
configuration

0 15:10 Reserved R 0

MMIO_CCA 9:8 Allows MMIO region hit to be qualified by CCA in addition
to address.
If this field is zero, then all CCA types may fall into this
MMIO region. MMIO region hit is determined based upon
just address hit.
If bits in MMIO_CCA are set, then MMIO qualification is
based upon address and CCA.
MMIO_CCA = 2’b00: CCA is not considered as part of the
match
MMIO_CCA = 2’b01: This region will only match if the
CCA is Uncached (UC)
MMIO_CCA = 2’b10: This region will only match if the
CCA is Uncached Accelerated (UCA)
MMIO_CCA = 2’b11: This region will only match if the
CCA is Uncached (UC) or Uncached Accelerated (UCA)

R/W From
configuration

0 7 Reserved R 0

MMIO_FORCE_
NONCOH_REQ

6 If a transaction that hits this region generates a request
out to a coherent interconnect, force the request to be
non-coherent. The request will be externalized to ACE as
ReadNoSnoop/WriteNoSnoop.

R/W From
configuration

MMIO_PORT 5:2 Specify which port issues requests to:

15:12 - reserved
11 - AUX3
10 - AUX2
9 - AUX1
8 - AUX0
7:1 - reserved
0 - Main memory port; MEM

R/W From
configuration

125
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

MMIO_DISABLE_
REQ_LIMIT

1 Determines whether this MMIO region is subject to CMD
type,CCA and number of requests outstanding limits
imposed by MMIO_REQ_LIMIT. Set to 1 to disable CMD
type, CCA and MMIO REQ_LIMIT limitations.

R/W From
configuration

MMIO_EN 0 Enable MMIO region 2. R/W From
configuration

Table 40: Global MMIO2 Bottom Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

126
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.39 GCR Global MMIO2 Top (MMIO2_TOP) Register (offset = 0x0728)

This register holds highest address of MMIO Region 2.

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than 2.

Figure 5.42 Global MMIO2 Top Register Bit Assignments

63 48 47 32

0 MMIO_TOP_ADDR[31:16]

31 16 15 0

MMIO_TOP_ADDR[15:0] 0

Table 41: Global MMIO2 Top Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved R 0

MMIO_TOP_ADDR 47:16 Upper limit of address bits 31:0 for MMIO region 2. R/W From
configuration

0 15:0 Reserved R 0

127
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.40 GCR Global MMIO3 Bottom (MMIO3_BOTTOM) Register (offset = 0x0730)

This register holds lowest address of MMIO Region 3.

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than 3.

Figure 5.43 Global MMIO3 Bottom Register Bit Assignments

63 48 47 32

0 MMIO_BOTTOM_ADDR[31:16]

31 16 15 10 9 8 7 6 5 2 1 0

MMIO_BOTTOM_
ADDR[15:0]

0 MMIO_CCA 0 MMIO_FORCE_
NONCOH_REQ

MMIO_PORT MMIO_DISABLE_
REQ_LIMIT

MMIO_EN

Table 42: Global MMIO3 Bottom Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved R 0

MMIO_BOTTOM_
ADDR

47:16 Lower limit of address bits 31:0 for MMIO region 3. R/W From
configuration

0 15:10 Reserved R 0

MMIO_CCA 9:8 Allows MMIO region hit to be qualified by CCA in addition
to address.

If this field is zero, then all CCA types may fall into this
MMIO region. MMIO region hit is determined based upon
just address hit.

If bits in MMIO_CCA are set, then MMIO qualification is
based upon address and CCA.

MMIO_CCA = 2’b00: CCA is not considered as part of the
match.
MMIO_CCA = 2’b01: This region will only match if the
CCA is Uncached (UC).
MMIO_CCA = 2’b10: This region will only match if the
CCA is Uncached Accelerated (UCA).
MMIO_CCA = 2’b11: This region will only match if the
CCA is Uncached (UC) or Uncached Accelerated (UCA).

R/W From
configuration

0 7 Reserved R 0

MMIO_FORCE_
NONCOH_REQ

6 If a transaction that hits this region generates a request
out to a coherent interconnect, force the request to be
non-coherent. The request will be externalized to ACE as
ReadNoSnoop/WriteNoSnoop.

R/W From
configuration

128
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

MMIO_PORT 5:2 Specify which port issues requests to:

15:12 - reserved
11 - AUX3
10 - AUX2
9 - AUX1
8 - AUX0
7:1 - reserved
0 - Main memory port; MEM

R/W From
configuration

MMIO_DISABLE_
REQ_LIMIT

1 Determines whether this MMIO region is subject to CMD
type,CCA and number of requests outstanding limits
imposed by MMIO_REQ_LIMIT. Set to 1 to disable CMD
type, CCA and MMIO REQ_LIMIT limitations.

R/W From
configuration

MMIO_EN 0 Enable MMIO region 3. R/W From
configuration

Table 42: Global MMIO3 Bottom Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

129
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.41 GCR Global MMIO3 Top (MMIO3_TOP) Register (offset = 0x0728)

This register holds highest address of MMIO Region 3.

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than 3.

Figure 5.44 Global MMIO3 Top Register Bit Assignments

63 48 47 32

0 MMIO_TOP_ADDR[31:16]

31 16 15 0

MMIO_TOP_ADDR[15:0] 0

Table 43: Global MMIO3 Top Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved. R 0

MMIO_TOP_ADDR 47:16 Upper limit of Address bits 47:16 for MMIO region 3. R/W From
configuration

0 15:0 Reserved. R 0

130
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.42 GCR Global MMIO4 Bottom (MMIO4_BOTTOM) Register (offset = 0x0740)

This register holds lowest address of MMIO Region 4.

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than 4.

Figure 5.45 Global MMIO4 Bottom Register Bit Assignments

63 48 47 32

0 MMIO_BOTTOM_ADDR[31:16]

31 16 15 10 9 8 7 6 5 2 1 0

MMIO_BOTTOM_
ADDR[15:0]

0 MMIO_CCA 0 MMIO_FORCE_
NONCOH_REQ

MMIO_PORT MMIO_DISABLE_
REQ_LIMIT

MMIO_EN

Table 44: Global MMIO4 Bottom Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved. R 0

MMIO_BOTTOM_
ADDR

47:16 Lower limit of Address bits 47:16 for MMIO region 4. R/W From
configuration

0 15:10 Reserved. R 0

MMIO_CCA 9:8 Allows MMIO region hit to be qualified by CCA in addition
to address.
If this field is zero, then all CCA types may fall into this
MMIO region. MMIO region hit is determined based upon
just address hit.
If bits in MMIO_CCA are set, then MMIO qualification is
based upon address and CCA.
MMIO_CCA = 2’b00: CCA is not considered as part of the
match
MMIO_CCA = 2’b01: This region will only match if the
CCA is Uncached (UC)
MMIO_CCA = 2’b10: This region will only match if the
CCA is Uncached Accelerated (UCA)
MMIO_CCA = 2’b11: This region will only match if the
CCA is Uncached (UC) or Uncached Accelerated (UCA)

R/W From
configuration

0 7 Reserved. R 0

MMIO_FORCE_
NONCOH_REQ

6 If a transaction that hits this region generates a request
out to a coherent interconnect, force the request to be
non-coherent. The request will be externalized to ACE as
ReadNoSnoop/WriteNoSnoop.

R/W From
configuration

MMIO_PORT 5:2 Specify which port issues requests to:

15:12 - reserved
11 - AUX3
10 - AUX2
9 - AUX1
8 - AUX0
7:1 - reserved
0 - Main memory port; MEM

R/W From
configuration

131
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

MMIO_DISABLE_
REQ_LIMIT

1 Determines whether this MMIO region is subject to CMD
type,CCA and number of requests outstanding limits
imposed by MMIO_REQ_LIMIT. Set to 1 to disable CMD
type, CCA and MMIO REQ_LIMIT limitations.

R/W From
configuration

MMIO_EN 0 Enable MMIO region 4. R/W From
configuration

Table 44: Global MMIO4 Bottom Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

132
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.43 GCR Global MMIO4 Top (MMIO4_TOP) Register (offset = 0x0748)

This register holds highest address of MMIO Region 4.

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than 4.

Figure 5.46 Global MMIO4 Top Register Bit Assignments

63 48 47 32

0 MMIO_TOP_ADDR[31:16]

31 16 15 0

MMIO_TOP_ADDR[15:0] 0

Table 45: Global MMIO4 Top Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved R 0

MMIO_TOP_ADDR 47:16 Upper limit of Address bits 47:16 for MMIO region 4. R/W From
configuration

0 15:0 Reserved R 0

133
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.44 GCR Global MMIO5 Bottom (MMIO5_BOTTOM) Register (offset = 0x0750)

This register holds lowest address of MMIO Region 5.

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than 5.

Figure 5.47 Global MMIO5 Bottom Register Bit Assignments

63 48 47 32

0 MMIO_BOTTOM_ADDR[31:16]

31 16 15 10 9 8 7 6 5 2 1 0

MMIO_BOTTOM_
ADDR[15:0]

0 MMIO_CCA 0 MMIO_FORCE_
NONCOH_REQ

MMIO_PORT MMIO_DISABLE_
REQ_LIMIT

MMIO_EN

Table 46: Global MMIO5 Bottom Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved R 0

MMIO_BOTTOM_
ADDR

47:16 Lower limit of Address bits 47:16 for MMIO region 5. R/W From
configuration

0 15:10 Reserved R 0

MMIO_CCA 9:8 Allows MMIO region hit to be qualified by CCA in addition
to address.

If this field is zero, then all CCA types may fall into this
MMIO region. MMIO region hit is determined based upon
just address hit.

If bits in MMIO_CCA are set, then MMIO qualification is
based upon address and CCA.

MMIO_CCA = 2’b00: CCA is not considered as part of the
match
MMIO_CCA = 2’b01: This region will only match if the
CCA is Uncached (UC)
MMIO_CCA = 2’b10: This region will only match if the
CCA is Uncached Accelerated (UCA)
MMIO_CCA = 2’b11: This region will only match if the
CCA is Uncached (UC) or Uncached Accelerated (UCA)

R/W From
configuration

0 7 Reserved R 0

MMIO_FORCE_
NONCOH_REQ

6 If a transaction that hits this region generates a request
out to a coherent interconnect, force the request to be
non-coherent. The request will be externalized to ACE as
ReadNoSnoop/WriteNoSnoop.

R/W From
configuration

134
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

MMIO_PORT 5:2 Specify which port issues requests to:

15:12 - reserved
11 - AUX3
10 - AUX2
9 - AUX1
8 - AUX0
7:1 - reserved
0 - Main memory port; MEM

R/W From
configuration

MMIO_DISABLE_
REQ_LIMIT

1 Determines whether this MMIO region is subject to CMD
type,CCA and number of requests outstanding limits
imposed by
MMIO_REQ_LIMIT. Set to 1 to disable CMD type, CCA
and MMIO REQ_LIMIT limitations.

R/W From
configuration

MMIO_EN 0 Enable MMIO region 5. R/W From
configuration

Table 46: Global MMIO5 Bottom Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

135
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.45 GCR Global MMIO5 Top (MMIO5_TOP) Register (offset = 0x0758)

This register holds highest address of MMIO Region 5.

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than 5.

Figure 5.48 Global MMIO5 Top Register Bit Assignments

63 48 47 32

0 MMIO_TOP_ADDR[31:16]

31 16 15 0

MMIO_TOP_ADDR[15:0] 0

Table 47: Global MMIO5 Top Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved R 0

MMIO_TOP_ADDR 47:16 Upper limit of Address bits 47:16 for MMIO region 5. R/W From
configuration

0 15:0 Reserved R 0

136
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.46 GCR Global MMIO6 Bottom (MMIO6_BOTTOM) Register (offset = 0x0760)

This register holds lowest address of MMIO Region 6.

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than 6.

Figure 5.49 Global MMIO6 Bottom Register Bit Assignments

63 48 47 32

0 MMIO_BOTTOM_ADDR[31:16]

31 16 15 10 9 8 7 6 5 2 1 0

MMIO_BOTTOM_
ADDR[15:0]

0 MMIO_CCA 0 MMIO_FORCE_
NONCOH_REQ

MMIO_PORT MMIO_DISABLE_
REQ_LIMIT

MMIO_EN

Table 48: Global MMIO6 Bottom Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved R 0

MMIO_BOTTOM_
ADDR

47:16 Lower limit of Address bits 47:16 for MMIO region 6. R/W From
configuration

0 15:10 Reserved R 0

MMIO_CCA 9:8 Allows MMIO region hit to be qualified by CCA in addition
to address.
If this field is zero, then all CCA types may fall into this
MMIO region. MMIO region hit is determined based upon
just address hit.
If bits in MMIO_CCA are set, then MMIO qualification is
based upon address and CCA.
MMIO_CCA = 2’b00: CCA is not considered as part of the
match
MMIO_CCA = 2’b01: This region will only match if the
CCA is Uncached (UC)
MMIO_CCA = 2’b10: This region will only match if the
CCA is Uncached Accelerated (UCA)
MMIO_CCA = 2’b11: This region will only match if the
CCA is Uncached (UC) or Uncached Accelerated (UCA)

R/W From
configuration

0 7 Reserved R 0

MMIO_FORCE_
NONCOH_REQ

6 If a transaction that hits this region generates a request
out to a coherent interconnect, force the request to be
non-coherent. The request will be externalized to ACE as
ReadNoSnoop/WriteNoSnoop.

R/W From
configuration

MMIO_PORT 5:2 Specify which port issues requests to:
15:12 - reserved
11 - AUX3
10 - AUX2
9 - AUX1
8 - AUX0
7:1 - reserved
0 - Main memory port; MEM

R/W From
configuration

137
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

MMIO_DISABLE_
REQ_LIMIT

1 Determines whether this MMIO region is subject to cmd
type,CCA and number of requests outstanding limits
imposed by
MMIO_REQ_LIMIT. Set to 1 to disable cmd type, CCA
and MMIO REQ_LIMIT limitations.

R/W From
configuration

MMIO_EN 0 Enable MMIO region 6. R/W From
configuration

Table 48: Global MMIO6 Bottom Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

138
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.47 GCR Global MMIO6 Top (MMIO6_TOP) Register (offset = 0x0768)

This register holds highest address of MMIO Region 6.

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than 6.

Figure 5.50 Global MMIO6 Top Register Bit Assignments

63 48 47 32

0 MMIO_TOP_ADDR[31:16]

31 16 15 0

MMIO_TOP_ADDR[15:0] 0

Table 49: Global MMIO6 Top Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved R 0

MMIO_TOP_ADDR 47:16 Upper limit of Address bits 47:16 for MMIO region 6. R/W From
configuration

0 15:0 Reserved R 0

139
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.48 GCR Global MMIO7 Bottom (MMIO7_BOTTOM) Register (offset = 0x0770)

This register holds lowest address of MMIO Region 7.

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than 7.

Figure 5.51 Global MMIO7 Bottom Register Bit Assignments

63 48 47 32

0 MMIO_BOTTOM_ADDR[31:16]

31 16 15 10 9 8 7 6 5 2 1 0

MMIO_BOTTOM_
ADDR[15:0]

0 MMIO_CCA 0 MMIO_FORCE_
NONCOH_REQ

MMIO_PORT MMIO_DISABLE_
REQ_LIMIT

MMIO_EN

Table 50: Global MMIO7 Bottom Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved R 0

MMIO_BOTTOM_
ADDR

47:16 Lower limit of Address bits 47:16 for MMIO region 7. R/W From
configuration

0 15:10 Reserved R 0

MMIO_CCA 9:8 Allows MMIO region hit to be qualified by CCA in addition
to address.

If this field is zero, then all CCA types may fall into this
MMIO region. MMIO region hit is determined based upon
just address hit.

If bits in MMIO_CCA are set, then MMIO qualification is
based upon address and CCA.

MMIO_CCA = 2’b00: CCA is not considered as part of the
match
MMIO_CCA = 2’b01: This region will only match if the
CCA is Uncached (UC)
MMIO_CCA = 2’b10: This region will only match if the
CCA is Uncached Accelerated (UCA)
MMIO_CCA = 2’b11: This region will only match if the
CCA is Uncached (UC) or Uncached Accelerated (UCA)

R/W From
configuration

0 7 Reserved R 0

MMIO_FORCE_
NONCOH_REQ

6 If a transaction that hits this region generates a request
out to a coherent interconnect, force the request to be
non-coherent. The request will be externalized to ACE as
ReadNoSnoop/WriteNoSnoop.

R/W From
configuration

140
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

MMIO_PORT 5:2 Specify which port issues requests to:

15:12 - reserved
11 - AUX3
10 - AUX2
9 - AUX1
8 - AUX0
7:1 - reserved
0 - Main memory port; MEM

R/W From
configuration

MMIO_DISABLE_
REQ_LIMIT

1 Determines whether this MMIO region is subject to CMD
type,CCA and number of requests outstanding limits
imposed by MMIO_REQ_LIMIT. Set to 1 to disable CMD
type, CCA and MMIO REQ_LIMIT limitations.

R/W From
configuration

MMIO_EN 0 Enable MMIO region 7. R/W From
configuration

Table 50: Global MMIO7 Bottom Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

141
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.1.49 GCR Global MMIO7 Top (MMIO7_TOP) Register (offset = 0x0778)

This register holds highest address of MMIO Region 7.

NOTE: This register only exists if GCR_CONFIG.ADDR_REGIONS is greater than 7.

Figure 5.52 Global MMIO7 Top Register Bit Assignments

63 48 47 32

0 MMIO_TOP_ADDR[31:16]

31 16 15 0

MMIO_TOP_ADDR[15:0] 0

Table 51: Global MMIO7 Top Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:48 Reserved R 0

MMIO_TOP_ADDR 47:16 Upper limit of Address bits 47:16 for MMIO region 7. R/W From
configuration

0 15:0 Reserved R 0

142
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.2 GCR.Debug Registers

5.14.2.1 GCR Debug TCB ControlD (TCBCONTROLD) Register (offset = 0x0810)

This register controls CM3 PDTrace. It only exists if the CM3 is configured with PDTrace.

Figure 5.53 Debug TCB ControlD Register Bit Assignments

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

P7_CTL P6_CTL P5_CTL P4_CTL P3_CTL P2_CTL P1_CTL P0_CTL

15 12 11 8 7 6 5 4 3 2 1 0

0 TW_SRC_VAL WB 0 IO T_LEVEL AE GLBL_CM_TC_EN CM_TC_EN

Table 52: Debug TCB ControlD Register Bit Descriptions

Name Bits Description R/W Reset State

P7_CTL 31:30 Provides specific control over tracing transactions on Port
7 of the CM3.

00: Tracing Enabled, no Address Tracing
01: Tracing Enabled with Address Tracing
10: Reserved
11: Tracing Disabled

R/W 0

P6_CTL 29:28 Provides specific control over tracing transactions on Port
6 of the CM3. See Encoding for P7_CTL.

R/W 0

P5_CTL 27:26 Provides specific control over tracing transactions on Port
5 of the CM3. See Encoding for P7_CTL.

R/W 0

P4_CTL 25:24 Provides specific control over tracing transactions on Port
4 of the CM3. See Encoding for P7_CTL.

R/W 0

P3_CTL 23:22 Provides specific control over tracing transactions on Port
3 of the CM3. See Encoding for P7_CTL.

R/W 0

P2_CTL 21:20 Provides specific control over tracing transactions on Port
2 of the CM3. See Encoding for P7_CTL.

R/W 0

P1_CTL 19:18 Provides specific control over tracing transactions on Port
1 of the CM3. See Encoding for P7_CTL.

R/W 0

P0_CTL 17:16 Provides specific control over tracing transactions on Port
0 of the CM3. See Encoding for P7_CTL.

R/W 0

0 15:12 Reserved R 0

TW_SRC_VAL 11:8 The source ID inserted into the Trace Word by the CM3.
NOTE: When disabling trace by setting
GLBL_CM_TC_EN to 0, the value in TW_SRC_VAL con-
tinues to be used until all trace messages have been
flushed from the CM. Therefore, when writing to this reg-
ister to disable CM, the correct value must still be written
into the TW_SRC_VAL field.

R/W 15

WB 7 When this bit is set, Coherent Writeback requests are
traced. If this bit is not set, all Coherent Writeback
requests are suppressed from the CM3 PDTrace Stream.

R/W 0

143
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

0 6 Reserved R 0

IO 5 Inhibit Overflow on the CM3 PDTrace FIFO full condition.
When set to 0, the CM3 will drop a new PDTrace mes-
sage if the internal PDTrace FIFOs are full. When set to 1,
the CM3 will not drop PDTrace messages, but may stall
transactions within the CM3 when the internal PDTrace
FIFOs are full.

R/W 0

T_LEVEL 4:3 This defines the current trace level being used by the
CM3 PDTrace: 00: Minimal
01: Medium
10: Full
11: Reserved

R/W 0

AE 2 When set to 1, address tracing is always enabled for the
CM3. When set to 0, address tracing may be enabled on
a per-port basis through the Px_CTL bits.

R/W 0

GLBL_CM_TC_EN 1 Setting this bit to 1 enables tracing from the CM3 as long
as the CM_EN bit is also enabled.

R/W 0

CM_TC_EN 0 This is the master trace enable for the CM3. When zero,
tracing from the CM3 is always disabled. When set to
one, tracing is enabled if GLBL_CM_TC_EN is set or at
least one of the cores asserts cm_trace_on bit

R/W 0

Table 52: Debug TCB ControlD Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

144
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.2.2 GCR Debug TCB ControlE (TCBCONTROLE) Register (offset = 0x0820)

This register status reg for CM3 PDTrace.It only exists if the CM3 is configured with PDTrace.

Figure 5.54 Debug TCB ControlE Register Bit Assignments

31 9 8 7 1 0

0 CM_TC_IDLE 0 PERFC_TC_IMPL

Table 53: Debug TCB ControlE Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:9 Reserved R 0

CM_TC_IDLE 8 Indicates when CM trace unit is idle. This bit is updated by
HW and is read by software whenever the trace is dis-
abled.

R 1

0 7:1 Reserved R 0

PERFC_TC_IMPL 0 When set indicates tracing of performance counters is
implemented.

R 1

145
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.2.3 GCR Debug TCB Performance Counter Trace (TCBPERFCNTR) Register (offset = 0x0830)

This register config reg for CM3 PDTrace. It only exists if the CM3 is configured with PDTrace.

Figure 5.55 Debug TCB Performance Counter Trace Register Bit Assignments

31 11 10 1 0

0 PERFC_TC_DELAY PERFC_TC_EN

Table 54: Debug TCB Performance Counter Trace Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:11 Reserved R 0

PERFC_TC_DELAY 10:1 Delay between two perf counter trace message genera-
tion i.e. snapshot delay.

R/W From
configuration

PERFC_TC_EN 0 When set indicates tracing of performance counters is
enabled.

R/W From
configuration

146
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.2.4 GCR Debug Performance Counter Control (PC_CTL) Register (offset = 0x0900)

This register controls starting/stopping of Performance Counters.

Figure 5.56 Debug Performance Counter Control Register Bit Assignments

31 30 29 28 10 9 8 7 6 5 4 3 0

0 PERF_INT
_EN

PERF_OVF
_STOP

0 P1_
RESET

P1_
COUNTON

P0_
RESET

P0_
COUNTON

CYCL_CNT
_RESET

CYCL_CNT
_COUNTON

PERF_NUM
_CNT

Table 55: Debug Performance Counter Control Register Bit Descriptions

Name Bits Description R/W Reset State

0 31 Reserved R 0

PERF_INT_EN 30 Enable Interrupt on counter overflow. If set to 1, a CM3
performance counter interrupt is generated when any
enabled CM3 performance counter overflows.

R/W 0

PERF_OVF_STOP 29 Stop Counting on overflow. If set to 1, all CM3 Perfor-
mance counters stop counting when any enabled CM3
performance counter overflows i.e., the counter has
reached 0xFFFF_FFFF.

R/W 0

0 28:10 Reserved R 0

P1_RESET 9 If P1_RESET is written to 1 when P1_COUNTON is writ-
ten to 1, then CM3 Performance Counter 1 and the
P1_OF bit is reset before counting is started. If
P1_RESET is written to 0 when
P1_COUNTON is written to 1, then counting is resumed
from previous value. This bit is automatically set to 0
when the counter is reset, so P1_RESET is always read
as 0.

R/W 0

P1_COUNTON 8 Start/Stop Counting. If this bit is set to 1 then CM3 Perfor-
mance Counter 1 starts counting the specified event. If
this bit is set to 0 then CM3 Performance Counter 1 is dis-
abled. This bit is automatically set to 0 if any counter over-
flows and Perf_Ovf_Stop is set to 1.

R/W 0

P0_RESET 7 If P0_RESET is written to 1 when P0_COUNTON is writ-
ten to 1, then CM3 Performance Counter 0 and the
P0_OF bit is reset before counting is started. If
P0_RESET is written to 0 when
P0_COUNTON is written to 1, then counting is resumed
from previous value. This bit is automatically set to 0
when the counter is reset, so P0_RESET is always read
as 0.

R/W 0

P0_COUNTON 6 Start/Stop Counting. If this bit is set to 1 then CM3 Perfor-
mance Counter 0 starts counting the specified event. If
this bit is set to 0 then CM3 Performance Counter 0 is dis-
abled. This bit is automatically set to 0 if any counter over-
flows and Perf_Ovf_Stop is set to 1.

R/W 0

147
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

CYCL_CNT_RESET 5 If CYCL_CNT_RESET is written to 1 when
CYCL_CNT_COUNTON is written to 1, then CM3 Cycle
Counter and the Cycl_Cnt_OF bit is reset before counting
is started. If CYCL_CNT_RESET is written to 0 when
CYCL_CNT_COUNTON is written to 1, then counting is
resumed from previous value. This bit is automatically set
to 0 when the counter is reset, so CYCL_CNT_RESET is
always read as 0.

R/W 0

CYCL_CNT_
COUNTON

4 Start/Stop the Cycle Counter. If this bit is set to 1 then
CM3 Cycle Counter starts counting. If this bit is set to 0
then CM3 Cycle Counter is disabled. This bit is automati-
cally set to 0 if any Counter Overflows and Perf_Ovf_Stop
is set to 1.

R/W 0

PERF_NUM_CNT 3:0 The number of performance counters implemented (not
including the cycle counter). The CM3 has 2 performance
counters.

R/W 2

Table 55: Debug Performance Counter Control Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

148
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.2.5 GCR Debug Performance Counter Overflowed (PC_OV) Register (offset = 0x0920)

This register indicates which performance counters have overflowed.

Figure 5.57 Debug Performance Counter Overflowed Register Bit Assignments

31 3 2 1 0

0 P1_OF P0_OF Cycl_Cnt_OF

Table 56: Debug Performance Counter Overflowed Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:3 Reserved R 0

P1_OF 2 If this bit is set to 1, CM3 Performance Counter 1 has
overflowed i.e., the counter has reached 0xFFFF_FFFF.

RW1C 0

P0_OF 1 If this bit is set to 1, CM3 Performance Counter 0 has
overflowed i.e., the counter has reached 0xFFFF_FFFF.

RW1C 0

Cycl_Cnt_OF 0 If this bit is set to 1, CM3 Cycle Counter 0 has overflowed
i.e., the counter has reached 0xFFFF_FFFF.

RW1C 0

149
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.2.6 GCR Debug Performance Counter Event (PC_EVENT) Register (offset = 0x0930)

This register select event type of each CM3 performance counter.

Figure 5.58 Debug Performance Counter Event Register Bit Assignments

31 16 15 8 7 0

0 P1_Event P0_Event

Table 57: Debug Performance Counter Event Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:16 Reserved R 0

P1_Event 15:8 Event Selection for CM3 Performance Counter 1. Refer to
the System Programmer’s Reference for more informa-
tion.

R/W 0

P0_Event 7:0 Event Selection for CM3 Performance Counter 0. Refer to
the System Programmer’s Reference for more informa-
tion.

R/W 0

150
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.2.7 GCR Debug Performance Counter Cycles (PC_CYCL) Register (offset = 0x0980)

This register counts cycles.

Figure 5.59 Debug Performance Counter Cycles Register Bit Assignments

31 0

Cycle_Cnt

Table 58: Debug Performance Counter Cycles Register Bit Descriptions

Name Bits Description R/W Reset State

Cycle_Cnt 31:0 32-bit count of CM3 clock cycles. R/W 0

151
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.2.8 GCR Debug Performance Counter Qualifier0 (PC_QUAL0) Register (offset = 0x0990)

This register performance counter 0 event qualifiers.

Figure 5.60 Debug Performance Counter Qualifier0 Register Bit Assignments

63 0

P0_Qualifier

Table 59: Debug Performance Counter Qualifier0 Register Bit Descriptions

Name Bits Description R/W Reset State

P0_Qualifier 63:0 CM3 Performance Counter 0 Event Qualifier. The qualifier
corresponds to the event configured through the Perfor-
mance Counter 0 Event Select Register.

R/W 0

152
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.2.9 GCR Debug Performance Counter Value0 (PC_CNT0) Register (offset = 0x0998)

This register performance counter a value.

Figure 5.61 Debug Performance Counter Value0 Register Bit Assignments

31 0

P0_Count

Table 60: Debug Performance Counter Value0 Register Bit Descriptions

Name Bits Description R/W Reset State

P0_Count 31:0 32-bit Performance Counter. The event counted is speci-
fied in the CM3 Performance Counter Event Select Regis-
ter and by the corresponding Qualifier Register.

R/W 0

153
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.2.10 GCR Debug Performance Counter Qualifier1 (PC_QUAL1) Register (offset = 0x09A0)

This register performance counter 1 event qualifiers.

Figure 5.62 Debug Performance Counter Qualifier1 Register Bit Assignments

63 0

P1_Qualifier

Table 61: Debug Performance Counter Qualifier1 Register Bit Descriptions

Name Bits Description R/W Reset State

P1_Qualifier 63:0 CM3 Performance Counter 1 Event Qualifier. The qualifier
corresponds to the event configured through the Perfor-
mance Counter 1 Event Select Register.

R/W 0

154
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.2.11 GCR Debug Performance Counter Value1 (PC_CNT1) Register (offset = 0x09a8)

This register performance counter a value.

Figure 5.63 Debug Performance Counter Value1 Register Bit Assignments

31 0

P1_Count

Table 62: Debug Performance Counter Value1 Register Bit Descriptions

Name Bits Description R/W Reset State

P1_Count 31:0 32-bit Performance Counter. The event counted is speci-
fied in the CM3 Performance Counter Event Select Regis-
ter and by the corresponding Qualifier Register.

R/W 0

155
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.3 GCR.Core Registers

The GCR.Core region contains the following registers, which are described in detail in the
subsequent per-register descriptions:

Table 63: GCR.Core Mapped Registers

Offset from GCR_BASE Register Block Name Description

0x02000
0x02100
0x02200

......
0x05F00

GCR.Core[0-63]
.H0_RESET_BASE

Core[0-63] Hart0 Reset Program Counter (PC)

0x02008
0x02108
0x02208

......
0x05F08

GCR.Core[0-63]
.H1_RESET_BASE

Core[0-63] Hart1 Reset Program Counter (PC)

0x02010
0x02110
0x02210

......
0x05F10

GCR.Core[0-63]
.H2_RESET_BASE

Core[0-63] Hart2 Reset Program Counter (PC)

0x02018
0x02118
0x02218

......
0x05F18

GCR.Core[0-63]
.H3_RESET_BASE

Core[0-63] Hart3 Reset Program Counter (PC)

0x02020
0x02120
0x02220

......
0x05F20

GCR.Core[0-63]
.H4_RESET_BASE

Core[0-63] Hart4 Reset Program Counter (PC)

0x02028
0x02128
0x02228

......
0x05F28

GCR.Core[0-63]
.H5_RESET_BASE

Core[0-63] Hart5 Reset Program Counter (PC)

0x02030
0x02130
0x02230

......
0x05F30

GCR.Core[0-63]
.H6_RESET_BASE

Core[0-63] Hart6 Reset Program Counter (PC)

0x02038
0x02138
0x02238

......
0x05F38

GCR.Core[0-63]
.H7_RESET_BASE

Core[0-63] Hart7 Reset Program Counter (PC)

156
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

0x02040
0x02140
0x02240

......
0x05F40

GCR.Core[0-63]
.H8_RESET_BASE

Core[0-63] Hart8 Reset Program Counter (PC)

0x02048
0x02148
0x02248

......
0x05F48

GCR.Core[0-63]
.H9_RESET_BASE

Core[0-63] Hart9 Reset Program Counter (PC)

0x02050
0x02150
0x02250

......
0x05F50

GCR.Core[0-63]
.H10_RESET_BASE

Core[0-63] Hart10 Reset Program Counter (PC)

0x02058
0x02158
0x02258

......
0x05F58

GCR.Core[0-63]
.H11_RESET_BASE

Core[0-63] Hart11 Reset Program Counter (PC)

0x02060
0x02160
0x02260

......
0x05F60

GCR.Core[0-63]
.H12_RESET_BASE

Core[0-63] Hart12 Reset Program Counter (PC)

0x02068
0x02168
0x02268

......
0x05F68

GCR.Core[0-63]
.H13_RESET_BASE

Core[0-63] Hart13 Reset Program Counter (PC)

0x02070
0x02170
0x02270

......
0x05F70

GCR.Core[0-63]
.H14_RESET_BASE

Core[0-63] Hart14 Reset Program Counter (PC)

0x02078
0x02178
0x02278

......
0x05F78

GCR.Core[0-63]
.H15_RESET_BASE

Core[0-63] Hart15 Reset Program Counter (PC)

0x020F8
0x021F8
0x022F8

......
0x05FF8

GCR.Core[0-63]
.COH_EN

Core[0-63] Coherence Enable

Table 63: GCR.Core Mapped Registers

Offset from GCR_BASE Register Block Name Description

157
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.3.1 GCR HART Reset Exception Base (RESET_BASE) Register (offset = see below)

Offset: 0x2000 + 0x100 * CORENUM + 0x008 * HARTNUM from GCR_BASE.

This register sets the Reset Exception Base for the local Hart.

It is instantiated for each Hart in the cluster. This register is used to drive the
core_exception_base[31:12] input to the local Hart.

Figure 5.64 HART Reset Exception Base Register Bit Assignments

63 48 47 32

0 RESET_BASE[35:20]

31 12 11 2 1 0

RESET_BASE[19:0] 0 RESET_BASE_MODE 0

Table 64: HART Reset Exception Base Register Bit Descriptions

Name Bits Description R/W Reset State

0 63.:48 Reserved R 0

RESET_BASE 47:12 Bits [47:12] of the virtual address that the local core will
use as the exception base.

R/W From
configuration

0 11:2 Reserved R 0

RESET_BASE_MODE 1 Legacy field, always 1 for MIPS implementations of
RISCV cores.

R 1

0 0 Reserved R 0

158
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.3.2 GCR Core Enables Coherence (COH_EN) Register (offset = see below)

Offset: 0x020f8 + 0x100 * CORENUM from GCR_BASE for Core[0..63]

This register enables coherence for this core.

Setting this bit has 2 effects: First, the CPC will not transition power states for this core; Sec-
ond, the CM3 may send interventions to this core. Note that the software must follow the
appropriate procedure when setting/clearing this bit as outlined in the System Programmer’s
Reference. This register is instantiated for each Core domain.

Figure 5.65 Core Enables Coherence Register Bit Assignments

31 1 0

0 COH_EN

Table 65: Core Enables Coherence Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:1 Reserved R 0

COH_EN 0 Enables Coherence for the core. R/W 0

159
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4 CPC.Global Registers

The CPC.Global region contains the following registers, which are described in detail in the
subsequent per-register descriptions:

Table 66: CPC.Global Mapped Registers

Offset from
GCR_BASE Register Block Name Description

0x08008 CPC.Global.SEQDEL_REG Time between microsteps of CPC domain
sequencer

0x08010 CPC.Global.RAIL_REG Rail power-up timer to delay

0x08018 CPC.Global.RESETLEN_REG Duration of domain reset sequence

0x08020 CPC.Global.REVISION_REG RTL Revision of CPC

0x08028 CPC.Global.CC_CTL_REG CPC global clock change configuration, control
and status.

0x08030 CPC.Global.PWRUP_CTL_REG Control CM Power independent of Cores’ power
states

0x08038 CPC.Global.RES_REL_REG Reset release and Clock Enable timing

0x08040 CPC.Global.ROCC_CTL_REG Which cores have been reset

0x08048 CPC.Global.PRESCALE_
CC_CTL_REG

Controls Prescale Clock changes

0x08050 CPC.Global.MTIME_REG RISC-V mtime register

0x08058 CPC.Global.TIMECTL_REG Control RISC-V mtime and htime registers.

0x08060 CPC.Global.CLK_GATE_DIS_REG Disable module level clock gaters.

0x08068 CPC.Global.FAULT_STATUS OR of all fault domain status registers. FUSA
CPUs only.

0x08070 CPC.Global.FAULT_SUPPORTED Design configured for each fault type? FUSA
CPUs only.

0x08078 CPC.Global.FAULT_ENABLE Is each fault type enabled? FUSA CPUs only.

0x08090 CPC.Global.HRTIME_REG High resolution timer register

0x08138 CPC.Global.CONFIG Indicates the number of processor cores, number
of interrupts, number of IOCUs, etc.

0x08140 CPC.Global.SYS_CONFIG System level configuration

160
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.1 CPC Global Sequencer (SEQDEL_REG) Register (offset = 0x8008)

This register describe the time between microsteps of a CPC domain sequencer in CPC clock
cycles.

The CPC_SEQDEL_REG describes globally the number of clock cycles each domain micro-
sequencer will take to advance. It describes a set of worst-case timing of the physical imple-
mentation and is used to ensure electrical and bus protocol integrity. Mainly, buffer tree
delays on *_isolate and/or*_rail_enable can be used to set proper micro sequencer delay
values. Typically, the CPC_SEQDEL_REG contents would be defined at IP configuration time.
However, runtime write capability allows fine tuning to optimize sequencer timing.

Figure 5.66 Global Sequencer Register Bit Assignments

31 10 9 0

0 MICROSTEP

Table 67: Global Sequencer Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:10 Reserved R 0

MICROSTEP 9:0 This field reflects the delay in clock cycles, taken by each
power domain micro-sequencer to advance between
atomic micro steps. Cycles/Step = MICROSTEP[9:0]
value + 1; 0 = > 1 cycle, 1 = > 2 cycles
Physical implementation might not allow power sequence
micro steps to advance with full cluster speed. At cluster
cold start, the counter divides cluster frequency by a hard-
coded IP configuration value to derive a micro step width.

R/W From
configuration

161
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.2 CPC Global Rail (RAIL_REG) Register (offset = 0x8010)

This register rail power-up timer to delay CPS sequencer progress until the gated rail has sta-
bilized.

The CPC_RAIL_REG represents a 10-bit counter register to schedule delayed start of domain
operation after the RailEnable signal has been activated by the CPC. This allows to compen-
sate for slew rates at the gated rail, since hardware interlocks such as ci_core_vdd_ok are
either unavailable or do not reflect to complete power up time of a domain.At IP configuration
time, the contents of CPC_RAIL_REG is preset. However, for fine tuning, the register can be
written at run time.

Figure 5.67 Global Rail Register Bit Assignments

31 10 9 0

0 RAILDELAY

Table 68: Global Rail Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:10 Reserved R 0

RAILDELAY 9:0 10-bit counter value to delay power-up sequence per
domain after RailStable and VddOK signals became
active. The power-up micro-sequence starts after
RAILDELAY has been loaded into the internal counter
and a counted down to zero has concluded.

After completion of the domain power-up micro-
sequence, the DomainReady signal is raised and can be
used for domain daisy-chaining.

R/W From
configuration

162
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.3 CPC Global Reset Sequence (RESETLEN_REG) Register (offset = 0x8018)

This register duration of any domain reset sequence.

Within the power-up micro-sequence, reset is applied. This register defines the timing of the
reset signal. NOTE: this register is reset on a cold-reset only.

Figure 5.68 Global Reset Sequence Register Bit Assignments

31 10 9 0

0 RESETLEN

Table 69: Global Reset Sequence Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:10 Reserved R 0

RESETLEN 9:0 Determines timing of the domain reset.
The value of RESET_LEN is always greater than or equal
to CM3_CPC_RESET_LEN_MIN. If IP Config value or
the value written to the reg is less than min, default value
of CM3_CPC_RESET_LEN_MIN is assumed.

R/W From
configuration

163
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.4 CPC Global Revision (REVISION_REG) Register (offset = 0x8020)

This register RTL revision of CPC.

Figure 5.69 Global Revision Register Bit Assignments

31 16 15 8 7 0

0 MAJOR_REV MINOR_REV

Table 70: Global Revision Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:16 Reserved R 0

MAJOR_REV 15:8 This field reflects the major revision of the CPC block. A
major revision might reflect the changes from one product
generation to another.

R From
configuration

MINOR_REV 7:0 This field reflects the minor revision of the CPC block. A
minor revision might reflect the changes from one release
to another.

R From
configuration

164
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.5 CPC Global Clock Change Configuration, Control and Status. (CC_CTL_REG) Register (off-
set = 0x8028)

This register CPC global clock change configuration, control and status.

Enables clock change for all clock change enable domains of the cluster.

Figure 5.70 Global Clock Change Configuration, Control and Status Register Bit Assignments

31 30 29 20 19 18 17 16

CC_IMPLEMENTED 0 CC_DELAY 0 IO_SET_CLK_RATIO IO_CLK_CHANGE_ACTIVE

15 14 13 12 11 10 9 8 7 0

0 REG_CLK_CHANGE
_ACTIVE

CLK_CHANGE
_STATE

CLK_RATIO
_STABLE

CLK_CHANGE
_ACTIVE

ALLOW_CLK
_CHANGE

SET_CLK
_RATIO

0

Table 71: Global Clock Change Configuration, Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

CC_IMPLEMENTED 31 Clock change functionality implemented. R 1

0 30 Reserved R 0

CC_DELAY 29:20 Clock change delay value. This specifies the number
clocks after the prescaler to wait in the C1 -
CC_StartChange state to allow all CM3_CDC_FIFOs to
prepare for a clock domain change.

r/w From
configuration

0 19:18 Reserved R 0

IO_SET_CLK_RATIO 17 Indicates the current state of the io_set_clk_ratio input. R 0

IO_CLK_CHANGE_
ACTIVE

16 Readback of io_clk_change_active signal indicating that
an IO based clock change is still in progress.

R 0

0 15 Reserved R 0

REG_CLK_CHANGE_
ACTIVE

14 Readback of reg_clk_change_active signal indicating that
a register based clock change is still in progress.

R 0

CLK_CHANGE_
STATE

13:12 Current domain clock change sequence state
0 C0 - CC_Idle
1 C1 - CC_StartChange
2 C2 - CC_SetRatio
3 C3 - CC_WaitStable

R 0

CLK_RATIO_STABLE 11 Indicates the AND of the clk_ratio_stable signal for all
CPC local state machines which are participating in the
clock change.

R 0

CLK_CHANGE_
ACTIVE

10 Readback of clk_change_active signal indicating the
global clock change is still in progress.

R 0

ALLOW_CLK_
CHANGE

9 Indicates the AND of the cpc_allow_clk_change signal for
all CPC local state machines which are participating in the
clock change.

R 0

165
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

SET_CLK_RATIO 8 Writing a 1 to this field initiates a register based clock
change for all participating domains (domains which have
SET_CLK_RATIO_EN set to 1 in their
CPC.Global.CC_CTL_REG) and prescaler. Writing a 0 is
ignored. A readback value of 1 for this field indicates the
register based clock change is still pending or in progress.
A readback value of 0 for this field indicates that a register
based clock change has been taken. The register clock
change is completed when both this field and
CLK_CHANGE_ACTIVE are both low.

RW1S 0

0 7:0 Reserved R 0

Table 71: Global Clock Change Configuration, Control and Status Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

166
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.6 CPC Global Power Up Control (PWRUP_CTL_REG) Register (offset = 0x8030)

This register controls power of CM even independent of the cores power states.

Normally, the CM is automatically powered-up if any core is powered-up and the CM is auto-
matically powered-down if no core is powered-up. This register powers-up the CM even if no
core is powered-up. This may be useful for system debug/setup via the DBU.

Figure 5.71 Global Power Up Control Register Bit Assignments

31 1 0

0 CM_PWRUP

Table 72: Global Power Up Control Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:1 Reserved R 0

CM_PWRUP 0 If CM_PWRUP is 1, then the CM will be powered-on if not
already powered-on. If the CM is already powered-on
then it will stay that way even if all the cores are powered-
down.

R/W 0

167
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.7 CPC Global Reset Release (RES_REL_REG) Register (offset = 0x8038)

This register control reset release and clock enable timing.

Figure 5.72 Global Reset Release Register Bit Assignments

31 10 9 0

0 RES_REL_LEN

Table 73: Global Reset Release Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:10 Reserved R 0

RES_REL_LEN 9:0 Used to control 3 timing parameters in the CPC state
machines:
1) U4ER: Number of CPC clocks that the core reset signal
is deasserted to CM before the reset is deasserted to the
corresponding core.
2) U4R: Number of CPC clocks between releasing reset
to a core before enabling non-Coherent Mode
3) D2R: The Number of CPC clocks between enabling
clocks and enabling non-Coherent Mode.

R/W From
configuration

168
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.8 CPC Global Core Rest Control (ROCC_CTL_REG) Register (offset = 0x8040)

This register is to indicate which cores have been reset.

NOTE: This register is reset on a cold reset only.

Figure 5.73 Global Core Rest Control Register Bit Assignments

31 30 29 28 18 17 16 15 6 5 4 3 2 1 0

CPC_ROCC RESET_
CAUSE

DBU_ROCC CM_ROCC 0 CORE5
_ROCC

CORE4
_ROCC

CORE3
_ROCC

CORE2
_ROCC

CORE1
_ROCC

CORE0
_ROCC

Table 74: Global Core Rest Control Register Bit Descriptions

Name Bits Description R/W Reset State

CPC_ROCC 31 Indicates CPC has been reset. This bit can be cleared by
writing 1 to it.

RW1C 1

RESET_CAUSE 30:29 Indicates source for latest CPC reset.
00 reserved
01 cold reset
10 external warm reset
11 Watchdog warm reset

R 0

0 28:18 Reserved R 0

DBU_ROCC 17 Indicates DBU has been reset. This bit can be cleared by
writing 1 to it. Set to 0 on cold_reset.

RW1C 0

CM_ROCC 16 Indicates CM has been reset. This bit can be cleared by
writing 1 to it. Set to 0 on cold_reset.

RW1C 0

0 15:6 Reserved R 0

CORE5_ROCC 5 Indicates Core 5 (if implemented) has been reset. This bit
can be cleared by writing 1 to it. Set to 0 on cold_reset.

RW1C 0

CORE4_ROCC 4 Indicates Core 4 (if implemented) has been reset. This bit
can be cleared by writing 1 to it. Set to 0 on cold_reset.

RW1C 0

CORE3_ROCC 3 Indicates Core 3 (if implemented) has been reset. This bit
can be cleared by writing 1 to it. Set to 0 on cold_reset.

RW1C 0

CORE2_ROCC 2 Indicates Core 2 (if implemented) has been reset. This bit
can be cleared by writing 1 to it. Set to 0 on cold_reset.

RW1C 0

CORE1_ROCC 1 Indicates Core 1 (if implemented) has been reset. This bit
can be cleared by writing 1 to it. Set to 0 on cold_reset.

RW1C 0

CORE0_ROCC 0 Indicates Core 0 has been reset. This bit can be cleared
by writing 1 to it. Set to 0 on cold_reset.

RW1C 0

169
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.9 CPC Global Controls Prescale Clock Changes Register (offset = 0x8048)

This register controls prescale clock changes.

Figure 5.74 Global Controls Prescale Clock Changes Register Bit Assignments

31 24 23 16 15 9 8 7 0

0 PRESCALE_CLK_RATIO 0 PRESCALE_CLK_RATIO_CHANGE_EN CLK_PRESCALE

Table 75: Global Controls Prescale Clock Changes Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:24 Reserved R 0

PRESCALE_CLK_
RATIO

23:16 Indicates the current prescaler clock ratio. R From
configuration

0 15:9 Reserved R 0

PRESCALE_CLK_
RATIO_CHANGE_EN

8 Setting this to 1 enables prescaler register based clock
change. Setting this to 0 disables prescaler register based
clock change. When the clock change completes this field
is cleared.

R/W 0

CLK_PRESCALE 7:0 This field sets a new prescaler value for all clock domains.
The value of prescaling is (CLK_PRESCALE + 1). A value
of 0 indicates no prescaling (divide input clock by 1). A
value of 1 indicates prescaling by 2 (divide input clock by
2), etc. Supports prescaling the input clk by 1 through
256.

R/W From
configuration

170
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.10 CPC Global RISC-V Mtime (MTIME_REG) Register (offset = 0x8050)

This register RISC-V mtime register.

Figure 5.75 Global RISC-V Mtime Register Bit Assignments

63 0

MTIME_REG

Table 76: Global RISC-V Mtime Register Bit Descriptions

Name Bits Description R/W Reset State

MTIME_REG 63:0 RISC-V mtime register. R 0

171
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.11 CPC Global RISC-V Mtime Control (TIMECTL_REG) Register (offset = 0x8058)

This register Control register for RISC-V mtime and hrtime registers. Support software-
assisted multi-cluster timer synchronization.

Figure 5.76 Global RISC-V Mtime Control Register Bit Assignments

63 32

0[63:32]

31 4 3 2 1 0

0[31:4] HARMED HSTOP MARMED MSTOP

Table 77: Global RISC-V Mtime Control Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:4 Reserved R 0

HARMED 3 Arm the HRTIME counter for hardware synchronization.
When the HARMED and HSTOP bits are both asserted,
the counter can be restarted by assertion of a cluster-
level input pin (which will also clear the HARMED and
HSTOP bits).

R/W 0

HSTOP 2 Stop the HRTIME counter. R/W 0

MARMED 1 Arm the MTIME counter for hardware synchronization.
When the MARMED and MSTOP bits are both asserted,
the counter can be restarted by assertion of a cluster-
level input pin (which will also clear the MARMED and
MSTOP bits).

R/W 0

MSTOP 0 Stop the MTIME counter. R/W 0

172
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.12 CPC Global Clock Gate Disabled (CLK_GATE_DIS_REG) Register (offset = 0x8060)

This register allows for module level clock gaters to be disabled.

Figure 5.77 Global Clock Gate Disabled Register Bit Assignments

31 0

CLK_GATE_DIS

Table 78: Global Clock Gate Disabled Register Bit Descriptions

Name Bits Description R/W Reset State

CLK_GATE_DIS 31:0 Each bit disables one or more clock gaters. Refer to the
CM3 micro-arch spec for the mapping of these bits to
clock gaters.

R/W 0

173
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.13 CPC Global Fault Status (FAULT_STATUS) Register (offset = 0x8068)

This register allow the Global fault status contains the OR of all the fault domain status regis-
ters. This register is valid for FUSA CPUs only.

Figure 5.78 Global Fault Status Register Bit Assignments

63 32

0[51:20]

31 12 11 10 9 8 7

0[19:0] FAULT_MBIST
_STATUS

FAULT_LBIST
_STATUS

FAULT_PROTOCOL
_STATUS

FAULT_TIMEOUT
_STATUS

FAULT_PAR_REG
_STATUS_STATUS

6 5 4 3 2 1 0

FAULT_PAR_
REG_CONTROL

_STATUS

FAULT_APAR_
STATUS

FAULT_DPAR_
STATUS

FAULT_RAM_
ADDR_STATUS

FAULT_RAM_
DATA_UNCORR

_STATUS

FAULT_RAM_
DATA_CORR

_STATUS

FAULT_
INTEGRITY_

STATUS

Table 79: Global Fault Status Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:12 Reserved R 0

FAULT_MBIST_
STATUS

11 An MBIST error was detected. R 0

FAULT_LBIST_
STATUS

10 An LBIST error was detected. R 0

FAULT_PROTOCOL_
STATUS

9 An interface protocol fault was detected. R 0

FAULT_TIMEOUT_
STATUS

8 A transaction timeout error was detected. R 0

FAULT_PAR_REG_
STATUS_STATUS

7 A parity error in a status register detected. R 0

FAULT_PAR_REG_
CONTROL_STATUS

6 A parity error in a control register was detected. R 0

FAULT_APAR_
STATUS

5 An address path parity error was detected. R 0

FAULT_DPAR_
STATUS

4 A data path parity error was detected. R 0

FAULT_RAM_ADDR_
STATUS

3 An SRAM address fault was detected. R 0

FAULT_RAM_DATA_U
NCORR_STATUS

2 An uncorrectable data fault in SRAM was detected. R 0

FAULT_RAM_DATA_C
ORR_STATUS

1 A correctable data fault in SRAM detected. R 0

FAULT_INTEGRITY_
STATUS

0 An integrity check fault was detected. R 0

174
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.14 CPC Global Fault Supported (FAULT_SUPPORTED) Register (offset = 0x8070)

This register indicates whether the design is configured to detect each type of fault. This reg-
ister is only valid when FUSA features are implemented.

Figure 5.79 Global Fault Supported Register Bit Assignments

63 32

0[51:20]

31 12 11 10 9 8 7

0[19:0] FAULT_MBIST_
SUPPORTED

FAULT_LBIST_
SUPPORTED

FAULT_PROTOCOL
_SUPPORTED

FAULT_TIMEOUT_
SUPPORTED

FAULT_PAR_REG_
SUPPORTED_
SUPPORTED

6 5 4 3 2 1 0

FAULT_PAR_
REG_CONTROL
_SUPPORTED

FAULT_APAR_
SUPPORTED

FAULT_DPAR_
SUPPORTED

FAULT_RAM_
ADDR_

SUPPORTED

FAULT_RAM_
DATA_UNCORR
_SUPPORTED

FAULT_RAM_
DATA_CORR_
SUPPORTED

FAULT_
INTEGRITY_
SUPPORTED

Table 80: Global Fault Supported Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:12 Reserved R 0

FAULT_MBIST_
SUPPORTED

11 MBIST error detection supported. R From
configuration

FAULT_LBIST_
SUPPORTED

10 LBIST error detection supported. R From
configuration

FAULT_PROTOCOL_
SUPPORTED

9 Interface protocol fault detection supported. R From
configuration

FAULT_TIMEOUT_
SUPPORTED

8 Transaction timeout error detection supported. R From
configuration

FAULT_PAR_REG_
SUPPORTED_
SUPPORTED

7 Parity error in a status register detection supported. R From
configuration

FAULT_PAR_REG_
CONTROL_

SUPPORTED

6 Parity error in a control register detection supported. R From
configuration

FAULT_APAR_
SUPPORTED

5 Address path parity error detection supported. R From
configuration

FAULT_DPAR_
SUPPORTED

4 A data path parity error was detected. R From
configuration

FAULT_RAM_ADDR_
SUPPORTED

3 SRAM address fault detected supported. R From
configuration

FAULT_RAM_DATA_U
NCORR_

SUPPORTED

2 Uncorrectable data fault in SRAM detection is supported. R From
configuration

FAULT_RAM_DATA_C
ORR_SUPPORTED

1 Correctable data fault in SRAM detection is supported. R From
configuration

175
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

FAULT_INTEGRITY_
SUPPORTED

0 Integrity check fault detected is supported. R From
configuration

Table 80: Global Fault Supported Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

176
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.15 CPC Global Fault Enable (FAULT_ENABLE) Register (offset = 0x0078)

This register indicates whether detection each type of fault is enabled. This register is only
valid when FUSA features are implemented.

Figure 5.80 Global Fault Enable Register Bit Assignments

63 32

0[51:20]

31 12 11 10 9 8 7

0[19:0] FAULT_MBIST_
ENABLE

FAULT_LBIST_
ENABLE

FAULT_PROTOCOL
_ENABLE

FAULT_TIMEOUT_
ENABLE

FAULT_PAR_REG_
ENABLE_
ENABLE

6 5 4 3 2 1 0

FAULT_PAR_
REG_CONTROL

_ENABLE

FAULT_APAR_
ENABLE

FAULT_DPAR_
ENABLE

FAULT_RAM_
ADDR_
ENABLE

FAULT_RAM_
DATA_UNCORR

_ENABLE

FAULT_RAM_
DATA_CORR_

ENABLE

FAULT_
INTEGRITY_

ENABLE

Table 81: Global Fault Enable Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:12 Reserved R 0

FAULT_MBIST_
ENABLE

11 MBIST error detection enabled. R From
configuration

FAULT_LBIST_
ENABLE

10 LBIST error detection enabled. R From
configuration

FAULT_PROTOCOL_
ENABLE

9 Interface protocol fault detection enabled. R From
configuration

FAULT_TIMEOUT_
ENABLE

8 Transaction timeout error detection enabled. R From
configuration

FAULT_PAR_REG_
ENABLE_ENABLE

7 Parity error in a status register detection enabled. R From
configuration

FAULT_PAR_REG_
CONTROL_ENABLE

6 Parity error in a control register detection enabled. R From
configuration

FAULT_APAR_
ENABLE

5 Address path parity error detection enabled. R From
configuration

FAULT_DPAR_
ENABLE

4 A data path parity error was enabled. R From
configuration

FAULT_RAM_ADDR_
ENABLE

3 SRAM address fault detected enabled. R From
configuration

FAULT_RAM_DATA_U
NCORR_
ENABLE

2 Uncorrectable data fault in SRAM detection is enabled. R From
configuration

FAULT_RAM_DATA_C
ORR_ENABLE

1 Correctable data fault in SRAM detection is enabled. R From
configuration

177
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

FAULT_INTEGRITY_
ENABLE

0 Integrity check fault detected is enabled. R From
configuration

Table 81: Global Fault Enable Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

178
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.16 CPC Global High Resolution Timer (HRTIME_REG) Register (offset = 0x8090)

This register describe the high resolution timer register.

Figure 5.81 Global High Resolution Timer Register Bit Assignments

63 0

HRTIME_REG

Table 82: Global High Resolution Timer Register Bit Descriptions

Name Bits Description R/W Reset State

HRTIME_REG 63:0 High resolution timer register. R 0

179
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.4.17 CPC Global Configuration (CONFIG) Register (offset = 0x8138)

This register indicates the number of processor cores, number of interrupts, number of
IOCUs, etc.

This register provides information on the overall system configuration. These fields are read-
only and their reset state is determined at IP configuration time.

Figure 5.82 Global Configuration Register Bit Assignments

63 44 43 42 41 40 39 32

0 CLUSTER_CO
H_CAPABLE

REGTC_PRES
ENT

REGTC_PRES
ENT

DBU_PRESEN
T

CFG_CLUSTER_ID

31 30 29 23 22 20 19 16 15 12 11 8 7 0

ITU_PRESENT 0 NUM_CLUSTERS NUMAUX ADDR_REGIONS 0 NUMIOCU PCORES

Table 83: Global Configuration Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:44 Reserved R 0

CLUSTER_COH_
CAPABLE

43 Set to 1 if this cluster supports ACE coherent intercon-
nect.

R From
configuration

REGTC_PRESENT 42 Set to 1 if REGTC is present in this cluster. R From
configuration

REGTC_PRESENT 41 Set to 1 if REGTN is present in this cluster. R From
configuration

DBU_PRESENT 40 Set to 1 if DBU is present in the design. R From
configuration

CFG_CLUSTER_ID 39:32 Indicates the cluster_id of current cluster. R From
configuration

ITU_PRESENT 31 Set to 1 if ITU is present in the design. R From
configuration

0 30 Reserved R 0

NUM_CLUSTERS 29:23 Indicates total number of clusters present in the design. R From
configuration

NUMAUX 22:20 Number of auxiliary memory ports in this cluster. R From
configuration

ADDR_REGIONS 19:16 Number of MMIO address region registers. This value is
determined by the IP configuration.

R From
configuration

0 15:12 Reserved R 0

NUMIOCU 11:8 Total number of IOCUs in this cluster. R From
configuration

PCORES 7:0 Total number of CPU Cores - 1 in this cluster, not includ-
ing the IOCU’s.

R From
configuration

180
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.5 CPC.Core Registers

The CPC.Core region contains the following per-core and per-device memory mapped regis-
ters, which are described in detail in the subsequent per-register descriptions:

Table 84: CPC Core Mapped Registers

Offset from
GCR_BASE Register Block Name Description

0x08200
0x08208

......
0x083F8

CPC.IOCU[0..63].CC_CTL_REG Controls clock changes on corresponding IOCU.

0x08400 CPC.MEM.CC_CTL_REG Controls clock changes on AXI/ACE memory
port.

0x08440
0x08448
0x08450
0x08458

CPC.AUX[0..3].CC_CTL_REG Controls clock changes on CM AXI AUX[0..3]
port.

0x09008 CPC.CM.STAT_CONF_REG CM domain power status and domain
configuration register.

0x09018 CPC.CM.CC_CTL_REG Controls clock changes on corresponding device.

0x09050 CPC.CM.RAM_SLEEP_REG Controls Deep Sleep and Shut Down power state
of RAMs for CM power domain.

0x09068 CPC.CM.FAULT_STATUS CM Domain fault status, for FUSA CPUs only.

0x09070 CPC.CM.FAULT_SET Any bit written to 1 will set the corresponding fault
bit.

0x09078 CPC.CM.FAULT_CLR Any bit written to 1 will clear the corresponding
fault bit.

0x09090 CPC.CM.CONFIG Configuration parameters for the CM domain.

0x09100 CPC.DBU.CMD_REG Places a new CPC domain state command into
this individual domain sequencer for the DBU
power domain.

0x09108 CPC.DBU.STAT_CONF_REG Debug domain power status and domain
configuration register.

0x09118 CPC.DBU.CC_CTL_REG Controls clock changes on corresponding device.

0x09150 CPC.DBU.RAM_SLEEP_REG Controls Deep Sleep and Shut Down power state
of RAMs for DBU power domain.

0x09190 CPC.DBU.CONFIG Configuration parameters for the DBU domain.

0x0A000
0x0A100

.......
0x0DF00

CPC.Core[0-63].CMD_REG Places a new CPC domain state command into
this individual domain sequencer for the core
power domain.

181
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

0x0A008
0x0A108

......
0x0DF08

CPC.Core[0-63].STAT_CONF_REG Core domain power status and domain
configuration register.

0x0A018
0x0A118

.......
0x0DF18

CPC.Core[0-63].CC_CTL_REG Controls clock changes on corresponding device.

0x0A020
0x0A120

......
0x0DF20

CPC.Core[0-63].VP_STOP_REG Stops execution of harts.

0x0A028
0x0A128

.......
0x0DF28

CPC.Core[0-63].VP_RUN_REG Starts execution of harts.

0x0A030
0x0A130

.......
0x0DF30

CPC.Core[0-63].VP_RUNNING_REG Indicates which harts are in the Running State.

0x0A040
0x0A140

.......
0x0DF40

CPC.Core[0-63].DBG_DBRK_REG Used to send a DINT (debug interrupt) to a
specific hart.

0x0A050
0x0A150

.......
0x0DF50

CPC.Core[0-63].RAM_SLEEP_REG Controls Deep Sleep and Shut Down power state
of RAMs for core power domain.

0x0A068
0x0A168

.......
0x0DF68

CPC.Core[0-63].FAULT_STATUS Core domain fault status, for FUSA CPUs only.

0x0A070
0x0A170

.......
0x0DF70

CPC.Core[0-63].FAULT_SET Any bit written to 1 will set the corresponding fault
bit.

0x0A078
0x0A178

.......
0x0DF78

CPC.Core[0-63].FAULT_CLR Any bit written to 1 will clear the corresponding
fault bit.

0x0A090
0x0A190

.......
0x0DF90

CPC.Core[0-63].CONFIG Configuration parameters for the Core domain.

Table 84: CPC Core Mapped Registers

Offset from
GCR_BASE Register Block Name Description

182
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.5.1 CPC Power Command (CMD_REG) Register (offset = see below)

This register places a new CPC domain state command into this individual domain sequencer.

This register is not available within the CM sequencer. Writes to the CM CMD register are
ignored while reads will return zero. This register is instantiated for each power domain.

Offset: 0x9100 from GCR_BASE for DBU power domain.

0xa000 + 0x100 * CORENUM from GCR_BASE for Core[0..63] power domain.

Figure 5.83 Power Command Register Bit Assignments

31 4 3 0

0 CMD

Table 85: Power Command Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:4 Reserved R 0

CMD 3:0 Requests a new power sequence execution for this
domain.
Read value is the last executed command. Not available
in the CM domain.

1) ClockOff This command causes the domain to cycle
into clock-off mode.It disables the clock to this power
domain. Only successful if core_coherence_enable and
other protocol interlocks are observed. If not, the com-
mand remains inactive until the protocol barriers subside.
After that, the command is executed. Depending on the
current sequencer state, the command either causes
power-up of a domain, or a domain leaves active duty to
become inactive. A power-up leads to sequencer state
U2, which will require the execution of a subsequent
Reset or PwrUp command to make this domain opera-
tional.

2) PwrDown this domain using setup values in
CPC_STAT_CONF_REG. Only successful if
core_coherence_enable inactive and all protocol inter-
locks are observed. If not, the command remains inactive
until the protocol barriers subside. Then, the command is
executed.

3) PwrUp this domain using setup values in
CPC_STAT_CONF_REG. Usable only for Core- Others
access. It is the software equivalent to ci_*_pwr_up hard-
ware signal.

4) Reset This domain is reset if in non-coherent mode.
After the domain has been reset, the domain becomes
operational and the CMD field reads as PwrUp cmd.
Other values Reserved - Writes with reserved values will
not be loaded into this register.

R/W Derived from
value driven on
si_core_cold_p

wr_up /
si_dbu_cold_p
wr_up when
CPC is reset

183
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.5.2 CPC Core Status and Domain Configuration (STAT_CONF_REG) Register (offset = see
below)

This register individual domain power status and domain configuration.

Reflects domain micro-sequencer execution. Initiates microsequencer after status register
programming. Reflects command execution status. This register is instantiated for each Pwr
domain.

Offset: 0x9008 from GCR_BASE for CM power domain.

0x9108 from GCR_BASE for DBU power domain.

0xa008 + 0x100 * CORENUM from GCR_BASE for Core[0..63] power domain.

Figure 5.84 Core Status and Domain Configuration Register Bit Assignments

31 25 24 23 22 19 18 17 16

0 L2_HW_INIT_EN PWRUP_EVENT SEQ_STATE 0 CLKGAT_IMPL PWRDN_IMPL

15 14 13 12 11 10 9 8 7 6 5 4 3 0

EJTAG_
PROBE

CI_PWRUP CI_VDD_
OK

CI_RAIL_
STABLE

COH_EN LPACK PWUP_POLICY RESET
_HOLD

0 IO_TRFFC_EN CMD

Table 86: Core Status and Domain Configuration Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:25 Reserved R 0

L2_HW_INIT_EN 24 If this bit is set L2 state machine is allowed to start L2
hardware initialization after waiting for
CM3_CPC_L2_HW_INIT_DELAY once reset is de-
asserted, provided that BIST is not on and
si_cpc_l2_hw_init_inhibit is tied low.

The initialization request is generated only once after
every reset if all the above conditions are met.
This bit is only valid for CM power domain for rest of the
domains this bit always reads out 0x0

R/W From
configuration

PWRUP_EVENT 23 The ci_*_pwr_up pin had been activated and caused the
sequencer to cycle into power up state. The event also
caused the sequencer to place a PwrUp command into
the CMD field.

Writing a 0 into the PWRUP_EVENT field will clear this
bit.

RW0C 0

184
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

SEQ_STATE 22:19 Current domain sequencer state. State Description

0 D0 - PwrDwn
1 U0 - RailStable
2 U1 - UpDelay (VddOK/rail delay state)
3 U2 - UClkOff
4 U3 - Reset
5 U4 - ResetDly
6 U5 - nonCoherent execution
7 U6 - Coherent execution
8 D1 - Isolate
9 D3 - ClrBus
10 D2 - DclkOff
12 U4ER - early reset release delay state
13 U4R - Reset release delay state
15 D2R - DClkOff clk enable state

R 0

0 18 Reserved R 0

CLKGAT_IMPL 17 If set, this domain is implemented with clock tree root gat-
ing. If cleared, the CPC will still execute power-down/
clock-off sequences if commanded; however, no physical
clock gating is performed.

R From
configuration

PWRDN_IMPL 16 If set, this domain is implemented as power-gated. If
cleared, the CPC will still execute power-down sequences
if commanded; however, no physical power switching is
performed.

R From
configuration

EJTAG_PROBE 15 A Debug probe connection event has been seen. The
domain powers up if required and observes a reset
sequence. Thereafter the core transitions into clock-off
mode.

After a probe has been seen once, the power domain will
not assume power-off mode until this bit is written to zero
or the CPC experiences a cold reset.

NOTE: This bit is only used for the local CPC registers
corresponding to the DBU. The CM and Core CPC local
sections always set this set to 0.

RW0C 0

CI_PWRUP 14 Reads the synchronized value of ci_pwr_up for this
domain.

R Pin Value

CI_VDD_OK 13 Reads the synchronized value of ci_vdd_ok for this
domain.

R Pin Value

CI_RAIL_STABLE 12 Reads the synchronized value of ci_rail_stable for this
domain.

R Pin Value

COH_EN 11 Reads the synchronized value of Coherence Enable for
this domain.

R Pin Value

LPACK 10 Reads the synchronized value of LPACK for this domain. R Pin Value

Table 86: Core Status and Domain Configuration Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

185
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

PWUP_POLICY 9:8 Each CPC domain sequencer is hardwired through the
ci_*_cold_pwr_up signal to either power up, remain
power-gated, go into clock-off mode, or become opera-
tional. To influence the cold start behavior of the domain,
three distinct policies can be wired for this domain:

0 - This CPU remains powered down after a system cold
start. A later PwrUp or Reset command, or ci_*_pwr_up
signal assertion will make this domain operational.

1 - Go into Clock-Off mode. Disables domain clock after
power-up sequence. Core will wake up through a CPC
PwrUp or Reset command or a ci_*_pwr_up signal asser-
tion. In this Clock-Off mode, the core will not be initialized
and its boundary isolation will be maintained.

2 - Power up this domain after system cold start. The CPU
will be reset and become operational based on its boot
vector contents.

3 - Reserved

Within a processor cluster, CPU 0 would power-up, while
peer CPU’s 1 - 3 would remain unpowered until released
through a PwrUp commands. The PWUP_POLICY field
reflects the hardwired ci_*_cold_pwr_up bus.

R Value driven
on

si_core_cold_p
wr_up /

si_dbu_cold_p
wr_up when
CPC is reset

RESET_HOLD 7 Reads the synchronized value of the RESET_HOLD sig-
nal for this domain.

R Pin Value

0 6:5 Reserved R 0

IO_TRFFC_EN 4 Enable CM for stand alone IOCU traffic. Setting this bit
changes the low power state of the CM power domain
from PwrDwn to ClkOff. The si_cm_pwr_up signal can be
used by an external device to re-enable the CM to per-
form IOCU data transfers without CPU activities.

If si_cm_pwr_up is deasserted, deselecting
IO_TRFFC_EN will power down the CM if all CPUs are
powered down.

A powered down CM domain will clear all preset CM/
IOCU control registers. Powering up from powered down
due to CPU power-up or si_cm_pwr_up will send the CM/
IOCU through a reset sequence, together with the CPU.

This bit is only used on the CM registers and is read-only
0 for the CPUs and DBU.

R/W 0

CMD 3:0 Reflects most recent placed sequencer command. See
definition in CPC_CMD_REG The sequencer will over-
write the field after a Reset command, or ci_*_pwr_up sig-
nal caused power up of the domain. The command reads
then as PwrUp.

R 0

Table 86: Core Status and Domain Configuration Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

186
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.5.3 CPC Control Clock Change (CC_CTL_REG) Register (offset = see below)

This register controls clock changes on corresponding device. It is instantiated for each Clk
domain.

Offset: 0 x08200 + 8 * IOCUNUM from GCR_BASE for IOCU[0..63] power domain.

0x08400 from GCR_BASE for memory port power domain.

0x4040 + 8 * AUXNUM from GCR_BASE for AUX[0..3] power domain.

0x9018 from GCR_BASE for CM power domain.

0x9118 from GCR_BASE for DBU power domain.

0xa018 + 0x100 * CORENUM from GCR_BASE for Core[0..63] power domain.

Figure 5.85 Control Clock Change Register Bit Assignments

31 24 23 22 19 18 16 15 10 9 8 7 6 3 2 0

0 CLIENT_SUPPORT
_SEMISYNC

0 CLIENT_
CLK_RATIO

0 CLIENT_CLK_
RATIO_STABLE

CLK_RATIO_
CHANGE_EN

SUPPORT_
SEMISYNC

0 CLK_
RATIO

Table 87: Control Clock Change Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:24 Reserved R 0

CLIENT_SUPPORT_
SEMISYNC

23 Indicates the current domain support semisync value.
This bit is unused for the CM local register.

R From
configuration

0 22:19 Reserved R 0

CLIENT_
CLK_RATIO

18:16 Indicates the current domain clock ratio. This value is
unpredictable when a clock ratio is in process, i.e.
CLIENT_CLK_RATIO_STABLE is 0.

R From
configuration

0 15:10 Reserved R 0

CLIENT_CLK_
RATIO_STABLE

9 Readback of client_clk_ratio_stable signal for this
domain. Indicates that the clock ratio for this domain is
stable, i.e., there is not a clock ratio change in process.

R 0

CLK_RATIO_
CHANGE_EN

8 Setting this to 1 enables this domain for register based
clock change. Setting this to 0 disables this domain for
register based clock change. When the clock change
completes this field is cleared.

R/W 0

SUPPORT_SEMISYN
C

7 Specifies that the domain supports semisync operation.
This requires the clock trees to be latency matched
between the cm clock domain and client domain. if
CLIENT_SUPPORT_SEMISYNC is 0, indicating that the
design does not support semi-synchronous clocks, then
SUPPORT_SEMISYNC is read-only with a value of 0.
This bit is unused for the CM local register.

R/W From
configuration

0 6:3 Reserved R 0

187
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

CLK_RATIO 2:0 Specifies the requested clock ratio (with respect to the
pre-scaled clock) for this domain when using register-
based clock changes.
For all domains except the CM, clock ratios of 1:1 through
1:8 are supported.
For the CM clock domain only ratios of 1:1 and 1:2 are
supported.
This field is encoded as follows:

000: CM clock ratio = 1:1, other clock ratio = 1:1
001: CM clock ratio = 2:1, other clock ratio = 2:1
010: CM clock ratio = reserved, other clock ratio = 3:1
011: CM clock ratio = reserved, other clock ratio = 4:1
100: CM clock ratio = reserved, other clock ratio = 5:1
101: CM clock ratio = reserved, other clock ratio = 6:1
110: CM clock ratio = reserved, other clock ratio = 7:1
111: CM clock ratio = reserved, other clock ratio = 8:1

R/W From
configuration

Table 87: Control Clock Change Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

188
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.5.4 CPC Power VP Stop (VP_STOP_REG) Register (offset = see below)

This register stops execution of harts. It is instantiated for each core power domain.

Offset: 0xa020 + 0x100 * CORENUM from GCR_BASE for Core[0..63] power domain.

Figure 5.86 VP Stop Register Bit Assignments

31 4 3 0

0 VP_STOP

Table 88: VP Stop Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:4 Reserved R 0

VP_STOP 3:0 If bit x is written 1 and bit x of
CPC.Pwr.VP_RUNNING_REG is 1, then hart x on the
local core will stop execution.

W1C Undefined

189
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.5.5 CPC VP Run (VP_RUN_REG) Register (offset = see below)

This register start execution of harts. It is instantiated for each core power domain.

Offset: 0xa028 + 0x100 * CORENUM from GCR_BASE for Core[0..63] power domain.

Figure 5.87 VP Run Register Bit Assignments

31 4 3 0

0 VP_RUN

Table 89: VP Run Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:4 Reserved R 0

VP_RUN 3:0 If bit x is written to 1 and bit x of
CPC.Pwr.VP_RUNNING_REG is 0, then hart x on the
local core will start execution from the reset vector, which
is specified in the GCR.HART.RESET_BASE Register.

Note that the Run state of each hart after a core reset is
determined by the corresponding si_core_vc_run_init_
pin (if the pin is 1 then the corresponding hart will be start
execution from the reset vector, as defined above, once
the reset sequence is complete).

W1S Undefined

190
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.5.6 CPC VP Running State (VP_RUNNING_REG) Register (offset = see below)

This register indicates which harts are in the running state. It is instantiated for each core
power domain.

Offset: 0xa030 + 0x100 * CORENUM from GCR_BASE for Core[0..63] power domain.

Figure 5.88 Core VP Running State Register Bit Assignments

31 4 3 0

0 VP_RUNNING

Table 90: Core VP Running State Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:4 Reserved R 0

VP_RUNNING 3:0 If bit x is 1, then hart x on the local core is in the Running
state. If bit x is a 0, then hart x on the local core is not in
the Running state. On reset the running state is deter-
mined by the value driven on the si_core_vc_run_init_.

The running state of a hart can be changed by writing a 1
to the corresponding bit in the
CPC.Pwr.VP_RUN_REG or CPC.Pwr.VP_STOP_REG, or
by asserting the si_vc_run_init_load_en signal, which
sets the running state for each hart based on the value
driven on si_core_vc_run_init.

R From
configuration

191
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.5.7 CPC Power Debug Interrupt (DBG_DBRK_REG) Register (offset = see below)

This register used to send a DINT (debug interrupt) to a specific hart, and to show which
harts are in debug mode. It is instantiated for each core power domain.

Offset: 0xa040 + 0x100 * CORENUM from GCR_BASE for Core[0..63] power domain.

Figure 5.89 Power Debug Interrupt Register Bit Assignments

63 62 32

Lock 0

31 16 15 0

DEBUGM DINT

Table 91: Power Debug Interrupt Register Bit Descriptions

Name Bits Description R/W Reset State

Lock 63 Writing 1 makes this register reserved until the CPC is
reset.

RW1 0

0 62:32 Reserved R 0

DEBUGM 31:16 Bit i of DEBUGM is 1 if the corresponding hart in this core
is in debug mode, 0 otherwise.

R 0

DINT 15:0 Writing any bit to 1 sends a DINT signal to the corre-
sponding hart in this core.

R/W 0

192
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.5.8 CPC Power Controls Deep Sleep (RAM_SLEEP_REG) Register (offset = see below)

This register controls deep sleep and shut down power state of RAMs. It is instantiated for
each power domain.

Offset: 0x9050 from GCR_BASE for CM power domain.

0x9150 from GCR_BASE for DBU power domain.

0xa050 + 0x100 * CORENUM from GCR_BASE for Core[0..63] power domain.

Figure 5.90 Power Controls Deep Sleep Register Bit Assignments

31 30 24 23 16 15 14 8 7 0

RAM_DEEP_SLEEP_
DISABLE

0 RAM_DEEP_SLEEP_
WAKEUP_DELAY

RAM_SHUT_DOWN_
DISABLE

0 RAM_SHUT_DOWN_WAKEUP
_DELAY

Table 92: Power Controls Deep Sleep Register Bit Descriptions

Name Bits Description R/W Reset State

RAM_DEEP_SLEEP_
DISABLE

31 When this bit is 0, RAMs on the local device will be sig-
naled to enter a Deep Sleep low power state when the
CPC power state for the device is DClkOff (D2).
When this bit is 1, the CPC will not signal the RAMs on
the local device to enter the Deep Sleep low power state.

R/W From
configuration

0 30:24 Reserved R 0

RAM_DEEP_SLEEP_
WAKEUP_DELAY

23:16 This value is used when the CPC is waking up a RAM that
has been previously placed in the Deep Sleep state. The
CPC ensures that the RAM is signaled to come out of
Deep Sleep mode for the number of CPC clocks specified
this register prior transitioning the local device into a run-
ning state.

R/W From
configuration

RAM_SHUT_DOWN_
DISABLE

15 When this bit is 0, RAMs on the local device will be sig-
naled to enter a Shut Down low power state when the
CPC power state for the device is PwrDwn (D0), UClkOff
(U2), or U0,U1,D1 transitional states.
When this bit is 1, the CPC will not signal the RAMs on
the local device to enter the Shut Down low power state.

R/W From
configuration

0 14:8 Reserved R 0

RAM_SHUT_DOWN_
WAKEUP_DELAY

7:0 This value is used when the CPC is waking up a RAM that
has been previously placed in the Shut Down state. The
CPC ensures that the RAM is signaled to come out of
Shut Down mode for the number of CPC clocks specified
this register prior transitioning the local device into a run-
ning state.

R/W From
configuration

193
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.5.9 CPC Power Fault Status (FAULT_STATUS) Register (offset = see below)

This register domain fault status, for FUSA CPUs only. It is instantiated for the CM and Core
power domains, for FUSA CPUs only.

Offset: 0x9068 from GCR_BASE for CM power domain.

0xa068 + 0x100 * CORENUM from GCR_BASE for Core[0..63] power domain.

Figure 5.91 Power Fault Status Register Bit Assignments

63 32

0

31 12 11 10 9 8 7

0 FAULT_MBIST_
STATUS

FAULT_LBIST_
STATUS

FAULT_PROTOCOL
_STATUS

FAULT_TIMEOUT_
STATUS

FAULT_PAR_REG_
STATUS_STATUS

6 5 4 3 2 1 0

FAULT_PAR_REG
CONTROL

STATUS

FAULT_APAR
_STATUS

FAULT_DPAR
_STATUS

FAULT_RAM_
ADDR_STATUS

FAULT_RAM_DATA_
UNCORR_STATUS

FAULT_RAM_DATA
_CORR_STATUS

FAULT_
INTEGRITY_

STATUS

Table 93: Power Fault Status Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:12 Reserved R 0

FAULT_MBIST_
STATUS

11 An MBIST error was detected. R 0

FAULT_LBIST_
STATUS

10 An LBIST error was detected. R 0

FAULT_PROTOCOL_
STATUS

9 An interface protocol fault was detected. R 0

FAULT_TIMEOUT_
STATUS

8 A transaction time-out error was detected. R 0

FAULT_PAR_REG_
STATUS_STATUS

7 A parity error in a status register detected. R 0

FAULT_PAR_REG_
CONTROL_STATUS

6 A parity error in a control register was detected. R 0

FAULT_APAR_
STATUS

5 An address path parity error was detected. R 0

FAULT_DPAR_
STATUS

4 A data path parity error was detected. R 0

FAULT_RAM_ADDR_
STATUS

3 An SRAM address fault was detected. R 0

FAULT_RAM_DATA_U
NCORR_STATUS

2 An un-correctable data fault in SRAM was detected. R 0

FAULT_RAM_DATA_C
ORR_STATUS

1 A correctable data fault in SRAM detected. R 0

194
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

FAULT_INTEGRITY_
STATUS

0 An integrity check fault was detected. R 0

Table 93: Power Fault Status Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

195
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.5.10 CPC Power Fault Set (FAULT_SET) Register (offset = see below)

This register any bit written to 1 will set the corresponding fault bit. Bits written to 0 have no
effect. Read back is zero. It is instantiated for the CM and Core power domains, for FUSA
CPUs only.

Offset: 0x9070 from GCR_BASE for CM power domain.

0xa070 + 0x100 * CORENUM from GCR_BASE for Core[0..63] power domain.

Figure 5.92 Power Fault Set Register Bit Assignments

63 32

0

31 12 11 10 9 8 7

0 FAULT_MBIST_SET FAULT_LBIST_SET FAULT_PROTOCOL
_SET

FAULT_TIMEOUT_
SET

FAULT_PAR_REG_
STATUS_SET

6 5 4 3 2 1 0

FAULT_PAR_REG
CONTROL

SET

FAULT_APAR
_SET

FAULT_DPAR
_SET

FAULT_RAM_
ADDR_SET

FAULT_RAM_DATA_
UNCORR_SET

FAULT_RAM_DATA
_CORR_SET

FAULT_
INTEGRITY_

SET

Table 94: Power Fault Set Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:12 Reserved R 0

FAULT_MBIST_SET 11 Write 1 to set the MBIST error bit. W1S 0

FAULT_LBIST_SET 10 Write 1 to set the LBIST error bit. W1S 0

FAULT_PROTOCOL_SET 9 Write 1 to set the interface protocol fault was
detected.

W1S 0

FAULT_TIMEOUT_SET 8 Write 1 to set the transaction time-out error bit. W1S 0

FAULT_PAR_REG_
STATUS_SET

7 Write 1 to set the parity register error bit. W1S 0

FAULT_PAR_REG_
CONTROL_SET

6 Write 1 to set the parity error control bit. W1S 0

FAULT_APAR_SET 5 Write 1 to set the address path parity error bit. W1S 0

FAULT_DPAR_SET 4 Write 1 to set the data path parity error bit. W1S 0

FAULT_RAM_ADDR_SET 3 Write 1 to set the the SRAM address fault bit. W1S 0

FAULT_RAM_DATA_UNCO
RR_SET

2 Write 1 to set the un-correctable data fault bit. W1S 0

FAULT_RAM_DATA_CORR
_SET

1 Write 1 to set the correctable data fault bit. W1S 0

FAULT_INTEGRITY_SET 0 Write 1 to set the integrity check fault bit. W1S 0

196
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.5.11 CPC Power Fault Clear (FAULT_CLR) Register (offset = see below)

This register any bit written to 1 will clear the corresponding fault bit. Bits written to 0 have
no effect. Read back is zero. It is instantiated for the CM and Core power domains, for FUSA
CPUs only.

Offset: 0x9078 from GCR_BASE for CM power domain.

0xa078 + 0x100 * CORENUM from GCR_BASE for Core[0..63] power domain.

Figure 5.93 Power Fault Clear Register Bit Assignments

63 32

0[51:20]

31 12 11 10 9 8 7

0[19:0] FAULT_MBIST_
CLR

FAULT_LBIST_
CLR

FAULT_PROTOCOL
_CLR

FAULT_TIMEOUT_
CLR

FAULT_PAR_REG_
STATUS_CLR

6 5 4 3 2 1 0

FAULT_PAR_REG
CONTROL

CLR

FAULT_APAR
_CLR

FAULT_DPAR
_CLR

FAULT_RAM_
ADDR_CLR

FAULT_RAM_DATA_
UNCORR_CLR

FAULT_RAM_DATA
_CORR_CLR

FAULT_
INTEGRITY_

CLR

Table 95: Power Fault Clear Register Bit Descriptions

Name Bits Description R/W Reset State

0 63:12 Reserved R 0

FAULT_MBIST_CLR 11 Write 1 to clear the MBIST error bit. W1C 0

FAULT_LBIST_CLR 10 Write 1 to clear the LBIST error bit. W1C 0

FAULT_PROTOCOL_CLR 9 Write 1 to clear the interface protocol fault was
detected.

W1C 0

FAULT_TIMEOUT_CLR 8 Write 1 to clear the transaction time-out error bit. W1C 0

FAULT_PAR_REG_
STATUS_CLR

7 Write 1 to clear the parity register error bit. W1C 0

FAULT_PAR_REG_
CONTROL_CLR

6 Write 1 to clear the parity error control bit. W1C 0

FAULT_APAR_CLR 5 Write 1 to clear the address path parity error bit. W1C 0

FAULT_DPAR_CLR 4 Write 1 to clear the data path parity error bit. W1C 0

FAULT_RAM_ADDR_CLR 3 Write 1 to clear the the SRAM address fault bit. W1C 0

FAULT_RAM_DATA_UNCO
RR_CLR

2 Write 1 to clear the un-correctable data fault bit. W1C 0

FAULT_RAM_DATA_CORR
_CLR

1 Write 1 to clear the correctable data fault bit. W1C 0

FAULT_INTEGRITY_CLR 0 Write 1 to clear the integrity check fault bit. W1C 0

197
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.5.12 CPC Power Configuration (CONFIG) Register (offset = see below)

This register contains configuration parameters for the domain.

It is instantiated for each power domain.

Offset: 0x9090 from GCR_BASE for CM power domain.

0x9190 from GCR_BASE for DBU power domain.

0xa090 + 0x100 * CORENUM from GCR_BASE for Core[0..63] power domain.

Figure 5.94 Power Configuration Register Bit Assignments

31 12 11 10 9 0

0 IOCU_TYPE PVP

Table 96: Power Configuration Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:12 Reserved R 0

IOCU_TYPE 11:10 Indicates type of Local Agent
0: The local agent is a CPU Core
1: The local agent is a non-caching IOCU.

R From
configuration

PVP 9:0 One less than the number of harts for CPUs, 0 for IOCUs. R From
configuration

198
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.6 FDC.Global Registers

The FDC.Global region contains the following registers, which are described in detail in the
subsequent per-register descriptions:

Table 97: FDC.Global Mapped Registers

Offset from GCR_BASE Register Block Name Description

0x3F000 FDC.Global.FDACSR FDC Access Control and Status Register

0x3F008 FDC.Global.FDCFG FDC Configuration Register

0x3F010 FDC.Global.FDSTAT FDC Configuration Register

0x3F018 FDC.Global.FDRX FDC Receive Register

0x3F020
0x3F028

.......
0x3F098

FDC.Global.FDTX[0-15] FDC Transmit Registers

199
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.6.1 FDC Global Access Control and Status (FDACSR) Register (offset = 0x3F000)

This register is FDC access control and status register

Figure 5.95 Global Access Control and Status Register Bit Assignments

31 24 23 22 21 16 15 12 11 0

DEVTYPE 0 DEVSIZE DEVREV 0

Table 98: Global Access Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

DEVTYPE 31:24 The type of device. R 253

0 23:22 Reserved R 0

DEVSIZE 21:16 The number of extra 64-byte blocks allocated to this
device. The value 0x2 indicates that this device uses 2
extra, or 3 total blocks.

R 2

DEVREV 15:12 The revision number of the device. The value 0x1 indi-
cates that this is the second version of FDC (with deeper
FIFOs).

R 1

0 11:0 Reserved R 0

200
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.6.2 FDC Global Configuration (FDCFG) Register (offset = 0x3F008

This register is FDC configuration register

Figure 5.96 Global Configuration Register Bit Assignments

31 28 27 24 23 20 19 18 17 16 15 8 7 0

0 TxFIFOSize_Ext 0 Tx_IntThresh Rx_IntThresh TxFIFOSize RxFIFOSize

Table 99: Global Configuration Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:28 Reserved R 0

TxFIFOSize_Ext 27:24 Upper bits of transmit FIFO size. R 0

0 23:20 Reserved R 0

Tx_IntThresh 19:18 Transmit Interrupt Threshold.

00 = no interrupt
01 = FIFO Full
10 = FIFO Not Empty
11 = FIFO Almost Full (contains 0 or 1 empty entry)

R/W 0

Rx_IntThresh 17:16 Receive Interrupt Threshold.

00 = no interrupt
01 = FIFO Full
10 = FIFO Not Empty
11 = FIFO Almost Full (contains 0 or 1 empty entry)

R/W 0

TxFIFOSize 15:8 Lower bits of the number of entries in the Transmit FIFO. R 0

RxFIFOSize 7:0 Number of entries in the Receive FIFO. Set using TAP
CONTROL register.

R 0

201
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.6.3 FDC Global Status (FDSTAT) Register (offset = 0x3F010)

This register is FDC status register.

Figure 5.97 Global Status Register Bit Assignments

31 24 23 16 15 12 11 8 7 4 3 2 1 0

Tx_Count Rx_Count Tx_Count_Ext 0 RxChan RxE RxF TxE TxF

Table 100: Global Status Register Bit Descriptions

Name Bits Description R/W Reset State

Tx_Count 31:24 Lower bits of number of occupied entries in the transmit
FIFO.

R 0

Rx_Count 23:16 Number of occupied entries in the receive FIFO. R 0

Tx_Count_Ext 15:12 Upper bits of number of occupied entries in the transmit
FIFO.

R 0

0 11:8 Reserved R 0

RxChan 7:4 Channel number of the top item in the receive FIFO. Only
valid if FIFO not empty.

R Undefined

RxE 3 Receive FIFO is empty. R 1

RxF 2 Receive FIFO is full. R 0

TxE 1 Transmit FIFO is empty. R 1

TxF 0 Transmit FIFO is full. R 0

202
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.6.4 FDC Global Receive (FDRX) Register (offset = 0x3F018)

This register is FDC receive register

Figure 5.98 Global Receive Register Bit Assignments

31 0

FDC_rxdata

Table 101: Global Receive Register Bit Descriptions

Name Bits Description R/W Reset State

FDC_rxdata 31:0 If FDC receive FIFO is not empty, reading this register will
return the top item from the FIFO and advance the FIFO.

If the FDC receive FIFO is empty, the effect of reading this
register is undefined.

R Undefined

203
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.6.5 FDC Global Transmit (FDTX[0-15]) Register (offset = 0x3F020)

This register is FDC transmit registers.

Figure 5.99 FDC Global Transmit Register Bit Assignments

31 0

FDC_txdata

Table 102: FDC Global Transmit Register Bit Descriptions

Name Bits Description R/W Reset State

FDC_txdata 31:0 IF FDC transmit FIFO is not full, writing this register adds
one item to the transmit FIFO. The channel number (n) is
derived from the low-order bits of the register address
(offset 0x20 = channel 0, offset 0x28 = channel 1, etc).

If FDC transmit FIFO is full, the effect of writing this regis-
ter is undefined.

W Undefined

204
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.7 Trace Funnel (TRF) Global Registers

The TRF.Global region contains the following registers, which are described in detail in the
subsequent per-register descriptions:

Table 103: TRF.Global Mapped Registers

Offset from GCR_BASE Register Block Name Description

0x3F100 TRF.Global.CONTROL Trace Funnel Control

0x3F108 TRF.Global.CONFIG Trace Funnel Configuration

0x3F110 TRF.Global.WRITEPTR Trace Funnel Write Pointer

0x3F118 TRF.Global.READPTR Trace Funnel Read Pointer

0x3F120
0x3F128

.......
0x3F158

TRF.Global.DATA[0-7] Trace Data [0-7]

0x3F160 TRF.Global.STUSER System Trace User Control

0x3F168 TRF.Global.STENABLE System Trace Enable

205
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.7.1 TRF Global Trace Funnel Control (CONTROL) Register (offset = 0x3F100)

This register is trace funnel control register

Figure 5.100 Global Trace Funnel Control Register Bit Assignments

31 30 21 20 19 18 17 16 15 14 13 10 9 8 7 5 4 3 2 1 0

WE 0 STCE IDLE TL TO RM TR BF 0 TM CR CAL 0 PIB_MCP OfC EN

Table 104: Global Trace Funnel Control Register Bit Descriptions

Name Bits Description R/W Reset State

WE 31 Write enable. Other fields of this register are written only
when WE is written with 1 in the same write operation.

W 0

0 30:21 Reserved R 0

STCE 20 System trace port enable. Write 1 to allow the funnel to
capture system trace data.

R/W 0

IDLE 19 Funnel idle. Set when funnel has finished progressing
pending TWs. In on-chip trace mode, idle is set when all
TWs has been written to the on-chip memory. In off-chip
trace mode, idle is set when all TWs has been sent to the
PIB.

R 1

TL 18 Trace lock. Because either program or probe may use
trace, before using trace they must first lock the trace
resource by writing 1 to this field and its owner ID in field
TO. Lock is successful when both TL and TO read back
the written values. Only the owner can unlock by writing 0
to TL and its owner ID in field TO.

R 0

TO 17 Trace owner. 1 for probe and 0 for program. R/W 0

RM 16 Read memory. Write 1 to initiate an SRAM read at
TF_READPTR.

W 0

TR 15 Trace memory reset. When written to 1, the address
pointers for on-chip trace memory are reset to zero. BF is
also reset.

W 0

BF 14 Buffer full indicator. Set when the on-chip trace memory is
full and writing has wrapped back to the beginning. This
bit is cleared by writing 1 to TR.

R 0

0 13:10 Reserved R 0

206
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

TM 9:8 Trace Mode. This field determines how the trace memory
is filled when using the simple-break control in the
PDtrace IF to start or stop trace. In Trace-To mode, the
on-chip trace memory is filled, continuously wrapping
around, overwriting older Trace Words, as long as there is
trace data coming from the core. In Trace-From mode, the
on-chip trace memory is filled from the point that the core
starts tracing until the on-chip trace memory is full (when
the write pointer address is the same as the start pointer
address). In both cases, de-asserting the EN bit in this
register will also stop the fill to the trace memory. If a
TCBTRIGx trigger control register is used to start/stop
tracing, then this field should be set to Trace-To mode.
Description Read / Write Reset State Compliance Name
Bits
TM Trace Mode

00 Trace-To
01 Trace-From
10 Reserved
11 Reserved

R 0

CR 7:5 Off-chip Clock Ratio. Writing this field sets the ratio of the
core clock to the off-chip trace memory interface clock.
Table 8.6 shows the encoding which only includes ratios
where the processor clock is faster than trace clock.
Remark: For example, a clock ratio of 1:2 implies a two
times slowdown of the Probe interface clock to the core
clock. However, one data packet is sent per core clock ris-
ing edge, while a data packet is sent on every edge of the
Probe interface clock, since the Probe interface works in
double data rate (DDR) mode. Please refer to MIPS
PDTrace Specification document for the encoding.

R/W 0

CAL 4 Calibrate off-chip trace interface. If set, the off-chip trace
pins will produce the trace pattern shown below in con-
secutive trace clock cycles. If more than 4 data pins exist,
the pattern is replicated for each set of 4 pins. The pattern
repeats from top to bottom until the Cal bit is deasserted.
Note: The clock source of the TCB and PIB must be run-
ning. Please refer to MIPS PDTrace Specification docu-
ment for the pattern.

R/W 0

0 3 Reserved R 0

PIB_MCP 2 This bit is meaningful only if OfC bit is set to 1. If
PIB_MCP is set to 1, trace is sent to off-chip memory via
MCP port if set to 0, trace is sent to off-chip memory via
PIB. This bit is not active if only on-chip mode is imple-
mented. If MCP interface is not present this bit is read
only and set to 0.

R/W 0

OfC 1 If set to 1, trace is sent to off-chip memory via PIB. If set
to 0, trace is sent to on-chip memory. This bit is read-only
if only on-chip or only off-chip mode is implemented.

R/W Preset

Table 104: Global Trace Funnel Control Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

207
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

EN 0 Enables trace funnel to accept data from cores, CM and
system trace and send to trace storage. Setting EN to 0
stops accepting data from trace sources but continues
transferring trace words already accepted to SRAM. In
on-chip trace-from mode, EN would be set to 0 when on-
chip trace memory is full.

R/W 0

Table 104: Global Trace Funnel Control Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

208
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.7.2 TRF Global Trace Funnel Configuration (CONFIG) Register (offset = 0x3F108)

This register is the trace funnel configuration register.

Figure 5.101 Global Trace Funnel Configuration Register Bit Assignments

31 26 25 24 23 22 21 20 17 16 15 14 12 11 10 8 7 6 5 4 3 0

0 TAG_B 0 SRC_B SZ 0 CRMAX 0 CRMIN PW ONT OfT REV

Table 105: Global Trace Funnel Configuration Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:26 Reserved R 0

TAG_B 25:24 Size of TAG field in TRACE_WORD. Encoded as:

00 5 bits
01 6 bits
10 7 bits
11 8 bits

R Preset

0 23 Reserved R 0

SRC_B 22:21 Size of SRC filed in TRACE WORD. Encoded as:

00 1 bit
01 2 bits
10 3 bits
11 4 bits

R Preset

SZ 20:17 On-chip trace memory size. This field holds the encoded
size of the on-chip trace memory. The size in bytes is
given by 2(SZ+8) and ranges from 256 bytes to 8 mega-
bytes.

R Preset

0 16:15 Reserved R 0

CRMAX 14:12 Off-chip Maximum Clock Ratio. This field indicates the
maximum ratio of the core clock to the off-chip trace
memory interface clock.

R Preset

0 11 Reserved R 0

CRMIN 10:8 Off-chip Minimum Clock Ratio. This field indicates the
minimum ratio of the core clock to the off-chip trace mem-
ory interface clock.

R Preset

PW 7:6 Probe Width: Number of bits available on the off-chip
trace interface TR_DATA pins. The number of TR_DATA
pins is encoded, as shown in the table.
PW Number of bits used on TR_DATA. Encoded as:

00 4 bits
01 8 bits
10 16 bits
11 reserved

R Preset

ONT 5 Indicates on-chip trace is present. R Preset

OfT 4 Indicates off-chip trace is present. R Preset

REV 3:0 Indicates revision of Trace Funnel. R Preset

209
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.7.3 TRF Global Trace Funnel Write Pointer (WRITEPTR) Register (offset = 0x3F110)

This register is trace funnel write pointer.

Figure 5.102 Global Trace Funnel Write Pointer Register Bit Assignments

31 0

WRITEPTR

Table 106: Global Trace Funnel Write Pointer Register Bit Descriptions

Name Bits Description R/W Reset State

WRITEPTR 31:0 Contains the word address of the next SRAM location to
be written when trace is being recorded.
The format of this register is dependent upon the memory
data width:

31:N 0
N-1:M WRITEPTR
M-1:0 0

The lower M bits are always 0 since the pointer is always
aligned on a TRF_MEM_DATA_WIDTH bits boundary. If
this register is written to before enabling the funnel, the
same value must be written to the read pointer.

R/W 0

210
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.7.4 TRF Global Trace Funnel Read Pointer (READPTR) Register (offset = 0x3F118)

This register is trace funnel read pointer

Figure 5.103 Global Trace Funnel Read Pointer Register Bit Assignments

31 0

READPTR

Table 107: Global Trace Funnel Read Pointer Register Bit Descriptions

Name Bits Description R/W Reset State

READPTR 31:0 Contains the word address of the next SRAM location to
be read when trace is being read via the RRB slave.
The format of this register is dependent upon the memory
data width:

31:N 0
N-1:M READPTR
M-1:0 0

The lower M bits are always 0 since the pointer is always
aligned on a TRF_MEM_DATA_WIDTH bits boundary.
READPTR is automatically incremented and an SRAM
read operation is initiated when last TF_DATA register is
read

R/W 0

211
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.7.5 TRF Global Trace Data (DATA[0-7]) Register (offset = see below)

This register is trace data 0 .. 7 register.

Offset: 0x3f120 + 0x8 * i from GCR_BASE for TRF.Global.DATA[i].

Figure 5.104 Global Trace Data Register Bit Assignments

63 0

DATA

Table 108: Global Trace Data Register Bit Descriptions

Name Bits Description R/W Reset State

DATA 63:0 Holding register for trace word data read from SRAM. A
trace memory SRAM read is initiated when
TRF.Global.CONTROL.RM is written with 1 or when
TRF.Global.DATA[7] is read.

To read a continuous block of trace, initialize
TRF.GLOBAL.READPTR to the desired starting location,
write 1 to TRF.Global.CONTROL.RM, then read
TRF.Global.DATA[0] through TRF.Global.DATA[7] in
order.

Repeat TRF.Global.DATA[0] through TRF.Global.DATA[7]
until all words have been read.

R/W 0

212
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.7.6 TRF Global System Trace User Control (STUSER) Register (offset = 0x3F160)

This register is system trace user control.

Figure 5.105 Global System Trace User Control Register Bit Assignments

31 0

STUSER

Table 109: Global System Trace User Control Register Bit Descriptions

Name Bits Description R/W Reset State

STUSER 31:0 System trace user control, wired to the top level pin of
co_tc_sys_user_ctl.

R/W 0

213
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.7.7 TRF Global System Trace Enable (STENABLE) Register (offset = 0x3F168)

This register system trace enable.

Figure 5.106 Global System Trace Enable Register Bit Assignments

31 0

STENABLE

Table 110: Global System Trace Enable Register Bit Descriptions

Name Bits Description R/W Reset State

STENABLE 31:0 System trace enable, wired to the top level pin of
co_tc_sys_enable.

R/W 0

214
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.8 GCR.U User Mode Registers

The GCR.U region contains shadow copies of specific GCRs which software can choose to
make accessible from user mode. The GCR.U region occupies the last 4KB of the 512KB
memory mapped register block, at offset 0x7F000 - 0x7FFFF from GCR_BASE.

The accessibility of the memory mapped registers from machine, supervisor and user modes
is controlled by allowing or disallowing access to the corresponding physical addressees via
programming of Physical Memory Protection (PMP) and page tables.

Table 111: GCR.U User Mode Mapped Registers

Offset from GCR_BASE Register Block Name Description

0x7F050 GCR.U.MTIME_REG U-mode shadow copy of mtime register

0x7F090 GCR.U.HRTIME_REG U-mode shadow copy of high resolution timer
register

215
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.8.1 GCR.U User Mode Timer (MTIME_REG) Register (offset = 0x7F050)

This register read-only shadow copy of the RISC-V mtime register.

Software can chose whether or not to make this register and the other registers in the 4KB
GCR.U block accessible from U-mode by appropriate programming of PMP and page tables.

Figure 5.107 User Mode Timer Register Bit Assignments

63 0

MTIME_REG

Table 112: User Mode Timer Register Bit Descriptions

Name Bits Description R/W Reset State

MTIME_REG 63:0 Read-only shadow copy of the RISC-V mtime register. R 0

216
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5.14.8.2 GCR.U High Resolution Timer (L2_CONFIG) Register (offset = 0x7F090)

This register read-only shadow copy of the high resolution timer register.

Software can chose whether or not to make this register and the other registers in the 4KB
GCR.U block accessible from U-mode by appropriate programming of PMP and page tables.

Figure 5.108 High Resolution Timer Register Bit Assignments

63 0

HRTIME_REG

Table 113: High Resolution Timer Register Bit Descriptions

Name Bits Description R/W Reset State

HRTIME_REG 63:0 High resolution timer register. R 0

Chapter 6

217
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

Power Management

Power management in the P8700-F Multiprocessing System is handled by the Cluster Power
Controller (CPC). The P8700-F CPC uses the concept of domains to manage both power and
clocking throughout the device. Using registers, the programmer can enable or disable these
domains in order to reduce overall power consumption.

The CPC implements two types of domains; power and clock. In each case, registers are
instantiated on a per-domain basis so that the domain can be individually controlled by kernel
software. This is true for each power domain and each clock domain.

• For the power domains, kernel software uses registers in the CPC to control the power to
individual elements in the system such as cores, IOCU’s, and the Coherence Manager
(CM). The various power domains that can be individually controlled are defined in the
section entitled Power Domains.

• For the clock domains, kernel software uses registers in the CPC to control the clock fre-
quency to the individual elements in the system such as cores, IOCU’s, Coherence Man-
ager (CM), and memory. In addition to clock management for the various devices in the
P8700-F Multiprocessing System, the CPC also provides the ability to change the clock
ratios in memory, and put the caches into a low-power state. The various clock domains
that can be individually controlled are defined in the section entitled Clock Domains.

This chapter provides an overview of how power is managed in the P8700-F Multiprocessing
System and identifies the various power and clock domains the programmer can use to man-
age power consumption in the device. Other programming principles include setting the
device to coherent or non-coherent mode, requestor access of CPC registers, system power-
up policy, programming examples of a clock domain change and clock delay change, power-
ing up the CPC in standalone mode (no cores enabled), reset detection, Hart run/suspend
mechanism, local RAM shutdown and wakeup procedure, accessing registers in another
power domain, and fine tuning internal and external signal delays to help the programmer
easily integrate the device into a system environment.

6.1 Overview

This section provides an overview of the power and clock management schemes implemented
in the P8700-F Multiprocessing System.

6.1.1 Power Domains

Figure 6.1 shows the various power domains in the P8700-F Multiprocessing System. Regis-
ters are instantiated for each power domain to allow for individual control. Note that in this
figure, core 1 through core n are optional blocks depending on the system configuration.

218
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Figure 6.1 Power Domains in the P8700-F Multiprocessing System

6.1.2 Clock Domains

Figure 6.2 shows the various clock domains in the P8700-F Multiprocessing System. Each
clock domain shown can be individually controlled using the CPC register interface.

Figure 6.2 Clock Domains in the P8700-F Multiprocessing System

6.1.3 Core and IOCU Selection

Figure 6.2 shows the maximum possible number of cores and IOCUs that can be instantiated
into the P8700-F MPS. However, the total number of cores and IOCUs cannot exceed eight.
So for example, if there are two cores, there cannot be more than six IOCUs. If there are
four cores, there cannot be more than four IOCUs, etc.

6.1.4 Overview of Power States

Each device in Figure 6.1, except the CM, contains its own set of Core-Local registers that
can be used to independently place each device into one of the following four power states by
programming the CMD field (bits 3:0) of the CPC Local Command Register.

Note that each command can only be executed in non-coherent mode. If a command is exe-
cuted in coherent mode, the command is queued, but not processed by the CPC until the
device has transitioned from coherent mode to non-coherent mode. For more information,
refer to the section entitled Enabling Coherent Mode.

Core 0

Core 0
Power Domain

Core 1

Core 1
Power Domain

Core n

Core n
Power Domain

CM3

CM3
Power Domain

DBU

Debug Unit
Power Domain

Core 0

Core 0
Clock Domain

Core 1

Core 1
Clock Domain

Core 5

Core 5
Clock Domain

CM3.5

CM3.5
Clock Domain

IOCU0

IOCU0
Clock Domain

Memory

Memory
Clock Domain

IOCU7

IOCU7
Clock Domain

AUX0

AUX0
Clock Domain

AUX3

AUX3
Clock Domain

219
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

The states are as follows:

• ClockOff - a power domain is brought into ClockOff state when a value of 0x1 is
programmed into the 4-bit CMD field of the CPC.Pwr.CMD_REG register. If the domain
was powered down before, the power-on sequence is applied according to
CPC_Core_STAT_CONF_REG settings. If the domain was active before and was in non-
coherent operation, the power domain is brought into the ClockOff state. A domain in
the ClockOff state can be sent into operation using the PwrUp command.

A ClockOff command given to a domain in coherent operation remains inactive until
the device has left the coherent mode of operation. Sending a ClkOff command to the
CPC before a previous command has completed causes the CPC domain target to be
redirected towards ClockOff. However, the previous steady state can be observed
temporarily before the newly programmed state is reached. Refer to the section
entitled Enabling Coherent Mode for more information on enabling and disabling
coherence mode.

• PwrDown. A power domain is brought into PwrDown state when a value of 0x2 is
programmed into the 4-bit CMD field of the CPC.Pwr.CMD_REG register. This command
uses setup values in the CPC_Core_STAT_CONF_REG register.

A PwrDown command given to a domain in coherent operation will remain inactive
until the device has left the coherent mode of operation. Sending a PwrDown
command to the CPC before a previous command has completed causes the CPC
domain target to be redirected towards PwrDown.

• PwrUp - A power domain is brought into PwrUp state when a value of 0x3 is
programmed into the 4-bit CMD field of the CPC.Pwr.CMD_REG register. This command
uses setup values in the CPC_Core_STAT_CONF_REG register. The execution of this
command depends on the previous domain power state. If the domain is in the
powered-down state, a PwrUp command enables power for the domain, applies the
clocks and reset, and brings the domain into an operational state.

• Reset - A power domain is brought into Reset state when a value of 0x4 is
programmed into the 4-bit CMD field of the CPC.Pwr.CMD_REG register. This command
allows a domain in the non-coherent operation to be reset. It also can be sent to a
domain in power-down or clock-off mode. The domain will then become active, and a
reset sequence is executed which leads to an operational steady state of the domain.

6.2 Individual Clock Gating

The P8700-F Multiprocessing System provides two levels of clock gating. In addition to the
individual clock gating of each device, global clock gating to all devices simultaneously can be
performed by adjusting the ratio of the clock prescaler as shown in Figure 6.3.

220
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Figure 6.3 Individual and Global Clock Gating in the P8700-F Multiprocessing System

The clock prescaler can be programmed to reduce the master input clock by a frequency
range of 1:1 to 1:256. The output of the prescaler becomes the master clock input to all
other devices in the system.

6.3 Global Control Block Register Map

All registers in the Global Control Block are 64 bits wide and should only be accessed using
aligned 64-bit uncached load/stores. Reads from unpopulated registers in the CPC address
space return 0x0, and writes to those locations are silently dropped without generating any
exceptions.

Table 6.1 Global Control Block Register Map (Relative to Global Control Block Offset)

Register Offset
in Block Name Type Description

0x0008 CPC Global Sequence Delay Counter
(CPC_SEQDEL_REG)

R/W Time between microsteps of a CPC
domain sequencer in CPC clock
cycles.

0x0010 CPC Global Rail Delay Counter Register
(CPC_RAIL_REG)

R/W Rail power-up timer to delay CPS
sequencer progress until the gated
rail has stabilized.

0x0018 CPC Global Reset Width Counter Register
(CPC_RESETLEN_REG)

R/W Duration of any domain reset
sequence.

0x0020 CPC Global Revision Register
(CPC_REVISION_REG)

R RTL Revision of CPC

0x0028 CPC Global Clock Control Register
(CPC_CC_CTL_REG)

R CPC global clock change configura-
tion, control and status. Enables
clock change for all clock change
enable domains of the cluster.

Clock
Prescaler

(Master Input Clock)

Core 0

1:1 to 1:256

1:1 to 1:8

1:1 to 1:8

1:1 to 1:8

1:1 to 1:8

1:1 to 1:2

1:1 to 1:8

si_ref_clk

clock gater

Core n
clock gater

IOCU0
clock gater

IOCU1
clock gater

CM
clock gater

Memory
clock gater

Core 0

Core n

IOCU0

IOCU1

CM

Memory

221
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

6.4 Local Control Blocks

All registers in the CPC Local Control Block are 64 bits wide and should only be accessed
using aligned 64-bit uncached load/stores. Reads from unpopulated registers in the CPC
address space return 0x0, and writes to those locations are silently dropped without generat-
ing any exceptions. A set of these registers exists for each core in the P8700-F MPS.

0x0030 CPC Global CM Powerup Register
(CPC_PWRUP_CTL_REG)

R Controls Power of CM even inde-
pendent of Cores' power states.

0x0038 CPC Reset Release Register
(CPC_RES_REL_REG)

R Control Reset release and Clock
Enable timing.

0x0040 CPC Global Reset Occurred Register
(CPC_ROCC_CTL_REG)

R Register to indicate which cores
have been reset.

0x0048 CPC Global Reset Occurred Register
(CPC_PRESCALE_CC_CTL_REG)

R Controls Precale Clock changes.

0x0050 MTIME Register
(CPC_MTIME_REG)

R/W RISCV timer. Register can be writ-
ten to synchronize with other clus-
ter's time.

0x0058 Counter Control for MTIME and HRTIME
(CPC_TIMECTL_REG)

R/W Support for Software-assisted multi-
cluster time synchronization

0x0060 RESERVED Reserved.

0x0068 CPC Global Fault Status Register
(CPC_FAULT_STATUS)

R/W Logical OR of all domain status reg-
isters.

0x0070 CPC Global Fault Supported Register
(CPC_FAULT_SUPPORTED)

R/W

0x0078 CPC Global Fault Enable Register
(CPC_FAULT_ENABLE)

R/W

0x0080,
0x0088

R/W

0x0090 HRTIME Counter Register
(CPC_HRTIME_REG)

R/W

0x0098 - 0x0134 CPC GLOBAL RESERVED R/W

0x0138 CPC Global Config Register
(CPC_CONFIG)

R/W

0x0140 CPC System Configuration Register
(CPC_SYS_CONFIG)

R/W

0x0200 - 0x03FF CPC_IOCU Clock Change Control Register (
CPC_IOCUx_CC_CTL_REG)

with x from 0 to 63)

R/W

0x0400 CPC_MEM_CC_CTL_REG R/W

0x0404 - 0x0408 CPC_AUXn_CC_CTL_REG , n = 0 3 R/W

Table 6.1 Global Control Block Register Map (Relative to Global Control Block Offset) (continued)

Register Offset
in Block Name Type Description

222
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

The register offsets shown are relative to the offsets listed in Table 6.2.

6.5 CPC Register Programming

This section describes some of the programming functions that can be performed via the CPC
registers.

6.5.1 Cluster Power Controller Register Address Map

The CPC uses memory locations within the global and core-local address space. All address
locations in this document are relative to a base address of 0x0000_8000.

In Table 6.3, all registers are accessed using 32-bit aligned uncached load/stores. All address
locations in this document are relative to the fixed offset CPC base address from GCR_BASE.

Table 6.2 Core-Local Block Register Map

Register Offset
in Block Name Type Description

0x000 CPC Power Command Register
(CPC.Pwr.CMD_REG)

R/W Places a new CPC domain state
command into this individual
domain sequencer.
This register is not available within
the CM sequencer. Writes to the
CM CMD register are ignored while
reads will return zero.

0x008 CPC Core Status and
Configuration register

(CPC_Core_STAT_CONF_REG)

R/W Individual domain power status and
domain configuration register.
Reflects domain micro-sequencer
execution. Initiates micro-
sequencer after status register pro-
gramming. Reflects command exe-
cution status.

0x018 CPC Global Clock Change Control Register
(CPC.Global.CC_CTL_REG)

R/W Controls clock changes on corre-
sponding device

0x020 CPC Power Hart Stop Register
(CPC.Pwr.VP_STOP_REG)

R/W Stops execution of the Hart.

0x028 CPC Power Hart Run Register
(CPC.Pwr.VP_RUN_REG)

R/W Starts execution of the Hart.

0x030 CPC Power Hart Running Register
(CPC.Pwr.VP_RUNNING_REG)

R/W Indicates which Harts are in the run
state.

0x050 CPC Power RAM Sleep Register
(CPC.Pwr.RAM_SLEEP_REG)

R/W Controls the Deep Sleep and Shut
Down power state of the RAMs.

Table 6.3 CPC Address Map

Block Offset Size (bytes) Description

0x0000 - 0x01FF 512B Global Control Block. Contains registers pertaining to the
global system functionality. This address section contains a
single set of registers that is visible to all CPUs.

223
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

6.5.2 Global Control Block Register Map

All registers in the Global Control Block are 64 bits wide and should only be accessed using
aligned 64-bit uncached load/stores. Reads from unpopulated registers in the CPC address
space return 0x0, and writes to those locations are silently dropped without generating any
exceptions.

6.5.3 Local Control Blocks

All registers in the CPC Local Control Block are 64 bits wide and should only be accessed
using aligned 64-bit uncached load/stores. Reads from unpopulated registers in the CPC
address space return 0x0, and writes to those locations are silently dropped without generat-
ing any exceptions.

A set of these registers exists for each core in the P8700-F MPS. In the case of some CPC
registers, a set of registers exists per power domain or per clock domain.

6.5.4 Requestor Access to CPC Registers

6.5.4.1 Register Interface

The CPC allows up to eight requestor’s in a system. A requestor can be either a core or an
IOCU. The requestor may not have unrestricted access to the CPC registers. During boot
time, the programmer determines which requestor’s are provided access to the CPC registers
by programming the Global Access Privilege register located at offset 0x120 in the CM register
map. The 8-bit ACCESS_EN field (bits 7:0) of this register selects up to eight cores, and bits
23:16 enable access for IOCU7 through IOCU0 respectively.

The MIPS default for ACCESS_EN field is 0xFF, meaning that all cores in the system have
access to the CPC register set. In addition, bits 23:16 are set to allow IOCU7 through IOCU0
access to the CPC register set. To disable access to the registers for a particular requestor,
kernel software need only clear the bit corresponding to that core or IOCU, and all write
requests to the CPC registers by that requestor will be ignored.

6.5.5 Enabling Coherent Mode

The P8700-F Multiprocessing System allows each power domain to be placed in either a
coherent or non-coherent mode. Because the P8700-F implements a directory-based coher-
ence protocol, MIPS recommends that each domain be placed in coherent mode during nor-
mal operation. The non-coherent mode should only be used during boot-up and power-down.
Software should not execute any cacheable memory accesses (instruction fetch or load/
store) while coherence is disabled.

Register Interface

0x0200 - 0x0408
0x04040 - 0x04078

 KB Clock Control Register for CPC_IOCU, CPC_MEM, CM
MSTR, CPC_AUX, and CPC_IOMMU.

0x1000 - 0x5F90 8 KB CPC Core Local registers For CM, DBU and Core local
(Core0 to Core63)

0x5F94 - 0xDFFF Reserved.

Table 6.3 CPC Address Map

Block Offset Size (bytes) Description

224
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Coherency is enabled when gcr_cl_coh_en in bit 11 (COH_EN) of the Core-Local Status and
Configuration register equals 0x1. This register resides in the CM local register block at offset
address (0x20F8 + 0x100 x CoreNum). There is one of these registers per power domain.

Note that if a power domain is in coherent mode and a change to the power state is initiated,
the caches must be flushed prior to disabling coherence mode.

Coherent Mode Enable Code Example

The base address for the location of the CM GCR registers is programmed into the CSR
CMGCRBase register. As a reference, a value of 0x0000_1FB8_0000 is used (MIPS default) to
indicate the base location of the CM global control registers. In this case, the base value is
read from the CSR register and an offset is added to it to derive the exact register address
where the Core Local Coherence Control register is located.

By default, coherence is disabled in the P8700-F MPS.

6.5.6 Master Clock Prescaler

The clock prescaler is used to reduce the frequency of all devices in the system simultane-
ously.

The prescaler can be programmed as follows using the global CPC Prescale Clock Change Control
register located at offset address 0x0048.

1. Verify that the PRESCALE_CLK_RATIO_CHANGE_EN bit of this register (bit 8) is set. This
bit must be set before the CLK_PRESCALE field can be changed.

2. Optionally, the programmer can read the PRESCALE_CLK_RATIO field in bits 26:23 of this
register to determine the current clock prescaler ratio.

3. Program the CLK_PRESCALE field (bits 7:0) to set the clock ratio. A value of 0x00 indicates
a 1:1 clock ratio (no difference between input and output frequency of the prescaler). A
value of 0xFF indicates a 1:256 ratio between the master input clock and the output of
the prescaler.

The 8-bit CLK_PRESCALE field can be programmed as follows to select the prescaler ratio.

For an example of how to program these fields, refer to step 1 of the procedure in Section
6.5.7.1, "Clock Domain Change Example — Register Programming Sequence".

Table 6.4 Encoding of the CLK_PRESCALE Field

Encoding Description

0x00 No prescaling

0x01 Divide input clock by 2

0x02 Divide input clock by 3

0x03 Divide input clock by 4

0x04 Divide input clock by 5

.....

0xFD Divide input clock by 254

0xFE Divide input clock by 255

0xFF Divide input clock by 256

225
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

By default, the clock prescaler is disabled in the P8700-F MPS. The clock prescaler is enabled
and the clock divide ratio is set to divide by 4. Note that the PRESCALE_CLK_RATIO field in
bits 23:16 of this register is a read-only field that is updated by hardware and allows kernel
software to quickly read this register to determine the current clock ratio.

6.5.7 Individual Device Clock Ratio Modification

Based on the input clock frequency to each individual device supplied by the clock prescaler,
each device can further reduce the clock by a frequency range of 1:1 to 1:8, except for the
CM, which can be programmed with a frequency ratio of either 1:1 or 1:2 relative to its input
clock as shown in the figure. This is accomplished by programming the CLK_RATIO field (bits
2:0) of each CPC Local Clock Change Control register located at offset address 0x0018. For an
example of how to program this field, refer to step 2 of the procedure in the section entitled
Clock Domain Change Example — Register Programming Sequence.

6.5.7.1 Clock Domain Change Example — Register Programming Sequence

The following example shows how to run core 0 at full speed, and core 2 at quarter-speed to
save power. Assume the following:

• 2-core system

• 1 Hart per core

• si_ref_clk input frequency of 1 GHz

• Prescaler output of 1 GHz

• Core 0 input frequency of 1 GHz

• Core 1 input frequency of 250 MHz

In this example, the si_ref_clk input to the clock prescaler is 1 GHz. As shown above, the
output frequency of the prescaler in this example is also 1 GHz. This ratio is accomplished by
programming the global CPC Prescale Clock Change Control register located at offset address
0x0048 as follows. Note that this register is global and is seen by all cores and all individual
devices (clock domains) in the system.

Register Interface

To program the clock prescaler for this example:

1. Write a value of 0x100 to the global CPC Prescale Clock Change Control register located at offset address
0x0048. This value sets the CLK_PRESCALE field to a value of 0x00, indicating a 1:1 relationship
between the input clock and the output clock. This value also sets the
PRESCALE_CLK_RATIO_CHANGE_EN bit to indicate that the value in the CLK_PRESCALE field is
valid.

2. In this example the core 0 is running at full speed. Core 1 is running at 1/4 speed. To set the ratio of the
clock generators for core 0 so it operates at 1 GHz, and core 1 so it operates at 250 MHz, program the
individual CPC Local Clock Change Control registers. This register is instantiated as one per clock
domain, so in this case each core has its own register since each core is in its own domain.

3. Set the SET_CLK_RATIO bit in the CPC Global Clock Change Control register located at offset 0x0028 to
initiate a clock change for all clock domains participating in the clock change, which is cores 0 - 3 in
this example. This bit is cleared by hardware once the clock change has completed.

226
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Table 6.5 shows the programming of the CLK_RATIO field (bits 2:0) of the corresponding CPC
Local Clock Change Control register located at offset address 0x0018.

Poll the following registers to determine when the clock change has completed.

• Read the CPC_CC_CTL_REG register to determine when bit 8 (SET_CLK_RATIO) is 0.
If SET_CLK_RATIO is 1, the change request is still pending.

• Read the CPC_CC_CTL_REG to determine when bit 10 (CLK_CHANGE_ACTIVE) is 0. If
CLK_CHANGE_ACTIVE = 1, the clock change is in progress.

• When both of these bits are zero, the clock change has completed. At this point,
another clock change could be requested.

6.5.7.2 Clock Change Delay

The CPC_CC_CTL_REGCC_DELAY field in bits 29:20 of the CPC Global Clock Control register is used
to optimize the amount of delay during a clock change. This can be done if all clock domain
ratios are low. For example, if all current clock ratios are less than 1:4 the value of the delay
could be reduced. The intent is that clock domain changes do not happen very often, so set-
ting the default of 80 clocks should not be a problem and leaving this value at its default
delay is recommended. This register could also be used to extend the state delay period if
desired.

6.5.8 CM Standalone Powerup

Normally, the CM is automatically powered-up if any core is powered-up. Conversely, the CM
is automatically powered-down if all cores are powered-down. The P8700-F allows for the CM
to be powered-up even if no core is powered-up. This is useful for system debug/setup via
the DBU.

6.5.8.1 Register Interface

This functionality is controlled by the CPC Global Power Up register (CPC_PWRUP_CTL_REG)
located at offset address 0x0030.

The DBU may execute a one-time power-up of the CM by writing a 1 to this register. If the
CM is not operational at the time this bit is set by the DBU, it will transition from its current
state to an operational state. If the CM is already operational, setting this bit has no meaning
and the register write is ignored.

6.5.9 Reset Detection

The CM provides a series of read-only bits that allow the programmer to determine when a
given device connected to the CM has been reset, including the CPC itself. Whenever a device
is reset, the corresponding bit of the CPC Global Reset Occurred register (CPC_ROCC_CTL_REG)
at offset 0x0040 is set.

In addition to the reset detection, this register also contains a 2-bit field (RESET_CAUSE)
that indicates the type of reset for the CPC block. Reset options are cold reset, external warm
reset, and watchdog timer reset. The functionality of this register is shown in Figure 6.4.

Table 6.5 Programming the CLK_RATIO Field of the CPC Local Clock Change Registers

Core CLK_RATIO Value Clock Ratio Core Clock Frequency

0 3’b000 1:1 1 GHz

1 3’b100 4:1 250 MHz

227
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Figure 6.4 Reset Detection in the P8700-F Multiprocessing System

6.5.10 VP Run/Suspend

Three registers are used to control the power state of each Hart in the system. The P8700-F
Multiprocessing system supports up to four Harts per core, and up to six cores per system.
Each of these registers is instantiated per core.

Three registers are used to control this functionality:

• VP Run register (WO)

• VP Stop register (WO)

• VP Running register (RO)

Register Interface

The VP Run register is a Write-only register used to set each Hart to the run state. The VP Run
register contains a 2-bit field, where each bit is dedicated to a particular Hart, up to two per
core. Prior to setting one of these bits, kernel software must ensure that the Hart in question
is not already running by reading the corresponding bit in the VP Running register. If a given bit
in the VP Running register is cleared, setting the corresponding bit in the Hart Run register
places the Hart in the run state. If a given bit in the VP Running register is already set, setting
the corresponding bit in the VP Run register has no meaning. The value in this register is reset
whenever the associated core is reset. The VP Run register can also be cleared by hardware,
as well as the Debug unit.

The VP Stop register is a write-only register used to stop a Hart. If a given bit in the Hart Running
register is set, setting the corresponding bit in the VP Stop register places the Hart in the sus-
pend state. Writing a 0 to any of the bits in the VP Stop register has no effect.

012345161731 30 29

CPC Global Reset Occurred Register

63

CPC Reset

Cause of CPC Reset

DBU Reset

CM Reset

CORE5 Reset

CORE4 Reset

CORE3 Reset
CORE2 Reset

CORE1 Reset

CORE0 Reset

678-1517-2832

CORE7 Reset

CORE6 Reset

228
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

The VP Running register is a read-only register that indicates the run state of each Hart in a
given core. These bits are set and cleared by hardware based on the programming of the VP
Run and VP Stop registers by kernel software as described above.

Note that for each of these registers, the two Harts correspond to the register bits as follows:

• Bit 0 = Hart0

• Bit 1 = Hart1

For example, to set Hart2 of a given core to the Run state, kernel software would do the fol-
lowing,

1. Read bit 2 of the VP Running register. If this bit is already set, Hart2 is already running and no action
need be taken.

2. If bit 2 of the VP Running register is cleared, indicating that Hart2 is in the Suspend state, kernel soft-
ware sets bit 2 of the Hart Run register to set Hart2 to the Run state.

To set Hart2 of a given core to the Suspend state, kernel software would do the following,

1. Read bit 2 of the VP Running register. If this bit is already cleared, Hart2 is already in the Suspend state
and no action need be taken.

2. If bit 2 of the VP Running register is set, indicating that Hart2 is in the Run state, kernel software sets bit
2 of the VP Stop register to set Hart2 to the Suspend state.

6.5.11 Local RAM Deep Sleep / Shutdown and Wakeup Delay

The CM allows the local RAM’s within a given power domain (cores, CM, IOCU, etc) to be
placed into either Shutdown mode where the clocks are turned off, or Deep Sleep mode
where the clocks are running at a fraction of their normal frequency. This functionality is con-
trolled through the CPC Local RAM Sleep Control register (CPC_CL_RAM_SLEEP) located at off-
set 0x1050 + 0x100 * CM/DBU/Core_num.

This register is instantiated per power domain, so each domain has the ability to power cycle
its own local RAM devices.

6.5.11.1 RAM Deep Sleep Mode

When bit 31 (RAM_DEEP_SLEEP_DISABLE) of the CPC_CL_RAM_SLEEP is cleared (logic ‘0’),
the RAM’s on the local device enter the Deep Sleep low power state when the CPC power
state for the device reaches the ClockOff state. In this state the clocks to the local RAM’s
within that power domain are running at a fraction of their normal frequency.

The CPC also provides a way to delay the transition from the deep sleep state to the run state
using bits 23:16 RAM_DEEP_SLEEP_WAKEUP_DELAY) of the CPC_CL_RAM_SLEEP register.
Once awoken, the CPC delays the transition to the run state by the value programmed into
this field in order to provide sufficient time for the RAMs to wake up from Deep Sleep. The
delay can range from 1 to 255 (0xFF) clocks.

6.5.11.2 RAM Shut Down Mode

When bit 15 (RAM_SHUT_DOWN_DISABLE) of the CPC_CL_RAM_SLEEP is cleared (logic ‘0’),
the RAM’s on the local device enter the Shutdown low power state when the CPC power state
for the device reaches the PwrDwn state. In this state the clocks to the local RAM’s within
that power domain are off. The RAM’s remain in the Shutdown low power state even if the
CPC power state changes to ClkOff without transitioning to the operational state.

The CPC also provides a way to delay the transition from the shutdown state to the run state
using bits 7:0 RAM_SHUT_DOWN_WAKEUP_DELAY) of the CPC_CL_RAM_SLEEP register. Once

229
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

awoken, the CPC delays the transition to the run state by the value programmed into this
field in order to provide sufficient time for the RAMs to wake up from the Shut Down state.
The delay can range from 1 to 255 (0xFF) clocks.

6.5.12 Fine Tuning Internal and External Signal Delays

This section describes those register fields that can be used to delay the assertion of external
signals relative to one another, as well as the internal domain sequencer state machine.
These registers are used to help accommodate a wide variety of timing constraints in the
system. Signals can be lengthened or shortened accordingly in order to meet system timing.

6.5.12.1 Global Sequence Delay Count

The Sequence Delay register (CPC_SEQDEL_REG) located at offset 0x0008 in the CPC Global
Control Block, contains a 10-bit MICROSTEP field that describes the number of clock cycles
each domain sequencer state machine will take to advance to the next state.

The 10-bit MICROSTEP field contains a default value of 0x002, indicating a 2-cycle delay.
However, should additional delay be required based on the system implementation, this reg-
ister provides the programmer with the ability to increase the sequence delay as necessary.

Domain sequencing begins once the RAILDELAY field has counted down to zero. Refer to the
section entitled Rail Delay for more information.

The 10-bit MICROSTEP field is encoded as follows:

6.5.12.2 Rail Delay

The Rail Delay register (CPC_RAIL_REG) located at offset 0x010 in the CPC Global Register
Block contains a 10-bit counter field (RAILDELAY) used to schedule delayed start of power
domain sequencing after the RailEnable1 signal has been activated by the CPC. This allows the
CPC to compensate for slew rates at the gated rail.

The 10-bit counter value (RAILDELAY) delays the power-up sequence per domain. The power-
up sequence starts after RAILDELAY has been loaded into the internal counter and a count-
down to zero has concluded. At IP configuration time, the contents of the CPC_RAIL_REG reg-
ister are preset. However, for fine tuning, the register can be written at run time.

Table 6.6 Encoding of MICROSTEP Field

Encoding Description

0x000 1-cycle delay

0x001 2-cycle delay

0x002 3-cycle delay

0x003 4-cycle delay

0x004 5-cycle delay

.....

0x3FD 1022-cycle delay

0x3FE 1023-cycle delay

0x3FF 1024-cycle delay

1. This signal is shown only for illustration purposes. Refer to the P8700-F Integrator’s Guide for the exact name and usage of
this signal.

230
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

The 10-bit RAILDELAY field is encoded as follows:

The default value for this register has been determined by MIPS as the value that should
work in the majority of system implementations. As such, this value should not need to be
changed. However, should a problem arise where additional delay is required in order to
meet system timing, this register provides the programmer with the ability to increase the
delay as necessary.

For more information on how this counter is used, refer to the Global Sequence Delay Count
section in the System Integration chapter of the P8700-F Integrator’s Guide for more infor-
mation.

6.5.12.3 Reset Delay

During the power-up sequence, reset is applied. Typically, reset is active until the domain
responds by asserting the internal Reset_Hold signal. However, the Global Reset Width Counter
register (CPC_RESETLEN_REG) at offset 0x0018 allows reset to be extended beyond the asser-
tion of Reset_Hold. A series of down-counters are used to delay various reset pins used to boot
the CM as described in the following subsections.

The default value for this register has been determined by MIPS as the value that should
work in the majority of system implementations. As such, this value should not need to be
changed. However, should a problem arise where additional delay is required in order to
meet system timing, this register provides the programmer with the ability to increase the
delay as necessary.

For more information on these counters and the corresponding hardware signals that can be
delayed, refer to the Reset Delay section in the P8700-F Integrator’s Guide for more informa-
tion.

Programming the Global Reset Width Counter Register (RESETLEN)

The RESETLEN down counter is used to extend the various reset signals using bits 9:0 of the
CPC Global Reset Width Counter Register (CPC_RESETLEN_REG) at offset 0x0018. This register

Table 6.7 Encoding of RAILDELAY Field

Encoding Description

0x000 1-cycle delay

0x001 2-cycle delay

0x002 3-cycle delay

0x003 4-cycle delay

0x004 5-cycle delay

.....

0x3FD 1022-cycle delay

0x3FE 1023-cycle delay

0x3FF 1024-cycle delay

231
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

field is programmed with a delay value between 1 and 1024 clock cycles as shown in Table
6.8.

Programming the Global Reset Release Register — Core Reset Release (RESREL1)

The output of the RESETLEN counter described above is used to load a secondary internal
counter with the value programmed into the RES_REL_LEN field of the CPC Global Reset
Release Register (CPC_RES_REL_REG) located at offset 0x0038. This register is used to deter-
mine the amount of delay between the time the configuration signals are stable at the
respective core(s), and the time that the core reset is released.

Bits 9:0 of this register (RES_REL_LEN) are programmed with a delay value between 1 and
1024 clock cycles. The encoding of this field is identical to the RESETLEN field shown in Table
6.8. Once this counter reaches 0, the Domain_Reset_n2 signal is deasserted to the core(s),
allowing them to come out of reset.

Programming the Global Reset Release Register — Domain Ready (RESREL2)

The output of the RESREL1 counter is used to load a third internal counter (RESREL2) with
the value programmed into the RES_REL_LEN field of the CPC Global Reset Release Register
(CPC_RES_REL_REG) located at offset 0x0038. This register is used to determine the amount
of delay between the time the Domain_Reset_n signal is deasserted, and the deassertion of the
Domain_Ready signal, indicating that the core is ready to begin execution. Note that the same
register field (RES_REL_LEN) of the CPC_RES_REL_REG register is used to load both the
RESREL1 and RESREL2 counters.

The third internal counter (RESREL2) requires that the RESREL1 counter has reached zero
before counting can begin. Once the RESREL2 counter reaches 0, the Domain_Ready signal is
asserted to the core(s), allowing the core to begin execution.

For more information on how these counters are loaded and the signals affected once the
counts reach zero, refer to the Global Sequence Delay Count section in the System Integra-
tion chapter of the P8700-F Integrator’s Guide.

Table 6.8 Encoding of the RESETLEN Field

Encoding Description

0x000 1-cycle delay

0x001 2-cycle delay

0x002 3-cycle delay

0x003 4-cycle delay

0x004 5-cycle delay

.....

0x3FD 1022-cycle delay

0x3FE 1023-cycle delay

0x3FF 1024-cycle delay

2. This signal is shown only for illustration purposes. Refer to the Global Sequence Delay Count section of the P8700-F Integra-
tor’s Guide for more information on the usage of this signal.

Chapter 7

232
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

Control and Status Registers (CSR)

This chapter defines the following types of Control and Status Registers, or CSR’s. These
include:

• Section 7.1, "Machine Mode Registers"

• Section 7.2, "User Mode Registers"

• Section 7.3, "MIPS Custom Registers"

• Section 7.4, "MIPS Hybrid Debug Registers"

7.1 Machine Mode Registers

Note that some registers are in the RV64 64-bit format, while others are in the RV32 32-bit
format.

Table 7.1 Machine Mode Registers

Offset from GCR_BASE Register Name Description

0xF12 MarchID Machine Architecture ID register.

0x342 MCause Machine mode Cause register.

0xF14 MHartID Machine Hart ID register.

0xF13 MimpID Machine Implementation ID register.

0xF11 MVendorID Machine Vendor ID register.

233
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.1.1 Machine Architecture ID Register (MarchID) — offset = 0xF12

The Machine Architecture ID register (MarchID) is an implementation dependent read-only
register specifying the microarchitecture version of the core. For MIPS Technologies imple-
mentations, the microarchitecture version is broken down into “class” and “uarch” versions
as described below.

Figure 7.1 Machine Architecture ID Register Bit Assignments

63 62 32

MSB 0

31 16 15 8 7 0

0 CLASS UARCH

Table 7.2 Machine Architecture ID Register Bit Descriptions

Name Bits Description R/W Reset State

MSB 63 The most significant bit of the marchid register is set to
one for commercial RISC-V cores, including MIPS Tech-
nologies implementations.

R From
configuration

0 62:16 Reserved R 0

CLASS 15:8 A MIPS Technologies specific field encoding the core
“class” as follows:
0x00: M-class core (alias = M)
0x01: I-class core (alias = I)
0x02: P-class core (alias = P)
0x03 - 0xFF: Reserved

R From
configuration

UARCH 7:0 A MIPS Technologies specific field encoding the core
microarchitecture sub-version for the specified core class.
See the core user manual for details.

R From
configuration

234
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.1.2 Machine Cause Register (mcause) — offset = 0x342

Machine mode Cause register. This register provides the exception code when an exception is
taken.

Figure 7.2 Machine Cause Register Bit Assignments — RV64

63 62 32

INTER-
RUPT

ExceptionCode[63:32]

31 0

ExceptionCode[31:0]

Figure 7.3 Machine Cause Register Bit Assignments — RV32

31 30 0

INTER-
RUPT

ExceptionCode

Table 7.3 Machine Cause Register Bit Descriptions

Name Bits Description R/W Reset State

INTERRUPT 63
31

Indicates if the most resent trap to machine mode caused
by an interrupt?
0: Recent trap not caused by machine mode.
1: Recent trap caused by machine mode.

R/W Undefined

ExceptionCode 62:0
30:0

Code identifying most recent machine mode exception.
The meaning of the encoding depends on type of interrupt
as follows:
Refer to Table 7.4 for an encoding of this field, Non-inter-
rupt meaning.
Refer to Table 7.5 for an encoding of this field, Interrupt
meaning.
Refer to Table 7.6 for an encoding of this field, NMI mean-
ing.

WLRL Undefined

Table 7.4 Exception Codes — Non-Interrupt Meaning

Encoding Alias Meaning

0 InstAddrMisaligned Instruction address misaligned

1 InstAccessFault Instruction access fault

2 IllegalInst Illegal instruction

3 Breakpoint Breakpoint

4 LoadAddrMisaligned Load address misaligned

5 LoadAccessFault Load access fault

235
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

6 StoreAddrMisaligned Store address misaligned

7 StoreAccessFault Store access fault

8 ECallU Environment call from U-mode

9 ECallS Environment call from S-mode

10 ECallVS Environment call from VS-mode

11 ECall]M Environment call from M-mode

12 InstPageFault Instruction page fault

13 LoadPageFault Load page fault

15 StorePageFault Store page fault

20 GuestInstPageFault Guest Instruction Page Fault

21 GuestLoadPageFault Guest Load Page Fault

22 VirtualInst Virtual instruction Fault

23 GuestStorePageFault Guest Store Page Fault

24 InstTLBMiss Instruction TLB Miss Exception

25 LoadTLBMiss Load TLB Miss Exception

26 ReadTime Read Time Exception

27 StoreTLBMiss Store TLB Miss Exception

28 GuestInstTLBMiss Guest Instruction TLB Miss Exception

29 GuestLoadTLBMiss Guest Load TLB Miss Exception

30 GuestReadTime Guest Read Time Exception

31 GuestStoreTLBMiss Guest Store TLB Miss Exception

48 CacheError Cache Error exception

60 satpTLBMiss satp TLB Miss Exception (when tlb_non_leaf
implemented only).

61 vsatpTLBMiss vsatp TLB Miss Exception (when tlb_non_leaf
implemented only).

62 hgatpTLBMiss hgatp TLB Miss Exception (when tlb_non_leaf
implemented only).

63 hgatpTLBMissTW Table Walk hgatp TLB Miss Exception (when
tlb_non_leaf implemented only).

Table 7.5 Exception Codes — Interrupt Meaning

Encoding Alias Meaning

1 SupervisorSoftwareInt Supervisor Software Interrupt

3 MachineSoftwareInt Machine Software Interrupt

Table 7.4 Exception Codes — Non-Interrupt Meaning (continued)

Encoding Alias Meaning

236
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5 SupervisorTimerInt Supervisor Timer Interrupt

7 MachineTimerInt Machine Timer Interrupt

9 SupervisorExternalInt Supervisor External Interrupt

11 MachineExternalInt Machine External Interrupt

23 ImpreciseBusErrorInt Imprecise Bus Error Interrupt

Table 7.6 Exception Codes — NMI Meaning

Encoding Alias Meaning

0 Unknown ”Unknown” NMI cause, used by MIPS Technologies
RISC-V implementations.

Table 7.5 Exception Codes — Interrupt Meaning (continued)

Encoding Alias Meaning

237
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.1.3 Machine Hart ID Register (mhartID) — 0xF14

This read-only register contains a number uniquely identifying the hart within the system.
For RISC-V systems in general, a hart with mhartid = 0 must be present, and other harts can
be assigned any uniquely identifying number.

For MIPS Technologies implementations, the hartid is constructed from the number of the
current clusters within the system, the number of the current cores within the current cluster,
and the number of the current harts within the current core, as described below. This register
is organized in the RV32 format.

Figure 7.4 Machine Hart ID Register Bit Assignments

31 20 19 16 15 12 11 4 3 0

0 CLUSTERNUM 0 CORENUM HARTNUM

Table 7.7 Machine Hart ID Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:20 Reserved R

CLUSTERNUM 19:16 Cluster number. For MIPS Technologies implementations,
a contiguous number starting at zero uniquely identifying
the cluster in the system.

R From
configuration

0 15:12 Reserved. R

CORENUM 11:4 Core number. For MIPS Technologies implementations, a
contiguous number starting at zero uniquely identifying
the core in the cluster.

R From
configuration

HARTNUM 3:0 Hart number. For MIPS Technologies implementations, a
contiguous number starting at zero uniquely identifying
the hart in the core.

R From
configuration

238
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.1.4 Machine Implementation ID Register (mimpid) — offset = 0xF13

Machine IMPlementation ID register. mimpid is an implementation dependent read-only reg-
ister specifying the implementation version of the core. For MIPS Technologies implementa-
tions, the implementation version is broken down into “major”, “minor”, “patch” and “config”
versions as described below.

Figure 7.5 Machine Implementation ID Register Bit Assignments

63 56 55 48 47 40 39 32

MAJOR MINOR PATCH CONFIGID

31 0

0

Table 7.8 Machine Implementation ID Register Bit Descriptions

Name Bits Description R/W Reset State

MAJOR 63:56 A MIPS Technologies specific field encoding the core
major release version.

R From
configuration

MINOR 55:48 A MIPS Technologies specific field encoding the core
minor release version.

R From
configuration

PATCH 47:40 A MIPS Technologies specific field encoding the core
patch release version.

R From
configuration

CONFIGID 39:32 A MIPS Technologies specific field which identifies the
core configuration. The encoding scheme for this field
may vary by core type, see the core user manual for
details.

R From
configuration

0 31:0 Reserved. R

239
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.1.5 Machine Vendor ID Register (mvendorid) — offset = 0xF11

This register is organized in the RV32 format.

Figure 7.6 Machine Vendor ID Register Bit Assignments

31 7 6 0

BANK OFFSET

Table 7.9 Machine Vendor ID Register Bit Descriptions

Name Bits Description R/W Reset State

BANK 31:7 Number of one-byte continuation codes in the JEDEC
manufacturer ID. Equal to 0x2 for MIPS Technologies
implementations.

R From
configuration

OFFSET 6:0 Final byte of JEDEC manufacturer ID, with parity bit dis-
carded. Equal to 0x27 for MIPS Technologies implemen-
tations.

R From
configuration

240
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.2 User Mode Registers

The P8700 core does not implement the time register. However, this register is defined
below.

7.2.1 Time Register (time) — offset = 0xC01

The time CSR provides a read-only copy of the mtime memory mapped register. In the
P8700, accessing the time CSR will result in an Illegal Instruction exception where the func-
tionality can be emulated in software.

Figure 7.7 Time Register Bit Assignments

63 32

TIME[63:32]

31 0

TIME[31:0]

Table 7.10 Time Register Bit Descriptions

Name Bits Description R/W Reset State

TIME 63:0 Stores a copy of the mtime memory mapped register. R From
configuration

241
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3 MIPS Custom Registers

MIPS Technologies implementations use the following custom CSRs, which are described in
more detail in the following subsections. The address map for the custom CSR’s is shown in
Table 7.11.

Table 7.11 MIPS Custom Registers Map

Address Offset Register Name

0x7C0 mipstvec

0x7C3 mipstval

0x7C4 mipsscratch

0x7C5 mipscacheerr

0x7C6 mipserrctl

0x7CB mipsintctl

0x7CC mipsdsprambase

0x7D0 mipsconfig0 [if required]

0x7D1 mipsconfig1

0x7D2 mipsconfig2 [if required]

0x7D3 mipsconfig3 [if required]

0x7D4 mipsconfig4 [if required]

0x7D5 mipsconfig5

0x7D6 mipsconfig6

0x7D7 mipsconfig7

0x7D8 mipsconfig8

0x7D9 mipsconfig9

0x7DA mipsconfig10

0x7DB mipsconfig11

0x7E0 pmacfg0

0x7E1 pmacfg1

0x7E2 pmacfg2

0x7E3 pmacfg3

0x7E4 pmacfg4

0x7E5 pmacfg5

0x7E6 pmacfg6

0x7E7 pmacfg7

0x7E8 pmacfg8

0x7E9 pmacfg9

0x7EA pmacfg10

242
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

0x7EB pmacfg11

0x7EC pmacfg12

0x7ED pmacfg13

0x7EE pmacfg14

0x7EF pmacfg15

Table 7.11 MIPS Custom Registers Map (continued)

Address Offset Register Name

243
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.1 MIPS Trap Vector Base Address Register (mipstvec) — offset = 0x7C0

The MIPS Trap-VECtor base-address register is a programmable base address for custom
machine mode exceptions for MIPS Technologies implementations of RISCV. An alignment
constraint of HART.vectored_int_align bytes is imposed on writes to mipstvec when setting
the register to vectored mode; that is, the corresponding number of lower bits of the BASE
value are zeroed out by the hardware when bit zero of the written value equals 1.

This register is available in the 64-bit RV64 format and the 32-bit RV32 format.

Figure 7.8 MIPS Trap Vector Base Address Register Bit Assignments — RV64

63 32

BASE[61:30]

31 2 1 0

BASE[29:0] MODE

Figure 7.9 MIPS Trap Vector Base Address Register Bit Assignments — RV32

31 2 1 0

BASE MODE

Table 7.12 MIPS Trap Vector Base Address Register Bit Descriptions

Name Bits Description R/W Reset State

BASE 63:2
31:2

Base address for MIPS Technologies custom machine
mode exceptions.

R/W Undefined

MODE 1:0 The MODE field is encoded as follows:

0: All MIPS technologies custom machine mode excep-
tions set pc to CSR.mipstvec.BASE << 2. Alias = Direct.
1: MIPS technologies custom machine mode exceptions .
set pc to (CSR.mipstvec.BASE << 2) + 4 * cause. Alias =
vectored.
2 = 3: Reserved.

WARL Undefined

244
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.2 MIPS Trap Value Register (mipstval) — offset = 0x7C3

MIPS Trap VALue. For cores which implement software table walk and non-leaf TLB entries,
this register is written by hardware with the address of the missing PTE on a TLB miss. The
register is also writable by software and can be used as a scratch register when handling
mipstvec exceptions.

This register is available in the 64-bit RV64 format and the 32-bit RV32 format.

Figure 7.10 MIPS Trap Value Register Bit Assignments — RV64

63 32

MIPSTVAL[63:32]

31 0

MIPSTVAL[31:0]

Figure 7.11 MIPS Trap Value Register Bit Assignments — RV32

31 0

MIPSTVAL

Table 7.13 MIPS Trap Value Register Bit Descriptions

Name Bits Description R/W Reset State

MIPSTVAL 63:0
31:0

Trap value. This register is written by hardware with the
address of the missing PTE on a TLB miss.

R/W Undefined

245
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.3 MIPS Scratch Register (mipsscratch) — offset = 0x7C4

MIPS SCRATCH. For cores which implement software table walk and non-leaf TLB entries, this
register provides scratch space for the TLB miss handler.

This register is available in the 64-bit RV64 format and the 32-bit RV32 format.

Figure 7.12 MIPS Scratch Register Bit Assignments — RV64

63 32

MIPSSCRATCH[63:32]

31 0

MIPSSCRATCH[31:0]

Figure 7.13 MIPS Scratch Register Bit Assignments — RV32

31 0

MIPSSCRATCH

Table 7.14 MIPS Scratch Register Bit Descriptions

Name Bits Description R/W Reset State

MIPSSCRATCH 63:0
31:0

Provides scratch space for the TLB miss handler. R/W Undefined

246
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.4 MIPS Cache Error Register (mipscacheerr) — offset = 0x7C5

This register is implemented per-core register indicating the cause of cache errors.

Figure 7.14 MIPS Cache Error Register Bit Assignments

31 30 29 26 25 20 19 17 16 4 3 0

STATE ARRAY ERROR_BITS WAY INDEX WORD

F2 F P S

Table 7.15 MIPS Cache Error Register Bit Descriptions

Name Bits Description R/W Reset State

STATE 31:30 Cache error state. This field is encoded as follows:
00: None. No Error
01: Corrected. Corrected Error (includes recovery by
invalidating a clean line with uncorrectable error)
10: Uncorrectable error
11: Reserved

R/W 0

ARRAY 29:26 Identifies the part of the cache that encountered the error.
This 4-bit field is encoded as follows:

0x0: L1 I-cache Tag. Alias = ICTag
0x1: L1 I-cache Data. Alias = ICData
0x2: L1 D-cache Tag. Alias = DCTag
0x3: L1 D-cache Data. Alias = DCData
0x4: FTLB tag. Alias = FTLB Tag.
0x5: FTLB data. Alias = FTLB Data.
0x6: L2Tag (also includes RRB bus parity). Alias = L2Tag
0x7: L2Data (also includes MCP bus parity). Alias =
L2Data.
0x8 - 0xF. Reserved.

R/W 0

247
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

ERROR_BITS 25:20 For correctable errors, this field encodes the bit position
of the detected error within the RAM word. Encoding:

0x00 - 0x3E: Bit position of error within RAM word
0x3F: Bit position cannot be determined (when a double-
bit error was “corrected” by invalidating a clean line) - cor-
rected by invalidating the whole line.

R/W 0

23 F2. For uncorrectable errors: Second fatal error detected
while CacheErr still holds details of a previous uncorrect-
able/unrecoverable error (does not include cases where a
double-bit error was ”corrected” by invalidating a clean
line).

R/W 0

22 F. For uncorrectable errors: Fatal - Memory silently cor-
rupted (ECC clean) (tag error on dirty replacement victim
is currently the only Fatal case). Corrupted data may be
present in the cache/memory subsystem with valid/clean
ECC.

R/W 0

21 P. For uncorrectable errors: Persistent error detected. A
correctable (single-bit) error remained in the RAM after
correction was attempted.

R/W 0

20 S. For uncorrectable errors: Scapegoat error detected.
Signaled if error was signaled on Scapegoat VP or if a
second uncorrectable/unrecoverable error was detected.

The error details recorded in the CacheErr register may
not correspond to the instruction or thread that took the
Cache Error exception. This can occur when a second
uncorrectable error is detected while the CacheErr regis-
ter still contains details of a previous uncorrectable error,
or when an error is detected on a RAM access that can-
not be attributed to a specific instruction (such as a
capacity replacement).

R/W 0

WAY 19:17 Indicates the cache or FTLB way where error was
detected.

R/W 0

INDEX 16:4 Indicates the cache or FTLB index where error was
detected.

R/W 0

WORD 3:0 Indicates the word in the cache line (for D-cache data
RAM error) where the error occurred.

R/W 0

Table 7.15 MIPS Cache Error Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

248
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.5 MIPS Error Control Register (mipserrctrl) — offset = 0x7C6

MIPS Error Control register. This is a per-core CSR controlling bus and parity error handling.

Figure 7.15 MIPS Error Control Register Bit Assignments

31 30 20 19 10 9 0

PE 0 BUSTIMEOUT 0

Table 7.16 MIPS Error Control Register Bit Descriptions

Name Bits Description R/W Reset State

PE 31 Parity enable. This bit enables or disables ECC protection
for the L1 I-cache, L1 D-cache, and FTLB.

R / R/W 0

0 30:20 Reserved R 0

BUSTIMEOUT 19:10 Timeout count. This timer can only be programmed in
increments of 1024 cycles. Thus, the field available to
software for programming is 19:10. If this field is written
with 0, the timeout detection is disabled.

R/W 0

0 9:0 Reserved R 0

249
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.6 MIPS Interrupt Control Register (mipsintctl) — offset = 0x7CB

MIPS Interrupt Control Register. Setting bits of this register causes the routing of selected
interrupts.

Figure 7.16 MIPS Interrupt Control Register Bit Assignments

31 6 5 4 3 2 1 0

0 MEI MSI MTI SEI STI VSEI

Table 7.17 MIPS Interrupt Control Register Bit Descriptions

Name Bits Description R/W Reset State

0 30:6 Reserved. R 0

MEI 5 When this bit is set, MIPS hardware interrupt #5 routes to
mip.MEIP. Otherwise it routes to custom interrupt bit
mip[20].

R/W Undefined

MSI 4 When this bit is set, MIPS hardware interrupt #4 routes to
mip.MSIP. Otherwise it routes to custom interrupt bit
mip[19].

R/W Undefined

MTI 3 When this bit is set, MIPS hardware interrupt #3 routes to
mip.MTIP. Otherwise it routes to mip.VSTIP.

R/W Undefined

SEI 2 When this bit is set, MIPS hardware interrupt #2 routes to
mip.SEIP. Otherwise it routes to custom interrupt bit
mip[18].

R/W Undefined

STI 1 When this bit is set, MIPS hardware interrupt #1 routes to
mip.STIP. Otherwise it routes to custom interrupt bit
mip[17].

R/W Undefined

VSEI 0 When this bit is set, MIPS hardware interrupt #0 routes to
mip.VSEIP. Otherwise it routes to custom interrupt bit
mip[16].

R/W Undefined

250
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.7 MIPS DSPRAM Base Register (mipsdsprambase) — offset = 0x7CC

MIPS DSPRAM Base Register. Per-core register containing the base address of MIPS Technol-
ogies DSPRAM.

Figure 7.17 MIPS DSPRAM Base Register Bit Assignments

63 32

MIPSDSPRAMBASE[64:32]

31 0

MIPSDSPRAMBASE[31:0]

Table 7.18 MIPS DSPRAM Base Register Bit Descriptions

Name Bits Description R/W Reset State

MIPSDSPRAMBASE 63:0 Contains MIPS DSPRAM Base address in mem-
ory.

R/W Undefined

251
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.8 MIPS Configuration 1 Register (mipsconfig1) — offset = 0x7D1

MIPS Configuration register 1. Per-core register containing collection of bitfields showing cus-
tom capabilities and status for the MIPS Technologies implementation of the RISCV standard.

Figure 7.18 MIPS Configuration 1 Register Bit Assignments

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 0

L2C 0 IS IL IA DS DL DA 0

Table 7.19 MIPS Configuration 1 Register Bit Descriptions

Name Bits Description R/W Reset State

L2C 31 When this bit is set, the L2 cache exists and its size can be
found via the L2_CONFIG GCR.
An L3 cache may also exist and its size can be found via the
L3_CONFIG GCR.

R From
configuration

0 30:25 Reserved. R From
configuration

IS 24:22 Number of I-cache sets. Number of I-cache sets is 2**(IS+6) if
IS != 7 else 32.
000: 2*6 = 12
001: 2*(6+1) = 14. etc.

R From
configuration

IL 21:19 I-cache line size. This field encodes the I-cache line size in
bytes. is 0 if IL == 0 else 2**(IL+1)
000: 0 bytes
001: 2*2 = 4 bytes
010: 2*3 = 6 bytes
011: 2*4 = 8 bytes
100: 2*5 = 10 bytes

R From
configuration

IA 18:16 I-cache Associativity. Number of I-cache ways is IA + 1.
000: 1-way
001: 2-way
010: 3-way
011: 4-way
100: 5-way
101: 6=way
110: 7-way
111: 8-way

R From
configuration

DS 15:13 D-cache Sets. Number of D-cache sets is 2**(DS+6) if DS != 7
else 32.

R From
configuration

DL 12:10 D-cache Line size. D-cache line size in bytes is 0 if DL == 0
else 2**(DL+1)

R From
configuration

DA 9:7 D-cache Associativity. Number of D-cache ways is DA + 1. R From
configuration

0 6:0 Reserved R From
configuration

252
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.9 MIPS Configuration 5 Register (mipsconfig5) — offset = 0x7D5

MIPS Configuration register 5. Per-hart register containing collection of bit fields showing
custom capabilities and status for the MIPS Technologies implementation of the RISCV stan-
dard.

Figure 7.19 MIPS Configuration 5 Register Bit Assignments

31 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

0 G ATYPE XATP LEVEL PGVA MDIAGL MPPV MPPPS MTW MPTW ERL

Table 7.20 MIPS Configuration 5 Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:15 Reserved R

G 14 When set, this bit indicates that the most recent TLB miss was
on a Global non-leaf page. This bit is R/W if the software table
walker and non-leaf TLB entries are implemented.

R/W Undefined

ATYPE 13:12 This field indicates the most recent type of TLB miss and is
encoded as follows:

00: Instruction TLB miss. Alias is ‘Inst’.
01: Load TLB miss. Alias is ‘Load’.
10: Reserved.
11: Store TLB miss. Alias is ‘Store’.

This bit is R/W if the software table walker and non-leaf TLB
entries are implemented.

R/W Undefined

XATP 11:10 Which (X) Address Translation and Protection. Specifies which
of SATP, VSATP or HGATP is to be targeted by MTLBWR
instruction. Set by hardware on a TLB miss exception to type
of translation which has missed. This field is implemented on
cores with a software table walker and non-leaf TLB
entries.This field is encoded as follows:

00: SATP CSR is targeted. Alias os ‘SATP’.
01: VSATP CSR is targeted. Alias os ‘VSATP’.
10: HGATP CSR is targeted. Alias os ‘HGATP’.
11: Reserved.

R/W Undefined

LEVEL 9:7 PTE Level. Specifies the page table level to be written by the
MTLBWR instruction. This field is set by hardware on a TLB
miss exception to the level of the page table walk has missed.

Implemented on cores with software table walker and non-leaf
TLB entries. Also writable by software, only levels used by the
supported table walker modes are legal (e.g. 0..3 for Sv48).

This field is WARL if software table walker and non-leaf TLB
entries are implemented.

WARL Undefined

253
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

PGVA 6 Previous Guest Physical Address. This bit is copied from
mstatus.GVA on M-mode exceptions using the mipstvec
exception vector, or M-mode exceptions when
mipsconfig5.MTW = 1.

When PGVA is set, MRET behavior is modified to set msta-
tus.GVA to 1 instead of 0. Implemented on H-extension cores
with software table walker only.

R/W 0

MDIAGL 5 MDIAG lock. Software can write this bit to 1 to permanently
disable the MDIAGR/MDIAGW instructions. Can only be
unlocked by a CPU reset.

W1Only 0

MPPV 4 Machine Previous-Previous Virtualization Mode - Set to 1 on
mipstvec exceptions if mstatus.MPV is 1, or on other M-mode
exceptions if mipsconfig5.MTW is 1 and mstatus.MPV is 1.
When MPPV is set, MRET behavior is modified to set msta-
tus.MPV to 1 instead of 0. Implemented on H-extension cores
with software table walker only.

R/W 0

MPPPS 3 Machine Previous-Previous Privilege Supervisor - Set to 1 on
mipstvec exceptions if mstatus.MPP is 1 (supervisor), or on
other M-mode exceptions when mipsconfig5.MTW=1 and
mstatus.MPP is 1.

When MPPPS = 1, MRET behavior is modified to set msta-
tus.MPP to 1 instead of 0. Implemented on cores with software
table walker only.

R/W 0

MTW 2 Machine Table Walk. Setting this bit forces M-mode loads and
stores to execute with table walker mapping and privilege.

Cleared by M-mode traps and restored from MPTW by MRET.
Implemented on cores with software table walker only.

R/W 0

MPTW 1 Machine Previous Table Walk. This bit contains the value of
the mipsconfig5.MTW bit prior to the most recent M-mode trap,
restored to MTW by MRET.

Implemented on cores with software table walker only.

R/W 0

ERL 0 Error Level. This bit is set on NMI and Cache Error exceptions.
Cleared by MRET and SRET instructions. Forces all memory
accesses to be uncached and disables all interrupts except for
Reset and NMI.

R/W 0

Table 7.20 MIPS Configuration 5 Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

254
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.10 MIPS Configuration 6 Register (mipsconfig6) — offset = 0x7D6

MIPS Configuration register 6. Per-hart register containing collection of bit fields showing
custom capabilities and status for the MIPS Technologies implementation of the RISCV stan-
dard.

Figure 7.20 MIPS Configuration 6 Register Bit Assignments

31 3 2 1 0

0 AMO_II RDTM_II PRI

Table 7.21 MIPS Configuration 6 Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:3 Reserved R

AMO_II 2 Atomic Memory Operation Illegal Instruction. When set, exe-
cuting one of the AMO* instructions on a “no_amo” core gives
an illegal instruction exception. Otherwise, cases where the
AMO instruction does not generate any addressing related
exceptions (page faults, TLB misses or access faults) give a
custom mipstvec exception with mcause set to the Illegal
Instruction value, allowing for fast emulation of the atomic
memory operation. LR/SC instructions are not affected by this
bit.

R/W 0

RDTM_II 1 Read Time Illegal Instruction. When set, reading from the time
CSR always gives an illegal instruction exception. Otherwise,
cases where reading from the time CSR is enabled at the cur-
rent privilege level give a custom ”Read Time” mipstvec excep-
tion with mcause set to 26, allowing for fast emulation of the
rdtime operation.

R/W 0

PRI 0 Hart has priority for MCP accesses. R/W 0

255
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.11 MIPS Configuration 7 Register (mipsconfig7) — offset = 0x7D7

MIPS Configuration register 7. Per-hart register containing collection of bit fields showing
custom capabilities and status for the MIPS Technologies implementation of the RISCV stan-
dard.

Figure 7.21 MIPS Configuration 7 Register Bit Assignments

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

HCI IAR DIVA DL1B DIPRF2 DIPRF1 DSS 0 DSMBR DSM DSUTLB FTLB64 FTLBP DSSM DSLM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DULS RST DSBND DLBND DSLD 0 DMALN TL DHTW DDWP DIWP DJRC DGHR DDBP DBP DRPS

Table 7.22 MIPS Configuration 7 Register Bit Descriptions

Name Bits Description R/W Reset State

HCI 31 When set by hardware, Hardware Cache Initialization is pres-
ent.

R From
configuration

IAR 30 Instruction Alias Removed. R/W 0

DIVA 29 Disable Instruction Virtual Aliasing. Setting this bit disables the
hardware alias removal on the instruction cache. If this bit is
cleared, alias removal is not disabled.

R/W 0

DL1B 28 When this bit is set, the L1 Branch Target Buffer is disabled.
0: Enabled
1: Disabled

R/W 0

DIPRF2 27 When this bit is set, disable Icache PReFetch to line plus 2.
0: Enabled
1: Disabled

R/W 0

DIPRF1 26 When this bit is set, disable Icache PReFetch to line plus 1.
0: Enabled
1: Disabled

R/W 0

DSS 25 Disable Streaming Stores. When supported, setting this bit dis-
ables the performance enhancement which avoids filling the
cache from memory for sequential stores which modify all
bytes in cache line.

R/W 0

0 24 Reserved. R/W 0

DSMBR 23 When this bit is set, disable Sleep Mode when a long bus
transaction is pending.
0: Enabled
1: Disabled

R/W 0

DSM 22 When this bit is set, disable Sleep Mode.
0: Enabled
1: Disabled

R/W 0

DSUTLB 21 When this bit is set, disable speculative handling of uTLB
misses.
0: Enabled
1: Disabled

R/W 0

256
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

FTLB64 20 FTLB holds 64KB pages. In implementations where the FTLB
cannot hold 4KB pages and 64KB pages simultaneously, soft-
ware can set this bit to 1 to indicate that 64KB pages are
expected to be more common and should be stored in the
FTLB (with 4KB pages stored in the VTLB).

In such implementations, if this bit is zero (the reset value)
4KB pages will be stored in the FTLB and 64KB pages will be
stored in the VTLB. In implementations where the FTLB can
hold 4KB and 64KB pages simultaneously, this bit is reserved.

0: 64KB pages stored to FTLB, 4 KB pages stored to VTLB.
1: 64KB pages stored to VTLB, 4 KB pages stored to FTLB.

R/W 0

FTLBP 19:18 FTLB Probability. Probability that a TLB write which can go to
the FTLB is sent to the VTLB. This field is encoded as follows:

00: 1 out of 64 writes which could go to the FTLB goes to the
VTLB,
01: 1 out of 32 FTLB writes goes to the VTLB.
10: 1 out of 16 FTLB writes goes to the VTLB.
11: No FTLB writes go to the VTLB.

R/W 0

DSSM 17 When this bit is set, disable speculative bus fetch requests for
a store miss.

R/W 0

DSLM 16 When this bit is set, disable speculative bus fetch requests for
a load miss.

R/W 0

DULS 15 When this bit is set, disable unaligned load/stores. R/W 0

RST 14 Reset TAGE. A 0 -> 1 transition of this bit causes the TAGE
branch prediction unit to be reset. To reset TAGE again, re-
write this bit to 0, then set it to 1 again.

R/W 0

DSBND 13 When this bit is set, store bonding is disabled.
0: Enabled
1: Disabled

R/W 0

DLBND 12 When this bit is set, load bonding is disabled.
0: Enabled
1: Disabled

R/W 0

DSLD 11 When this bit is set, disable the speculative issue of instruc-
tions that consume the result of a load.

R/W 0

0 10 Reserved. R/W 0

DMALN 9 Disable misaligned load/store. When set, all misaligned
accesses generate an address misaligned exception.

R/W 0

TL 8 When this bit is set, MIPS Trace Logic is implemented.
0: Not implemented
1: Implemented

R From
configuration

DHTW 7 When this bit is set, disable the hardware table walker. R/W 0

DDWP 6 When this bit is set, disable data cache way prediction. R/W 0

D1WP 5 When this bit is set, disable instruction cache way prediction. R/W 0

DJRC 4 When this bit is set, disable the Jump Register Cache. R/W 0

DGHR 3 When this bit is set, disable the branch history table. R/W 0

Table 7.22 MIPS Configuration 7 Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

257
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

DDBP 2 When this bit is set, disable dynamic branch prediction. R/W 0

DBP 1 When this bit is set, disable branch prediction. R/W 0

DRPS 0 When this bit is set, disable the return prediction stack. R/W 0

Table 7.22 MIPS Configuration 7 Register Bit Descriptions (continued)

Name Bits Description R/W Reset State

258
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.12 MIPS Configuration 8 Register (mipsconfig8) — offset = 0x7D8

MIPS Configuration register 8. Per-core register containing collection of bitfields showing cus-
tom capabilities and status for MIPS Technologies implementations of RISCV. This register
selects the Prefetch tracker based on GS, ES and PTRS bits.

This register provides the indexing for indirect access of the registers present in Prefetch
tracker which can be accessed indirectly using mipsconfig9 and mipsconfig10 CSRs.

Figure 7.22 MIPS Configuration 8 Register Bit Assignments

31 11 10 9 8 7 0

0 GS ES PTRS

Table 7.23 MIPS Configuration 8 Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:11 Reserved R

GS 10 Group Select R/W Undefined

ES 9:8 Entry Select. R/W Undefined

PTRS 7:0 Prefetch tracker register select. This field is encoded as fol-
lows:

0x00: Mismatch counter (Alias = Mismatch)
0x01: Mismatch/Confidence counter (Alias = MismatchCondi-
fence)
0x02: Age counter (Alias = Age)
0x03: Learn stride counter (Alias = LearnStride)
0x04: Age prescaler counter (AgePrescaler)
0x05 - 0xFF: Reserved.

R/W Undefined

259
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.13 MIPS Configuration 9 Register (mipsconfig9) — offset = 0x7D9

MIPS Configuration register 9. Per-core register containing collection of bitfields showing

custom capabilities and status for MIPS Technologies implementations of RISCV. This register
contains data to be indirectly written into the Prefetch tracker registers.

Figure 7.23 MIPS Configuration 9 Register Bit Assignments

31 15 14 0

0 WD

Table 7.24 MIPS Configuration 9 Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:15 Reserved R

WD 14:0 Write Data. Based on the Register select bits, entry, and group
select bits, the following bits are updated:

Mismatch Counter 2:0
Mismatch / Confidence Counter 3:0
Age Counter 5:0
Learn Stride Counter 14:0
Age Prescaler Counter 5:0

R/W Undefined

260
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.14 MIPS Configuration 10 Register (mipsconfig10) — offset = 0x7DA

MIPS Configuration register 10. Per-core register containing collection of bitfields showing
custom capabilities and status for MIPS Technologies implementations of RISCV. This register
contains data to be indirectly read from the Prefetch tracker registers.

Figure 7.24 MIPS Configuration 10 Register Bit Assignments

31 15 14 0

0 RD

Table 7.25 MIPS Configuration 10 Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:15 Reserved R

RD 14:0 Read Data. Based on the Register select bits, entry, and group
select bits, the following bits are updated:

Mismatch Counter 2:0
Mismatch / Confidence Counter 3:0
Age Counter 5:0
Learn Stride Counter 14:0
Age Prescaler Counter 5:0

R/W Undefined

261
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.15 MIPS Configuration 11 Register (mipsconfig11) — offset = 0x7DB

MIPS Configuration register 11. Per-core register containing collection of bitfields showing
custom capabilities and status for MIPS Technologies implementations of RISCV. This register
contains data to be indirectly read from the Prefetch tracker registers.

Figure 7.25 MIPS Configuration 11 Register Bit Assignments

31 8 7 0

0 PFEN

Table 7.26 MIPS Configuration 11 Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:8 Reserved R

PFEN 7:0 Prefetch Enable. When set, the prefetch tracker is enabled,
else it is disabled.
**What is the encoding of this field?

R/W 0

262
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16 PMA Configuration Registers

This section contains 16 PMA configuration registers that store a total of 64 PMA configura-
tions. Each PMAxCFG configuration listed below is represented by an 8-bit field. The encoding
of each of these fields is identical and is described in Section 7.3.16.17, "PMA0CFG -
PMA63CFG Bit Assignments".

Table 7.27 shows the address mapping for each of these 16 registers.

For example, if the RV64 format is used, the PMACFG0 register is 64 bits and contains fields
PMA7CFG - PMA0CFG. In this case PMA3CFG - PMA0CFG are in the lower 32 bits, and
PMA7CFG - PMA4CFG are in the upper 32 bits.

If the RV32 format is used, the PMACFG0 register is 32 bits and contains fields PMA3CFG -
PMA0CFG. In this case, the upper 32-bit value does not exist. As such, two registers at two
contiguous addresses are required to make a 64-bit value as shown in the table below. For
example, in the RV-32 format, the lower 32 bits are in the PMACFG0 register, and the upper
32 bits are in the PMACFG1 register.

Table 7.27 PMA Configuration Register Address Mapping

Address
Offset Register Name

Format

RV64 RV32

0x7E0 PMACFG0 PMA7CFG - PMA0CFG PMA3CFG - PMA0CFG

0x7E1 PMACFG1 --------- PMA7CFG - PMA4CFG

0x7E2 PMACFG2 PMA15CFG - PMA8CFG PMA11CFG - PMA8CFG

0x7E3 PMACFG3 --------- PMA15CFG - PMA12CFG

0x7E4 PMACFG4 PMA23CFG - PMA16CFG PMA19CFG - PMA16CFG

0x7E5 PMACFG5 --------- PMA23CFG - PMA20CFG

0x7E6 PMACFG6 PMA31CFG - PMA24CFG PMA27CFG - PMA24CFG

0x7E7 PMACFG7 --------- PMA31CFG - PMA28CFG

0x7E8 PMACFG8 PMA39CFG - PMA32CFG PMA35CFG - PMA32CFG

0x7E9 PMACFG9 --------- PMA39CFG - PMA36CFG

0x7EA PMACFG10 PMA47CFG - PMA40CFG PMA43CFG - PMA40CFG

0x7EB PMACFG11 --------- PMA47CFG - PMA44CFG

0x7EC PMACFG12 PMA55CFG - PMA48CFG PMA51CFG - PMA48CFG

0x7ED PMACFG13 --------- PMA55CFG - PMA52CFG

0x7EE PMACFG14 PMA63CFG - PMA56CFG PMA59CFG - PMA56CFG

0x7EF PMACFG15 --------- PMA63CFG - PMA60CFG

263
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.1 PMA Configuration 0 Control and Status Register (PMACFG0) — offset = 0x7E0

PMA Configuration register 0. This register is either 64 or 32 bits depending on the RV for-
mat. For the encoding of each field in this register, refer to Section 7.3.16.17, "PMA0CFG -
PMA63CFG Bit Assignments".

 RV-64 Format

RV-32 Format

Figure 7.26 PMA Configuration 0 Control and Status Register Bit Assignments

63 56 55 48 47 49 39 32

PMA7CFG PMA6CFG PMA5CFG PMA4CFG

31 24 23 16 15 8 7 32

PMA3CFG PMA2CFG PMA1CFG PMA0CFG

31 24 23 16 15 8 7 32

PMA3CFG PMA2CFG PMA1CFG PMA0CFG

Table 7.28 PMA Configuration 0 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

PMA7CFG 63:56 PMA7 configuration field in the RV-64 format. R/W Undefined

PMA6CFG 55:48 PMA6 configuration field in the RV-64 format. R/W Undefined

PMA5CFG 47:40 PMA5 configuration field in the RV-64 format. R/W Undefined

PMA4CFG 39:32 PMA4 configuration field in the RV-64 format. R/W Undefined

PMA3CFG 31:24 PMA3 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA2CFG 23:16 PMA2 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA1CFG 15:8 PMA1 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA0CFG 7:0 PMA0 configuration field in the RV-64 or RV-32 format. R/W Undefined

264
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.2 PMA Configuration 1 Control and Status Register (PMACFG1) — offset = 0x7E1

PMA Configuration register 1. This register is only used in the RV32 format. For the encoding
of each field in this register, refer to Section 7.3.16.17, "PMA0CFG - PMA63CFG Bit
Assignments".

RV-32 Format

Figure 7.27 PMA Configuration 1 Control and Status Register Bit Assignments

31 24 23 16 15 8 7 32

PMA7CFG PMA6CFG PMA5CFG PMA4CFG

Table 7.29 PMA Configuration 1 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

PMA7CFG 31:24 PMA7 configuration field in the RV-32 format. R/W Undefined

PMA6CFG 23:16 PMA6 configuration field in the RV-32 format. R/W Undefined

PMA5CFG 15:8 PMA5 configuration field in the RV-32 format. R/W Undefined

PMA4CFG 7:0 PMA4 configuration field in the RV-32 format. R/W Undefined

265
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.3 PMA Configuration 2 Control and Status Register (PMACFG2) — offset = 0x7E2

PMA Configuration register 2. This register is either 64 or 32 bits depending on the RV for-
mat. For the encoding of each field in this register, refer to Section 7.3.16.17, "PMA0CFG -
PMA63CFG Bit Assignments".

 RV-64 Format

RV-32 Format

Figure 7.28 PMA Configuration 2 Control and Status Register Bit Assignments

63 56 55 48 47 49 39 32

PMA15CFG PMA14CFG PMA13CFG PMA12CFG

31 24 23 16 15 8 7 32

PMA11CFG PMA10CFG PMA9CFG PMA8CFG

31 24 23 16 15 8 7 32

PMA11CFG PMA10CFG PMA9CFG PMA8CFG

Table 7.30 PMA Configuration 2 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

PMA15CFG 63:56 PMA15 configuration field in the RV-64 format. R/W Undefined

PMA14CFG 55:48 PMA14 configuration field in the RV-64 format. R/W Undefined

PMA13CFG 47:40 PMA13 configuration field in the RV-64 format. R/W Undefined

PMA12CFG 39:32 PMA12 configuration field in the RV-64 format. R/W Undefined

PMA11CFG 31:24 PMA11 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA10CFG 23:16 PMA10 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA9CFG 15:8 PMA9 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA8CFG 7:0 PMA8 configuration field in the RV-64 or RV-32 format. R/W Undefined

266
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.4 PMA Configuration 3 Control and Status Register (PMACFG3) — offset = 0x7E3

PMA Configuration register 3. This register is only used in the RV32 format. For the encoding
of each field in this register, refer to Section 7.3.16.17, "PMA0CFG - PMA63CFG Bit
Assignments".

RV-32 Format

Figure 7.29 PMA Configuration 3 Control and Status Register Bit Assignments

31 24 23 16 15 8 7 32

PMA15CFG PMA14CFG PMA13CFG PMA12CFG

Table 7.31 PMA Configuration 3 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

PMA15CFG 31:24 PMA15 configuration field in the RV-32 format. R/W Undefined

PMA14CFG 23:16 PMA14 configuration field in the RV-32 format. R/W Undefined

PMA13CFG 15:8 PMA13 configuration field in the RV-32 format. R/W Undefined

PMA12CFG 7:0 PMA12 configuration field in the RV-32 format. R/W Undefined

267
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.5 PMA Configuration 4 Control and Status Register (PMACFG4) — offset = 0x7E4

PMA Configuration register 4. This register is either 64 or 32 bits depending on the RV for-
mat. For the encoding of each field in this register, refer to Section 7.3.16.17, "PMA0CFG -
PMA63CFG Bit Assignments".

 RV-64 Format

RV-32 Format

Figure 7.30 PMA Configuration 4 Control and Status Register Bit Assignments

63 56 55 48 47 49 39 32

PMA23CFG PMA22CFG PMA21CFG PMA20CFG

31 24 23 16 15 8 7 32

PMA19CFG PMA18CFG PMA17CFG PMA16CFG

31 24 23 16 15 8 7 32

PMA19CFG PMA18CFG PMA17CFG PMA16CFG

Table 7.32 PMA Configuration 4 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

PMA23CFG 63:56 PMA23 configuration field in the RV-64 format. R/W Undefined

PMA22CFG 55:48 PMA22 configuration field in the RV-64 format. R/W Undefined

PMA21CFG 47:40 PMA21 configuration field in the RV-64 format. R/W Undefined

PMA20CFG 39:32 PMA20 configuration field in the RV-64 format. R/W Undefined

PMA19CFG 31:24 PMA19 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA18CFG 23:16 PMA18 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA17CFG 15:8 PMA17 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA16CFG 7:0 PMA16 configuration field in the RV-64 or RV-32 format. R/W Undefined

268
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.6 PMA Configuration 5 Control and Status Register (PMACFG5) — offset = 0x7E5

PMA Configuration register 5. This register is only used in the RV32 format. For the encoding
of each field in this register, refer to Section 7.3.16.17, "PMA0CFG - PMA63CFG Bit
Assignments".

RV-32 Format

Figure 7.31 PMA Configuration 5 Control and Status Register Bit Assignments

31 24 23 16 15 8 7 32

PMA23CFG PMA22CFG PMA21CFG PMA20CFG

Table 7.33 PMA Configuration 5 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

PMA23CFG 31:24 PMA23 configuration field in the RV-32 format. R/W Undefined

PMA22CFG 23:16 PMA22 configuration field in the RV-32 format. R/W Undefined

PMA21CFG 15:8 PMA21 configuration field in the RV-32 format. R/W Undefined

PMA20CFG 7:0 PMA20 configuration field in the RV-32 format. R/W Undefined

269
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.7 PMA Configuration 6 Control and Status Register (PMACFG6) — offset = 0x7E6

PMA Configuration register 6. This register is either 64 or 32 bits depending on the RV for-
mat. For the encoding of each field in this register, refer to Section 7.3.16.17, "PMA0CFG -
PMA63CFG Bit Assignments".

 RV-64 Format

RV-32 Format

Figure 7.32 PMA Configuration 6 Control and Status Register Bit Assignments

63 56 55 48 47 49 39 32

PMA31CFG PMA30CFG PMA29CFG PMA28CFG

31 24 23 16 15 8 7 32

PMA27CFG PMA26CFG PMA25CFG PMA24CFG

31 24 23 16 15 8 7 32

PMA27CFG PMA26CFG PMA25CFG PMA24CFG

Table 7.34 PMA Configuration 6 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

PMA31CFG 63:56 PMA31 configuration field in the RV-64 format. R/W Undefined

PMA30CFG 55:48 PMA30 configuration field in the RV-64 format. R/W Undefined

PMA29CFG 47:40 PMA29 configuration field in the RV-64 format. R/W Undefined

PMA28CFG 39:32 PMA28 configuration field in the RV-64 format. R/W Undefined

PMA27CFG 31:24 PMA27 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA26CFG 23:16 PMA26 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA25CFG 15:8 PMA25 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA24CFG 7:0 PMA24 configuration field in the RV-64 or RV-32 format. R/W Undefined

270
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.8 PMA Configuration 7 Control and Status Register (PMACFG7) — offset = 0x7E7

PMA Configuration register 7. This register is only used in the RV32 format. For the encoding
of each field in this register, refer to Section 7.3.16.17, "PMA0CFG - PMA63CFG Bit
Assignments".

RV-32 Format

Figure 7.33 PMA Configuration 7 Control and Status Register Bit Assignments

31 24 23 16 15 8 7 32

PMA31CFG PMA30CFG PMA29CFG PMA28CFG

Table 7.35 PMA Configuration 7 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

PMA31CFG 31:24 PMA31 configuration field in the RV-32 format. R/W Undefined

PMA30CFG 23:16 PMA30 configuration field in the RV-32 format. R/W Undefined

PMA29CFG 15:8 PMA29 configuration field in the RV-32 format. R/W Undefined

PMA28CFG 7:0 PMA28 configuration field in the RV-32 format. R/W Undefined

271
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.9 PMA Configuration 8 Control and Status Register (PMACFG8) — offset = 0x7E8

PMA Configuration register 8. This register is either 64 or 32 bits depending on the RV for-
mat. For the encoding of each field in this register, refer to Section 7.3.16.17, "PMA0CFG -
PMA63CFG Bit Assignments".

 RV-64 Format

RV-32 Format

Figure 7.34 PMA Configuration 8 Control and Status Register Bit Assignments

63 56 55 48 47 49 39 32

PMA39CFG PMA38CFG PMA37CFG PMA36CFG

31 24 23 16 15 8 7 32

PMA35CFG PMA34CFG PMA33CFG PMA32CFG

31 24 23 16 15 8 7 32

PMA35CFG PMA34CFG PMA33CFG PMA32CFG

Table 7.36 PMA Configuration 8 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

PMA39CFG 63:56 PMA39 configuration field in the RV-64 format. R/W Undefined

PMA38CFG 55:48 PMA38 configuration field in the RV-64 format. R/W Undefined

PMA37CFG 47:40 PMA37 configuration field in the RV-64 format. R/W Undefined

PMA36CFG 39:32 PMA36 configuration field in the RV-64 format. R/W Undefined

PMA35CFG 31:24 PMA35 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA34CFG 23:16 PMA34 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA33CFG 15:8 PMA33 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA32CFG 7:0 PMA32 configuration field in the RV-64 or RV-32 format. R/W Undefined

272
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.10 PMA Configuration 9 Control and Status Register (PMACFG9) — offset = 0x7E9

PMA Configuration register 9. This register is only used in the RV32 format. For the encoding
of each field in this register, refer to Section 7.3.16.17, "PMA0CFG - PMA63CFG Bit
Assignments".

RV-32 Format

Figure 7.35 PMA Configuration 9 Control and Status Register Bit Assignments

31 24 23 16 15 8 7 0

PMA39CFG PMA38CFG PMA37CFG PMA36CFG

Table 7.37 PMA Configuration 9 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

PMA39CFG 31:24 PMA39 configuration field in the RV-32 format. R/W Undefined

PMA38CFG 23:16 PMA38 configuration field in the RV-32 format. R/W Undefined

PMA37CFG 15:8 PMA37 configuration field in the RV-32 format. R/W Undefined

PMA36CFG 7:0 PMA36 configuration field in the RV-32 format. R/W Undefined

273
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.11 PMA Configuration 10 Control and Status Register (PMACFG10) — offset = 0x7EA

PMA Configuration register 10. This register is either 64 or 32 bits depending on the RV for-
mat. For the encoding of each field in this register, refer to Section 7.3.16.17, "PMA0CFG -
PMA63CFG Bit Assignments".

 RV-64 Format

RV-32 Format

Figure 7.36 PMA Configuration 10 Control and Status Register Bit Assignments

63 56 55 48 47 49 39 32

PMA47CFG PMA46CFG PMA45CFG PMA44CFG

31 24 23 16 15 8 7 32

PMA43CFG PMA42CFG PMA41CFG PMA40CFG

31 24 23 16 15 8 7 32

PMA43CFG PMA42CFG PMA41CFG PMA40CFG

Table 7.38 PMA Configuration 10 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

PMA47CFG 63:56 PMA47 configuration field in the RV-64 format. R/W Undefined

PMA46CFG 55:48 PMA46 configuration field in the RV-64 format. R/W Undefined

PMA45CFG 47:40 PMA45 configuration field in the RV-64 format. R/W Undefined

PMA44CFG 39:32 PMA44 configuration field in the RV-64 format. R/W Undefined

PMA43CFG 31:24 PMA43 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA42CFG 23:16 PMA42 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA41CFG 15:8 PMA41 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA40CFG 7:0 PMA40 configuration field in the RV-64 or RV-32 format. R/W Undefined

274
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.12 PMA Configuration 11 Control and Status Register (PMACFG11) — offset = 0x7EB

PMA Configuration register 11. This register is only used in the RV32 format. For the encod-
ing of each field in this register, refer to Section 7.3.16.17, "PMA0CFG - PMA63CFG Bit
Assignments".

RV-32 Format

Figure 7.37 PMA Configuration 11 Control and Status Register Bit Assignments

31 24 23 16 15 8 7 0

PMA47CFG PMA46CFG PMA45CFG PMA44CFG

Table 7.39 PMA Configuration 11 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

PMA47CFG 31:24 PMA47 configuration field in the RV-32 format. R/W Undefined

PMA46CFG 23:16 PMA46 configuration field in the RV-32 format. R/W Undefined

PMA45CFG 15:8 PMA45 configuration field in the RV-32 format. R/W Undefined

PMA44CFG 7:0 PMA44 configuration field in the RV-32 format. R/W Undefined

275
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.13 PMA Configuration 12 Control and Status Register (PMACFG12) — offset = 0x7EC

PMA Configuration register 12. This register is either 64 or 32 bits depending on the RV for-
mat. For the encoding of each field in this register, refer to Section 7.3.16.17, "PMA0CFG -
PMA63CFG Bit Assignments".

 RV-64 Format

RV-32 Format

Figure 7.38 PMA Configuration 12 Control and Status Register Bit Assignments

63 56 55 48 47 49 39 32

PMA55CFG PMA54CFG PMA53CFG PMA52CFG

31 24 23 16 15 8 7 32

PMA51CFG PMA50CFG PMA49CFG PMA48CFG

31 24 23 16 15 8 7 32

PMA51CFG PMA50CFG PMA49CFG PMA48CFG

Table 7.40 PMA Configuration 12 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

PMA55CFG 63:56 PMA55 configuration field in the RV-64 format. R/W Undefined

PMA54CFG 55:48 PMA54 configuration field in the RV-64 format. R/W Undefined

PMA53CFG 47:40 PMA53 configuration field in the RV-64 format. R/W Undefined

PMA52CFG 39:32 PMA52 configuration field in the RV-64 format. R/W Undefined

PMA51CFG 31:24 PMA51 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA50CFG 23:16 PMA50 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA49CFG 15:8 PMA49 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA48CFG 7:0 PMA48 configuration field in the RV-64 or RV-32 format. R/W Undefined

276
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.14 PMA Configuration 13 Control and Status Register (PMACFG13) — offset = 0x7ED

PMA Configuration register 13. This register is only used in the RV32 format. For the encod-
ing of each field in this register, refer to Section 7.3.16.17, "PMA0CFG - PMA63CFG Bit
Assignments".

RV-32 Format

Figure 7.39 PMA Configuration 13 Control and Status Register Bit Assignments

31 24 23 16 15 8 7 0

PMA55CFG PMA54CFG PMA53CFG PMA52CFG

Table 7.41 PMA Configuration 13 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

PMA55CFG 31:24 PMA55 configuration field in the RV-32 format. R/W Undefined

PMA54CFG 23:16 PMA54 configuration field in the RV-32 format. R/W Undefined

PMA53CFG 15:8 PMA53 configuration field in the RV-32 format. R/W Undefined

PMA52CFG 7:0 PMA52 configuration field in the RV-32 format. R/W Undefined

277
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.15 PMA Configuration 14 Control and Status Register (PMACFG14) — offset = 0x7EE

PMA Configuration register 14. This register is either 64 or 32 bits depending on the RV for-
mat. For the encoding of each field in this register, refer to Section 7.3.16.17, "PMA0CFG -
PMA63CFG Bit Assignments".

 RV-64 Format

RV-32 Format

Figure 7.40 PMA Configuration 14 Control and Status Register Bit Assignments

63 56 55 48 47 49 39 32

PMA63CFG PMA62CFG PMA61CFG PMA60CFG

31 24 23 16 15 8 7 32

PMA59CFG PMA58CFG PMA57CFG PMA56CFG

31 24 23 16 15 8 7 32

PMA59CFG PMA58CFG PMA57CFG PMA565CFG

Table 7.42 PMA Configuration 14 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

PMA63CFG 63:56 PMA63 configuration field in the RV-64 format. R/W Undefined

PMA62CFG 55:48 PMA62 configuration field in the RV-64 format. R/W Undefined

PMA61CFG 47:40 PMA61 configuration field in the RV-64 format. R/W Undefined

PMA60CFG 39:32 PMA60 configuration field in the RV-64 format. R/W Undefined

PMA58CFG 31:24 PMA59 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA58CFG 23:16 PMA58 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA57CFG 15:8 PMA57 configuration field in the RV-64 or RV-32 format. R/W Undefined

PMA56CFG 7:0 PMA56 configuration field in the RV-64 or RV-32 format. R/W Undefined

278
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.16 PMA Configuration 15 Control and Status Register (PMACFG15) — offset = 0x7EF

PMA Configuration register 15. This register is only used in the RV32 format. For the encod-
ing of each field, refer to Section 7.3.16.17, "PMA0CFG - PMA63CFG Bit Assignments".

RV-32 Format

Figure 7.41 PMA Configuration 15 Control and Status Register Bit Assignments

31 24 23 16 15 8 7 0

PMA63CFG PMA62CFG PMA61CFG PMA60CFG

Table 7.43 PMA Configuration 15 Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

PMA63CFG 31:24 PMA63 configuration field in the RV-32 format. R/W Undefined

PMA62CFG 23:16 PMA62 configuration field in the RV-32 format. R/W Undefined

PMA61CFG 15:8 PMA61 configuration field in the RV-32 format. R/W Undefined

PMA60CFG 7:0 PMA60 configuration field in the RV-32 format. R/W Undefined

279
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.3.16.17 PMA0CFG - PMA63CFG Bit Assignments

The PMA Configuration 0 through PMA Configuration 15 registers listed in the previous sub-
sections store the 8-bit configuration values for PMA0CFG through PMA63CFG. Refer to Table
7.27 for the mapping of PMA values to each specific register.

As mentioned above, all of the 8-bit PMAxCFG fields described above have the exact same
encoding. The cacheability and speculation attributes are included for each PMA.

Figure 7.42 PMA0CFG - PMA63CFG Register Field Assignments

7 4 3 2 0

0 S CCA

Table 7.44 PMA0CFG - PMA63CFG Register Field Descriptions

Name Bits Description R/W Reset State

0 7:4 Reserved. R/W Undefined

S 3 When this bit is set to 1, speculation is enabled for the spe-
cific region.

R/W Undefined

CCA 2:0 Cacheability and coherency attributes, This field is encoded
as follows:

000: Cacheable. Equivalent to MIPS CCA = 3 on CPUs with-
out cache coherency and MIPS CCA = 5 on CPUs with
cache coherency. Alias = C.
001: Reserved.
010: Uncacheable. Equivalent to MIPS CCA=2. Alias = UC.
011: Uncached Accelerated. Equivalent to MIPS CCA = 7.
Alias = UCA.
100 - 111: Reserved.

R/W Undefined

280
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

7.4 MIPS Hybrid Debug Registers

There is one MIPS hybrid debug register as described below.

Figure 7.43 MIPS Hybrid Debug Register Bit Assignments

31 30 29 28 23 22 21 20 19 18 16 15 10 9 7 6 5 4 1 0

0 DM 0 0 CACHEEP DBUSEP IEXI 0 DBVER DEXCCODE 0 DIBIMPR DINT 0 DBS

Table 7.45 MIPS Hybrid Debug Register Bit Descriptions

Name Bits Description R/W Reset State

0 31 Reserved. R 0

DM 30 Debug Mode. When set, indicates that the processor is
operating in debug mode.

R/W Undefined

0 29 Reserved. R 0

0 28:23 Reserved. R 0

CACHEEP 22 When set, this bit indicates that a precise cache parity error
is pending.

R/W1 0

DBUSEP 21 When set, this bit indicates that a Data Bus Error exception
is pending.

R/W1 0

IEXI 20 Imprecise Error eXception Inhibit. When set, imprecise
exceptions are deferred in debug mode. Set on entry to
debug mode, cleared on exit.

R/W 0

0 19 Reserved. R 0

DBGVER 18:16 Debug revision. R From
configuration

DEXCCODE 15:10 Cause of latest exception in debug mode. R Undefined

0 9:7 Reserved. R 0

DIBIMPR 6 When set, this bit indicates that instruction breakpoints are
precise. This bit always reads as 0.

R 0

DINT 5 When set, this bit indicates that a debug interrupt occurred.
This bit is cleared by hardware when an exception occurs in
debug mode.

R 0

0 4:1 Reserved. R 0

DBS 0 When set by hardware, this bit indicates that a single step
exception has occurred. This bit is cleared by hardware.

R 0

Chapter 8

281
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

Interrupt Controller

The Interrupt Controller processes internal and external interrupts in the P8700-F Multipro-
cessing System. It supports up to 512 external interrupts (configurable in multiples of 8),
which are prioritized and routed to the selected hart for servicing. The interrupt priority and
routing are programmed via memory-mapped registers. The interrupt controller also imple-
ments per-hart timer and software interrupts, non-maskable interrupt routing and watchdog
timers. The Interrupt Controller is compatible with the RISC-V Advanced Interrupt Architec-
ture (AIA) specification.

8.1 Overview

The Interrupt Controller implements the following components defined by the RISC-V archi-
tecture:

• Advanced Platform-Level Interrupt Controller (APLIC)

• Advanced Core Local Interrupt (ACLINT) Machine-level Timer

• ACLINT Machine-level Software Interrupt (MSWI)

• ACLINT Supervisor-level Software Interrupt (SSWI)

• Watchdog Timer (WDT)

In addition to the standard components, the Interrupt Controller implements custom exten-
sions to support Non-Maskable Interrupt (NMI) routing, timer synchronization, and Watchdog
Timer (WDT) configuration.

Note that interrupt events defined as "local" by the RISC-V ISA (such as Local Count Overflow
Interrupts and Bus Error Interrupts) are handled internally by the CPU core, and do not
involve the Interrupt Controller.

The Interrupt Controller does not implement the RISC-V IMSIC component or the CPU/hart
CSRs defined by the RISC-V AIA extension. Consequently, hardware virtualization of inter-
rupts is not supported and delivery of interrupts to virtual guests requires software interven-
tion.

8.1.1 Multi-cluster Support

Each cluster in the P8700-F Multiprocessing System instantiates an Interrupt Controller
block, as shown in Figure 1. It is generally preferable that SoC designs connect the same set
of interrupt sources to the APLIC interrupt inputs of all clusters in parallel to give software a
uniform view of the hardware state across all clusters. However, it is also possible for the
SoC design to statically partition the hardware interrupt sources between clusters to suit a
specific application.

282
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

The memory-mapped registers in the Interrupt Controller are accessible to all clusters in the
MPS. This enables software to program a software interrupt as an inter-processor interrupt
(IPI) on a remote cluster by writing to the ACLINT registers of the target cluster.

Figure 8.1 Interrupt Controller Block Diagram

This chapter describes how to program the various elements of the interrupt controller using
both register examples and code examples. Some of these elements include GIC register lay-
out and distribution, determining the number of external interrupts, configuring individual
interrupt sources, scheduling timer interrupts and signaling inter-processor interrupts.

8.1.2 APLIC

The APLIC is responsible for detecting hardware interrupt events from the SoC, prioritizing
them and routing them to the assigned hart for servicing. It supports up to 512 interrupt
inputs (configurable in increments of 8), although 3 interrupt inputs are reserved for inter-
rupt events originating within the cluster and are not available for external use. Interrupt
inputs can be individually programmed to support rising-edge-sensitive, falling-edge-sensi-
tive, high-level-sensitive or low-level-sensitive interrupt signaling.

The APLIC is automatically configured to the number of harts in the cluster, and the APLIC
hart index is given by the concatenation of the CORENUM and HARTNUM fields of the mhartid
CSR.

The APLIC supports two interrupt domains; a Machine-level domain and a Supervisor-level
domain. Both domains are associated with all harts in the cluster, allowing interrupts to be
signaled as either Machine External Interrupts (MEI) or Supervisor External Interrupts (SEI).
Interrupts are signaled to a hart in "direct delivery mode".

In addition to the standard APLIC functionality, the P8700-F APLIC provides the ability to
route any of the external interrupt inputs to a hart non-maskable interrupt (NMI) input. This
is accomplished by use of the following custom memory-mapped registers: snmie, setnmie-
num, clrnmie and clrnmienum (analogous to the standard setie, setienum, clrie and clrienum
registers, respectively). If nmie[k] is 1 and interrupt enable bit k (from the setie/clrie regis-
ters) is zero, interrupt source k will be treated as an NMI.

283
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

In this case, when interrupt source k is asserted, an NMI will be signaled to the hart selected
by target[k].HartIndex, and target[k].IPRIO will be ignored. This is only applicable to inter-
rupts at the root (M-Mode) APLIC domain; interrupts delegated to a child (S-Mode) APLIC
domain are not available for use as NMI.

8.1.3 ACLINT

The ACLINT is divided into three component devices: the Machine-level Timer (MTIMER),
Machine-level Software Interrupter (MSWI), and the Supervisor-level Software Interrupter
(SSWI) that provide timer interrupts and software/inter-processor interrupts to the harts in
the cluster.

8.1.3.1 MTIMER

The MTIMER device implements the mtime and mtimecmp memory-mapped registers and
associated Machine Timer Interrupt (MTI) functionality defined by the RISC-V Privileged
Architecture. A single mtime register serves the entire cluster, while each hart has its own
dedicated mtimecmp register.

Although it is conceptually part of the ACLINT, the mtime register is physically located in the
the always-on power domain of the CPC block to avoid the need to resynchronize the timer
with other clusters when a cluster is powered up while the overall system is running. The
mtime register is located in the CPC section of the cluster register map.

The mtime register is driven by a dedicated reference clock (si_mtime_clk); the recom-
mended frequency is 100MHz.

In addition to the standard MTIMER functionality, the P8700-F APLIC implements a custom
control register (MTIMECTL) that allows the timer to be stopped and synchronizing the mtime
counters in multiple clusters more precisely than a pure software synchronization algorithm.

The mtime synchronization procedure is as follows:

1. Software should write 1 to the MTIMECTL.STOP register bit in all clusters to be synchronized.

2. Software should write the desired starting count value (e.g. zero) to the mtime register of all clusters to
be synchronized.

3. SoC logic outside of the MPS (presumably under software control) should simultaneously assert the
cpc_mtime_start signal to all clusters to be synchronized. This will clear the STOP bit and restart all
the counters at the same time.

284
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.1.3.2 MSWI and SSWI

The MSWI and SSWI devices are implemented as defined by the ACLINT specification. The
hart index is given by the concatenation of the CORENUM and HARTNUM fields of the mhartid
CSR.

8.1.4 Watchdog Timer

The Interrupt Controller provides a watchdog timer for each hart. The WDT consists of two
registers; the WDCSR register (as defined in the RISC-V watchdog timer specification) and a
custom configuration register (WDTCFG). The WDTCFG register controls the count-down fre-
quency and selects the event to be triggered on Stage-1 and Stage-2 timeouts. The avail-
able timeout events are:

1. Signal an interrupt to the associated hart

2. Signal an NMI to the associated hart

3. Assert a per-cluster signal to the external SoC logic. This signal could be routed to SoC-level monitor-
ing logic or to an interrupt input of another cluster.

4. Reset the cluster

285
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.2 ACLINT Memory Mapped Registers

8.2.1 ACLINT Machine Mode Memory Map

The ACLINT machine mode memory mapped registers start at offset 0x50000 from
GCR_BASE, and use the register definitions specified in the RISC-V Advanced Core Local
Interruptor Specification. Registers for the RISC-V Watchdog Timer Specification are also
included in the ACLINT machine mode region.

The ACLINT machine mode region contains the following registers, which are described in
detail in the subsequent per-register description pages:

Table 1: ACLINT Machine Mode Memory Mapped Registers

Offset from
GCR_BASE Register Block Name Description

0x50000
0x50004

.......
0x53FF8

ACLINT.MSIP[0-4094] Per-hart machine software interrupt pending

0x54000
0x54008

.......
0x5BFF0

ACLINT.MTIMECMP[0-4094] Per-hart mtime compare

0x5C000
0x5C004

.......
0x5CFFC

ACLINT.WDCFG[0-1023] MIPS Technologies custom per-hart watchdog
configuration

0x5D000
0x5D004

.......
0x5DFFC

ACLINT.WDCSR[0-1023] Per-hart watchdog configuration and status

286
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.2.1.1 ACLINT Machine Software Interrupt Pending (MSIP[0-4094]) Register (offset = see below)

This register is a machine software interrupt pending register. A machine software interrupt
is asserted on hart mhartid when MSIP[mhartid[11:0]] is set to 1.

The MSIP register for hart mhartid is accessed at GCR_BASE + 0x50000 + 4 * mhar-
tid[11:0].

Each MSIP register resets to 0, and the upper 31 bits are readonly, zero. MSIP registers for
which there is no corresponding hart in the cluster are readonly, zero.

Offset: GCR_BASE + 0x50000, 0x50004, ... 0x53FF8

Figure 8.2 Machine Software Interrupt Pending Register Bit Assignments

31 1 0

0 MSIP

Table 2: Machine Software Interrupt Pending Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:1 Reserved. R 0

MSIP 0 Machine software interrupt pending register. R 0

287
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.2.1.2 ACLINT Machine Time Compare (MTIMECMP[0-4094]) Register (offset = see below)

This register is a machine time compare register. A machine timer interrupt is asserted on
hart mhartid when CPC.Global.MTIME_REG > = ACLINT.MTIMECMP[mhartid[11:0]].

The MTIMECMP register for hart mhartid is accessed at GCR_BASE + 0x54000 + 4 * mhar-
tid[11:0].

The architectural reset value of MTIMECMP is undefined. On MIPS Technologies implementa-
tions we reset it to all 1’s.

Offset: GCR_BASE + 0x54000, 0x54008, ... 0x5BFF0

Figure 8.3 Machine Time Compare Register Bit Assignments

63 0

MTIMECMP

Table 3: Machine Time Compare Register Bit Descriptions

Name Bits Description R/W Reset State

MTIMECMP 63:0 Machine time compare register. R 0

288
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.2.1.3 ACLINT WatchDog ConFiG (WDCFG[0-1023]) Register (offset = see below)

The WDCFG register for hart mhartid is accessed at GCR_BASE + 0x5c000 + 4 * mhar-
tid[11:0]. WDCFG registers for which there is no corresponding hart in the cluster are
readonly, zero.

When the watchdog timer is configured to signal an interrupt, it will be signaled to the hart
on bit 25 of the mip CSR.

Offset: GCR_BASE + 0x5c000, 0x5c004, ... 0x5CFFC

Figure 8.4 WatchDog ConFiG Register Bit Assignments

31 10 9 8 7 4 3 0

0 WDFRQ S2Event S1Event

Table 4: WatchDog ConFiG Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:10 Reserved R 0

WDFRQ 9:8 WDT count-down frequency: counter decrements when
bit 8 * (WDFRQ + 1) of CPC.Global.MTIME_REG transi-
tions from 0 to 1.

R/W 0

S2Event 7:4 Event to trigger on Stage-2 timeout
Encoding 0: Alias = Interrupt, Meaning assert interrupt via
APLIC
Encoding 1: Alias = NMI, Meaning assert NMI
Encoding 2: Alias = Reset, Meaning assert Reset
Encoding 3: Alias = TopLevel, Meaning assert top-level
pin to SoC logic

R/W 0

S1Event 3:0 Event to trigger on Stage-1 timeout.
When S1Event is set to 4, the WDT will behave as an
interval timer. When the counter reaches zero, an inter-
rupt will be signaled and the counter will be reinitialized to
WDCSR.WTOCNT but the WDCSR.S1WTO bit will not
be set. In this mode, the WDT will periodically signal the
stage-1 interrupt at a fixed interval, and never signal the
stage-2 event.

Encoding 0: Alias = Interrupt, Meaning assert interrupt via
APLIC
Encoding 1: Alias = NMI , Meaning assert NMI
Encoding 2: Alias = Reset , Meaning reset
Encoding 3: Alias = TopLevel, Meaning top-level pin to
SoC logic
Encoding 4: Alias = IntervalTimer, Meaning Interrupt Inter-
val Timer

R/W 0

289
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.2.1.4 ACLINT WatchDog Control and Status (WDCSR[0-1023]) Register (offset = see below)

The WDCSR register for hart mhartid is accessed at GCR_BASE + 0x5d000 + 4 * mhar-
tid[11:0]. WDCSR registers for which there is no corresponding hart in the cluster are
readonly, zero.

Offset: GCR_BASE + 0x5D000, 0x5D004, ... 0x5DFFC

Figure 8.5 WatchDog Control and Status Register Bit Assignments

31 14 13 4 3 2 1 0

0 WTOCNT S2WTO S1WTO 0 Enable

Table 5: WatchDog Control and Status Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:14 Reserved R 0

WTOCNT 13:4 Watchdog timer out count. Writes to WDCSR and stage-1
timeouts cause a timeout counter to be initialized to
WTOCNT.

R/W Undefined

S2WTO 3 Stage-2 watchdog timeout has occurred. Set when time-
out counter is zero and S1WTO=1 (unless
WDCFG.S1Event=4)

R/W Undefined

S1WTO 2 Stage-1 watchdog timeout has occurred. Set when time-
out counter is zero.

R/W Undefined

0 1 Reserved R 0

Enable 0 Enable watchdog timer. R/W 0

290
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.2.2 Aclint Supervisor Mode Memory Map

The ACLINT supervisor mode memory mapped registers start at offset 0x6C000 from
GCR_BASE, and use the register definitions specified in the RISC-V Advanced Core Local
Interruptor Specification.

The ACLINT supervisor mode region contains the following registers, which are described in
detail in the subsequent per-register description pages:

Table 6: ACLINT Supervisor Mode Memory Mapped Registers

Offset from GCR_BASE Register Block Name Description

0x6C000
0x6C004

.......
0x6FFF8

ACLINT.SETSSIP[0-4094] Per-hart set supervisor software interrupt pending

291
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.2.2.1 ACLINT SET Supervisor Software Interrupt Pending (SETSSIP[0-4094]) Register (offset = see
below)

This register set supervisor software interrupt pending register. A supervisor software inter-
rupt is asserted on hart mhartid when SETSSIP[mhartid[11:0]] is written to 1. The SETSSIP
register ignores writes of zero and always reads as zero.

The SETSSIP register for hart mhartid is accessed at GCR_BASE + 0x6c000 + 4 * mhar-
tid[11:0]. SETSSIP registers for which there is no corresponding hart in the cluster are
readonly, zero.

Offset: GCR_BASE + 0x6C000, 0x6C004, ... 0x6FFF8

Figure 8.6 SET Supervisor Software Interrupt Pending Register Bit Assignments

31 1 0

0 SETSSIP

Table 7: SET Supervisor Software Interrupt Pending Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:1 Reserved R 0

SETSSIP 0 Set supervisor software interrupt pending
register

R 0

292
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3 APLIC Memory Mapped Registers

8.3.1 APLIC Machine Domain Memory Map

The APLIC machine domain starts at offset 0x40000 from GCR_BASE, and uses the register
definitions and address offsets for an APLIC domain as specified in the RISC-V Advanced
Interrupt Architecture. The offsets and registers within the domain are identical to those for
the APLIC supervisor domain.

The APLIC machine domain contains the following registers, which are described in detail in
the subsequent per-register descriptions:

Table 8: APLIC Machine Domain Memory Mapped Registers

Offset from
GCR_BASE Register Block Name Description

0x40000 APLIC.M.domaincfg Machine domain configuration

0x40004
0x40008

.......
0x40FFC

APLIC.M.sourcecfg[1-1023] Machine source configuration

0x41C00
0x41C04

.......
0x41C7C

APLIC.M.setip[0-31] Set machine interrupt pending by mask

0x41CDC APLIC.M.setipnum Set machine interrupt pending by number

0x41D00
0x41D04

.......
0x41D7C

APLIC.M.in_clrip[0-31] Read machine source input or clear machine
interrupt pending by mask

0x41DDC APLIC.M.clripnum Clear machine interrupt pending by number

0x41E00
0x41E04

.......
0x41E7C

APLIC.M.setie[0-31] Set machine interrupt enable by mask

0x41EDC APLIC.M.setienum Set machine interrupt enable by number

0x41F00
0x41F04

.......
0x41F7C

APLIC.M.clrie[0-31] Clear machine interrupt enable by mask

0x41FDC APLIC.M.clrienum Clear machine interrupt enable by number

0x42000 APLIC.M.setipnum_le Set supervisor interrupt pending by number, Lit-
tle-endian

0x43004
0x43008

.......
0x43FFC

APLIC.M.target[1-1023] Specify target hart and priority for machine inter-
rupt source

293
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

0x44000
0x44020

.......
0x4BFE0

APLIC.M.Hart[0-1023].idelivery Enable machine interrupt delivery for hart

0x44004
0x44024

.......
0x4BFE4

APLIC.M.Hart[0-1023].iforce Force machine interrupt for hart

0x44008
0x44028

.......
0x4BFE8

APLIC.M.Hart[0-1023].ithreshold Specify machine interrupt priority threshold for
hart

0x44018
0x44038

.......
0x4BFF8

APLIC.M.Hart[0-1023].topi Read top priority pending machine interrupt for
hart

0x4401C
0x4403C

.......
0x4BFFC

APLIC.M.Hart[0-1023].claimi Claim top priority pending machine interrupt for
hart

Table 8: APLIC Machine Domain Memory Mapped Registers(continued)

Offset from
GCR_BASE Register Block Name Description

294
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.2 APLIC Supervisor Domain Memory Map

The APLIC supervisor domain starts at offset 0x60000 from GCR_BASE, and uses the register
definitions and address offsets for an APLIC domain as specified in the RISC-V Advanced
Interrupt Architecture. The offsets and registers within the domain are identical to those for
the APLIC machine domain.

The APLIC supervisor domain contains the following registers, which are described in detail in
the subsequent per-register descriptions

Table 9: APLIC Supervisor Domain Memory Mapped Registers

Offset from
GCR_BASE Register Block Name Description

0x60000 APLIC.S.domaincfg Supervisor domain configuration

0x60004
0x60008

.......
0x60FFC

APLIC.S.sourcecfg[1-1023] Supervisor source configuration

0x61C00
0x61C04

.......
0x61C7C

APLIC.S.setip[0-31] Set supervisor interrupt pending by mask

0x61CDC APLIC.S.setipnum Set supervisor interrupt pending by number

0x61D00
0x61D04

.......
0x61D7C

APLIC.S.in_clrip[0-31] Read supervisor source input or clear supervisor
interrupt pending by mask

0x61DDC APLIC.S.clripnum Clear supervisor interrupt pending by number

0x61E00
0x61E04

.......
0x61E7C

APLIC.S.setie[0-31] Set supervisor interrupt enable by mask

0x61EDC APLIC.S.setienum Set supervisor interrupt enable by number

0x61F00
0x61F04

.......
0x61F7C

APLIC.S.clrie[0-31] Clear supervisor interrupt enable by mask

0x61FDC APLIC.S.clrienum Clear supervisor interrupt enable by number

0x62000 APLIC.S.setipnum_le Set supervisor interrupt pending by number, Lit-
tle-endian

0x63004
0x63008

.......
0x63FFC

APLIC.S.target[1-1023] Specify target hart and priority for supervisor
interrupt source

295
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

0x64000
0x64020

.......
0x6BFE0

APLIC.S.Hart[0-1023].idelivery Enable supervisor interrupt delivery for hart

0x64004
0x64024

.......
0x6BFE4

APLIC.S.Hart[0-1023].iforce Force supervisor interrupt for hart

0x64008
0x64028

.......
0x6BFE8

APLIC.S.Hart[0-1023].ithreshold Specify supervisor interrupt priority threshold for
hart

0x64018
0x64038

.......
0x6BFF8

APLIC.S.Hart[0-1023].topi Read top priority pending supervisor interrupt for
hart

0x6401C
0x6403C

.......
0x6BFFC

APLIC.S.Hart[0-1023].claimi Claim top priority pending supervisor interrupt for
hart

Table 9: APLIC Supervisor Domain Memory Mapped Registers (continued)

Offset from
GCR_BASE Register Block Name Description

296
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3 APLIC Custom Memory Map

The APLIC custom region starts at offset 0x4c000 from GCR base, and contains the following
registers, which are described in more detail in the subsequent per-register descriptions

Table 10: APLIC Custom Memory Mapped Registers

Offset from GCR_BASE Register Block Name Description

0x4C000
0x4C004

.......
0x4C07C

APLIC.setnmie[0-31] Set NMI enabled bit by mask

0x4C0DC APLIC.setnmienum Set NMI enabled bit by number

0x4C100
0x4C104

.......
0x4C17C

APLIC.clrnmie[0-31] Clear NMI enabled bit by mask

0x4C1DC APLIC.clrnmienum Clear NMI enabled bit by number

297
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.1 APLIC Domain Configuration (DOMAINCFG) Register (offset = see below)

This register domain configuration register. per-domain register containing the APLIC
domain’s

configuration status.

Offset: APLIC + 0x00000

GCR_BASE + 0x40000 # APLIC.M

GCR_BASE + 0x60000 # APLIC.S

Figure 8.7 Domain Configuration Register Bit Assignments

31 30 9 8 7 3 2 1 0

1 0 IE 0 DM 0 BE

Table 11: Domain Configuration Register Bit Descriptions

Name Bits Description R/W Reset State

1 31 Allows current endianness to be identified by reading
domaincfg. The P8700 supports Little Endian mode.

R 1

0 30:9 Reserved R 0

IE 8 Interrupts Enabled for this domain? R/W 0

0 7:3 Reserved R 0

DM 2 Read only-0 when IMSIC not supported.
Delivery Mode
Encoding 0: Alias = Direct, Meaning Direct delivery mode
Encoding 1: Alias = MSI, Meaning MSI delivery mode

R 0

0 1 Reserved R 0

LE 0 This bit is always 0 to indicate Little Endian addressing
mode. Note that Big Endian mode is not supported in the
P8700.

R 0
(LE mode)

298
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.2 APLIC Source Configuration (SOURCECFG[1-1023]) Register (offset = see below)

This register source configuration register. Per domain, per-interrupt source read/write regis-
ters containing configuration status for each interrupt source in the APLIC domain.

The sourcecfg[i] register for source i is accessed at the APLIC domain base address + 4 * i.

Offset: APLIC + 0x00004, 0x00008, ... 0x00ffc

GCR_BASE + 0x40004, 0x40008, ... 0x40ffc # APLIC.M

GCR_BASE + 0x60004, 0x60008, ... 0x60ffc # APLIC.S

Figure 8.8 Source Configuration Register Bit Assignments

31 11 10 9 3 2 0

0 D CHILD_INDEX

0 SM

Table 12: Source Configuration Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:11 Reserved R 0

D 10 Read/write in Machine domain, readonly 0 in Supervisor
domain.
Is the Machine domain interrupt source delegated to the
Supervisor domain?

R/W 0

CHILD_INDEX 9:0 Target domain for delegated interrupts. Only one target
domain (Supervisor, CHILD_INDEX = 0) is currently sup-
ported by MIPS Technologies implementations. These
bits are only used as CHILD_INDEX when sourcecfg.D =
1. When sourcecfg.D = 0, bits 2:0 are used as the SM
(source mode) bitfield.

R 0

SM 2:0 Source Mode. These bits are only used as SM when
sourcecfg.D=0. When sourcecfg.D = 1, bits 9:0 are used
as the CHILD_INDEX bitfield.
Encoding 0: Alias = Inactive, Meaning Inactive in this
domain (and not delegated)
Encoding 1: Alias = Detached, Meaning Active, detached
from the source wire
Encoding 4: Alias = Edge1, Meaning Active, edge-sensi-
tive, asserted on rising edge
Encoding 5: Alias = Edge0, Meaning Active, edge-sensi-
tive, asserted on falling edge
Encoding 6: Alias = Level1, Meaning Active, level-sensi-
tive, asserted when high
Encoding 7: Alias = Level0, Meaning Active, level-sensi-
tive, asserted when low

R/W 0

299
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.3 APLIC SET Interrupt Pending (SETIP[0-31]) Register (offset = see below)

This register set interrupt pending register. A write to the per-domain setip[i] register sets
the interrupt pending bit 32 * i + j for every bit position j which is 1 in the written value. A
read of setip[i] register returns a bitmask of those interrupt sources in the range [32i +
31:32i] for which the interrupt is pending.

Only interrupt sources which are active in the targeted APLIC domain can be read or written.

When the sourcecfg.SM field for the interrupt source is configured to be in Level0 or Level1
mode, the interrupt source is tied directly to the external interrupt input signal, and writes to
setip are ignored, while reads of setip return the rectified value of the external interrupt sig-
nal.

Offset: APLIC + 0x01c00, 0x01c04, ... 0x01c7c

GCR_BASE + 0x41c00, 0x41c04, ... 0x41c7c # APLIC.M

GCR_BASE + 0x61c00, 0x61c04, ... 0x61c7c # APLIC.S

Figure 8.9 SET Interrupt Pending Register Bit Assignments

31 0

SETIP

Table 13: SET Interrupt Pending Register Bit Descriptions

Name Bits Description R/W Reset State

SETIP 31:0 Set interrupt pending register. R/W 0

300
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.4 APLIC Input/Clear Interrupt Pending (IN_CLRIP[0-31]) Register (offset = see below)

This register input/clear interrupt pending register. A write to the per-domain in_crlip[i] reg-
ister clears the interrupt pending bit 32 * i + j for every bit position j which is 1 in the written
value.

Only interrupt sources which are active in the targeted APLIC domain can be written. When
the sourcecfg.SM field for the interrupt source is configured to be in Level0 or Level1 mode,
the interrupt source is tied directly to the external interrupt input signal and writes to in_clrip
are ignored.

A read of in_clrip[i] register returns a bitmask of the rectified input value for interrupt
sources in the range [32i + 31:32i], where the rectified input value is the input source value
if the interrupt is in Edge1 or Level1 mode, the inverted input source value if the interrupt is
in Edge0 or Level0 mode, or zero otherwise.

Offset: APLIC + 0x01d00, 0x01d04, ... 0x01d7c

GCR_BASE + 0x41d00, 0x41d04, ... 0x41d7c # APLIC.M

GCR_BASE + 0x61d00, 0x61d04, ... 0x61d7c # APLIC.S

Figure 8.10 Input/Clear Interrupt Pending Register Bit Assignments

31 0

IN_CLRIP

Table 14: Input/Clear Interrupt Pending Register Bit Descriptions

Name Bits Description R/W Reset State

IN_CLRIP 31:0 INput/CLeaR Interrupt Pending Register. R/W 0

301
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.5 APLIC Set Interrupt-Pending Number (SETIPNUM) Register (offset = see below)

This register set interrupt-pending number register. On writes, set interrupt pending bit for
the num-bered interrupt source to 1. Only interrupt sources which are active in the targeted
APLIC domain and not configured as level sensitive can be written. Reads return zero.

Offset: APLIC + 0x01cdc

GCR_BASE + 0x41cdc # APLIC.M

GCR_BASE + 0x61cdc # APLIC.S

Figure 8.11 Set Interrupt-Pending Number Register Bit Assignments

31 0

SETIPNUM

Table 15: Set Interrupt-Pending Number Register Bit Descriptions

Name Bits Description R/W Reset State

SETIPNUM 31:0 Set interrupt-pending number register. R 0

302
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.6 APLIC Clear IP Number (CLRIPNUM) Register (offset = see below)

This register clear IP number register. On writes, clear interrupt pending bit for the numbered
interrupt source. Only interrupt sources which are active in the targeted APLIC domain and
not configured as level sensitive can be written. Reads return zero.

Offset: APLIC + 0x01ddc

GCR_BASE + 0x41ddc # APLIC.M

GCR_BASE + 0x61ddc # APLIC.S

Figure 8.12 Clear IP Number Register Bit Assignments

31 0

CLRIPNUM

Table 16: Clear IP Number Register Bit Descriptions

Name Bits Description R/W Reset State

CLRIPNUM 31:0 Clear IP number register. R 0

303
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.7 APLIC Set Interrupt Enable (SETIE[0-31]) Register (offset = see below)

This register set interrupt enable register. A write to the per-domain setie[i] register sets the
interrupt enable bit 32 * i + j for every bit position j which is one in the written value. Only
interrupt sources which are active in the targeted APLIC domain can be written.

A read of the SETIE[i] register returns a bit-mask of those interrupt sources in the range [32i
+ 31:32i] for which the interrupt is enabled.

Offset: APLIC + 0x01e00, 0x01e04, ... 0x01e7c

GCR_BASE + 0x41e00, 0x41e04, ... 0x41e7c # APLIC.M

GCR_BASE + 0x61e00, 0x61e04, ... 0x61e7c # APLIC.S

Figure 8.13 Set Interrupt Enable Register Bit Assignments

31 0

SETIE

Table 17: Set Interrupt Enable Register Bit Descriptions

Name Bits Description R/W Reset State

SETIE 31:0 Set interrupt enable register. R/W 0

304
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.8 APLIC Clear Interrupt Enable (CLRIE[0-31]) Register (offset = see below)

This register clear interrupt enable register. A write to the per-domain CLRIE[i] register clears
the interrupt enable bit 32 * i + j for every bit position j which is one in the written value.
Only interrupt sources which are active in the targeted APLIC domain can be written.

Offset: APLIC + 0x01f00, 0x01f04, ... 0x01f7c

GCR_BASE + 0x41f00, 0x41f04, ... 0x41f7c # APLIC.M

GCR_BASE + 0x61f00, 0x61f04, ... 0x61f7c # APLIC.S

Figure 8.14 Clear Interrupt Enable Register Bit Assignments

31 0

CLRIE

Table 18: Clear Interrupt Enable Register Bit Descriptions

Name Bits Description R/W Reset State

CLRIE 31:0 Clear interrupt enable register. R 0

305
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.9 APLIC Set Interrupt Enable Number (SETIENUM) Register (offset = see below)

This register set interrupt enable number register. On writes, set interrupt enable bit for the
numbered interrupt source to 1. Only interrupt sources which are active in the targeted
APLIC domain can be written.

Offset: APLIC + 0x01edc

GCR_BASE + 0x41edc # APLIC.M

GCR_BASE + 0x61edc # APLIC.S

Figure 8.15 Set Interrupt Enable Number Register Bit Assignments

31 0

SETIENUM

Table 19: Set Interrupt Enable Number Register Bit Descriptions

Name Bits Description R/W Reset State

SETIENUM 31:0 Set interrupt enable number register. R 0

306
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.10 APLIC Clear Interrupt Enable Number (CLRIENUM) Register (offset = see below)

This register clear interrupt enable number register. On writes, clear interrupt enable bit for
the numbered interrupt source. Only interrupt sources which are active in the targeted APLIC
domain and not configured as level sensitive can be written.

Offset: APLIC + 0x01fdc

GCR_BASE + 0x41fdc # APLIC.M

GCR_BASE + 0x61fdc # APLIC.S

Figure 8.16 Clear Interrupt Enable Number Register Bit Assignments

31 0

CLRIENUM

Table 20: Clear Interrupt Enable Number Register Bit Descriptions

Name Bits Description R/W Reset State

CLRIENUM 31:0 Clear interrupt enable number register. R 0

307
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.11 APLIC Set Interrupt-Pending Number (SETIPNUM_LE) Register (offset = see below)

This register set interrupt-pending number (Little Endian) register. On writes, set interrupt
pending bit for the numbered interrupt source to 1. Only interrupt sources which are active in
the targeted APLIC domain and not configured as level sensitive can be written.

Offset: APLIC + 0x02000

GCR_BASE + 0x42000 # APLIC.M

GCR_BASE + 0x62000 # APLIC.S

Figure 8.17 Set Interrupt-Pending Number Register Bit Assignments

31 0

SETIPNUM_LE

Table 21: Set Interrupt-Pending Number Register Bit Descriptions

Name Bits Description R/W Reset State

SETIPNUM_LE 31:0 Set interrupt-pending number (Little Endian) register. R 0

308
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.12 APLIC Target (TARGET[1-1023]) Register (offset = see below)

This register is target register. Per domain, per-interrupt source registers for configuring the
target hart number and priority for each interrupt source in the APLIC domain.

The target[i] register for source i is accessed at the APLIC domain base address + 0x3004 +
4 * i.

Offset: APLIC + 0x03004, 0x03008, ... 0x03ffc

GCR_BASE + 0x43004, 0x43008, ... 0x43ffc # APLIC.M

GCR_BASE + 0x63004, 0x63008, ... 0x63ffc # APLIC.S

Figure 8.18 Target Register Bit Assignments

31 18 17 8 7 0

HARTINDEX 0 IPRIO

Table 22: Target Register Bit Descriptions

Name Bits Description R/W Reset State

HARTINDEX 31:18 Index of hart to be targeted by this interrupt source. For
MIPS Technologies implementations, the index is mhar-
tid[11:0].

R/W 0

0 17:8 Reserved. R 0

IPRIO 7:0 Priority of this interrupt source. Values in the range
(1<<APLIC.ipriolen) - 1:1 are supported, with 1 being the
highest priority.

R/W 1

309
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.13 APLIC Interrupt Delivery (HART[0-1023].IDELIVERY) Register (offset = see below)

This register interrupt delivery register. Per-domain, per-hart registers for configuring
whether deliv-ery of each interrupt source is enabled.

The idelivery register for hart mhartid is accessed at the APLIC domain base address +
0x4000 + 0x20 * mhartid[11:0].

Offset: APLIC + 0x04000, 0x04020, ... 0x0bfe0

GCR_BASE + 0x44000, 0x44020, ... 0x4bfe0 # APLIC.M

GCR_BASE + 0x64000, 0x64020, ... 0x6bfe0 # APLIC.S

Figure 8.19 Interrupt Delivery Register Bit Assignments

31 1 0

0 ENABLED

Table 23: Interrupt Delivery Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:1 Reserved R 0

ENABLED 0 Interrupt delivery register. R 0

310
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.14 APLIC Interrupt Force (HART[0-1023].IFORCE) Register (offset = see below)

This register interrupt force register. Per-domain, per-hart registers for specifying whether a
interrupt in the APLIC domain is forced for each hart in the domain.

The iforce register for hart mhartid is accessed at the APLIC domain base address + 0x4004
+ 0x20 * mhartid[11:0].

Offset: APLIC + 0x04004, 0x04024, ... 0x0bfe4

GCR_BASE + 0x44004, 0x44024, ... 0x4bfe4 # APLIC.M

GCR_BASE + 0x64004, 0x64024, ... 0x6bfe4 # APLIC.S

Figure 8.20 Interrupt Force Register Bit Assignments

31 1 0

0 IFORCE

Table 24: Interrupt Force Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:1 Reserved R 0

IFORCE 0 Interrupt force register. R 0

311
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.15 APLIC Interrupt Threshold (HART[0-1023].ITHRESHOLD) Register (offset = see below)

This register interrupt threshold register. Per-domain, per-hart registers specifying the inter-
rupt priority threshold for each hart in the domain. A value of zero means no threshold is
applied. A non zero value means that interrupts with priority value greater than or equal to
the threshold will be ignored.

The ithreshold register for hart mhartid is accessed at the domain APLIC base address +
0x4008 + 0x20 * mhartid[11:0].

Offset: APLIC + 0x04008, 0x04028, ... 0x0bfe8

GCR_BASE + 0x44008, 0x44028, ... 0x4bfe8 # APLIC.M

GCR_BASE + 0x64008, 0x64028, ... 0x64fe8 # APLIC.S

Figure 8.21 Interrupt Threshold Register Bit Assignments

31 0

ITHRESHOLD

Table 25: Interrupt Threshold Register Bit Descriptions

Name Bits Description R/W Reset State

ITHRESHOLD 31:0 Interrupt threshold register. R 0

312
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.16 APLIC Top Interrupt (HART[0-1023].TOPI) Register (offset = see below)

This register top interrupt register. Registers specifying the top priority pending interrupt for
each hart in the domain.

The topi register for hart mhartid is accessed at the domain APLIC base address + 0x4018 +
0x20 * mhartid[11:0].

Offset: APLIC + 0x04018, 0x04038, ... 0x0bff8

GCR_BASE + 0x44018, 0x44038, ... 0x4bff8 # APLIC.M

GCR_BASE + 0x64018, 0x64038, ... 0x6bff8 # APLIC.S

Figure 8.22 Top Interrupt Register Bit Assignments

31 26 25 16 15 8 7 0

0 ID 0 PRIORITY

Table 26: Top Interrupt Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:26 Reserved R 0

ID 25:16 ID register. R 0

0 15:8 Reserved R 0

PRIORITY 7:0 Priority pending interrupt for each hart in the domain. R 0

313
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.17 APLIC Claim Interrupt (HART[0-1023].CLAIMI) Register (offset = see below)

This register claim interrupt register. Per-domain, per-hart register for claiming and deassert-
ing the Harts top priority interrupt in the domain.

Reading the claimi register returns the current value of the topi register for this hart, i.e. the
highest priority pending interrupt source number and the corresponding IPRIO value. In
addition, the interrupt pending signal for that interrupt source is cleared, unless the interrupt
is in level-sensitive mode, in which case the interrupt pending signal is directly tied to the
external interrupt signal and can only be cleared by change in the external interrupt signal
value.

If no interrupt is currently pending for the hart, i.e. topi equals 0, then the forcei register for
the hart is cleared by a read of claimi.

Writes to the claimi register are ignored.

The claimi register for hart mhartid is accessed at the domain APLIC base address + 0x401c
+ 0x20 * mhartid[11:0].

Offset: APLIC + 0x0401c, 0x0403c, ... 0x0bffc

GCR_BASE + 0x4401c, 0x4403c, ... 0x4bffc # APLIC.M

GCR_BASE + 0x6401c, 0x6403c, ... 0x6bffc # APLIC.S

Figure 8.23 Claim Interrupt Register Bit Assignments

31 26 25 16 15 8 7 0

0 ID 0 PRIORITY

Table 27: Claim Interrupt Register Bit Descriptions

Name Bits Description R/W Reset State

0 31:26 Reserved R 0

ID 25:16 ID register. R 0

0 15:8 Reserved R 0

PRIORITY 7:0 Per-hart register for claiming and deasserting the Harts
top priority interrupt in the domain.

R 0

314
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.18 APLIC Set NMI Enable (SETNMIE[0-31]) Register (offset = see below)

This register set NMI enable register. A write to setnmie[i] register sets the NMI enable bit 32
* i + j for every bit position j which is 1 in the written value. A read of setnmie[i] register
returns a bitmask of those interrupt sources in the range [32i + 31:32i] for which the NMI
enabled bit is currently set.

When interrupt source i is pending in the machine domain and not enabled (i.e.
APLIC.sourcecfg.D=0, APLIC.ip[i] is set and APLIC.ie[i] is clear) and NMIs are enabled for the
source (i.e. APLIC.nmie[i] is set) then the interrupt is delivered to the target hart as an NMI.

Offset: GCR_BASE + 0x4c000, 0x4c004, ... 0x4c078

Figure 8.24 Set NMI Enable Register Bit Assignments

31 24 23 16 15 8 7 0

SETNMIE

Table 28: Set NMI Enable Register Bit Descriptions

Name Bits Description R/W Reset State

SETNMIE 31:0 Set NMI enable register. R 0

315
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.19 APLIC Set NMI Number (SETNMIENUM) Register (offset = 0x4C0DC)

This register set NMI number register. On writes, set the NMI enable bit for the numbered
interrupt source to 1. Reads return zero.

When interrupt source i is pending in the machine domain and not enabled (i.e.
APLIC.sourcecfg.D=0, APLIC.ip[i] is set and APLIC.ie[i] is clear) and NMIs are enabled for the
source (i.e. APLIC.nmie[i] is set) then the interrupt is delivered to the target hart as an NMI.

Figure 8.25 Set NMI Number Register Bit Assignments

31 0

SETNMIENUM

Table 29: Set NMI Number Register Bit Descriptions

Name Bits Description R/W Reset State

SETNMIENUM 31:0 Set NMI number register. R 0

316
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.20 APLIC Clear NMI Enable (CLRNMIE[0-31]) Register (offset = see below)

This register clear NMI enable register. A write to clrnmie[i] register clears the NMI enable bit
32 * i + j for every bit position j which is 1 in the written value.

When interrupt source i is pending in the machine domain and not enabled (i.e.
APLIC.sourcecfg.D=0, APLIC.ip[i] is set and APLIC.ie[i] is clear) and NMIs are enabled for the
source (i.e. APLIC.nmie[i] is set) then the interrupt is delivered to the target hart as an NMI.

Offset: GCR_BASE + 0x4c100, 0x4c104, ... 0x4c178

Figure 8.26 Clear NMI Enable Register Bit Assignments

31 0

CLRNMIE

Table 30: Clear NMI Enable Register Bit Descriptions

Name Bits Description R/W Reset State

CLRNMIE 31:0 Clear NMI enable register. R 0

317
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8.3.3.21 APLIC Clear NMI Number (CLRNMIENUM) Register (offset = 0x4C1DC)

This register clear NMI number register. On writes, clear the NMI enable bit for the numbered
interrupt source. Reads return zero.

When interrupt source i is pending in the machine domain and not enabled (i.e.
APLIC.sourcecfg.D=0, APLIC.ip[i] is set and APLIC.ie[i] is clear) and NMIs are enabled for the
source (i.e. APLIC.nmie[i] is set) then the interrupt is delivered to the target hart as an NMI.

Figure 8.27 Clear NMI Number Register Bit Assignments

31 0

CLRNMIENUM

Table 31: Clear NMI Number Register Bit Descriptions

Name Bits Description R/W Reset State

CLRNMIENUM 31:0 Clear NMI number register. R 0

Chapter 9

318
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

Floating-Point Unit (FPU)

This chapter describes the optional MIPS RV64 Floating-Point Unit (FPU).

9.1 Features Overview

The P8700-F core features an optional IEEE 754 compliant 3rd generation Floating Point Unit
(FPU3).

The FPU contains thirty-two, 64-bit registers used by FPU instructions. Single precision float-
ing point instructions use the lower 32 bits of the 64 bit register. Double precision floating
point instructions use the the entire 64 bits of the register.

The FPU is fully synthesizable and operates at the same clock speed as the CPU. The P8700-F
core can issue up to two instructions per cycle to the FPU.

The FPU contains two execution pipelines. These pipelines operate in parallel with the integer
core and do not stall when the integer pipeline stalls. This allows long-running FPU operations
such as divide or square root, to be partially masked by system stall and/or other integer unit
instructions.

A scheduler in the ISU block issues instructions to the two FPU functional units. The exception
model is ‘precise’ at all times.

The FPU supports fused multiply-adds as defined by the IEEE Standard for Floating-Point
Arithmetic 754TM-2008. All floating point denormalized input operands and results are fully
supported in hardware.

The FPU supports scalar FPU instructions.

9.2 FPU Execution Units

The P8700-F FPU contains two execution units, one for short operations (EXS) and one for
long operations (EXL).

9.2.1 Short Operations

The short data path contains an integer add unit, logical unit, and div unit. The integer add
unit and the logical unit each have 2-cycle latency outputs. One divide instruction can be
issued to the div unit at a time. That divide will be worked on iteratively. Until the divide is
done no other divide instructions can be issued.

The short execution unit (EXES) executes the following instructions:

• All instructions that are sent back to the integer unit, including stores, move-from, and
branches

319
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

• Most 2-source logical operands.

• Floating point compares

– fmin/fmax

– fclass

– Sign injection: FSGNJ.S, FSGNJN.S, FSGNJX.S

– feq/fle/flt

Results are written to the Working Register File (WRF).

9.2.2 Long Operations

The long execution unit (EXEL) implements the following operations:

• FP adds, converts, multiplies, and divide-square roots

• Logical operations with 3 sources

Results are written to the Working Register File (WRF).

9.3 Data Formats

The FPU provides both floating-point and fixed-point data types, which are described below:

• The single- and double-precision floating-point data types are those specified by IEEE
Standard 754.

• The signed integers provided by the CPU architecture.

9.3.1 Floating-Point Formats

The FPU provides the following two floating-point formats:

• A 32-bit single-precision floating point (type S)

• A 64-bit double-precision floating point (type D)

The floating-point data types represent numeric values as well as the following special enti-
ties:

• Two infinities,  and 

• Signaling non-numbers (SNaNs)

• Quiet non-numbers (QNaNs)

• Numbers of the form: (-1)s 2E b0.b1 b2..bp-1, where:

– s = 0 or 1

– E = any integer between E_min and E_max, inclusive

– bi = 0 or 1 (the high bit, b0, is to the left of the binary point)

– p is the signed-magnitude precision

The single and double floating-point data types are composed of three fields—sign, expo-
nent, fraction—whose sizes are listed in Table 9.1.

320
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Layouts of these three fields are shown in Figures 9.1 and 9.2 below. The fields are:

• 1-bit sign, s

• Biased exponent, e = E + bias

• Binary fraction, f=.b1 b2..bp-1 (the b0 bit is hidden; it is not recorded)

Figure 9.1 Single-Precision Floating-Point Format (S)

Figure 9.2 Double-Precision Floating-Point Format (D)

Values are encoded in the specified format using the unbiased exponent, fraction, and sign
values listed in Table 9.2. The high-order bit of the Fraction field, identified as b1, is also
important for NaNs.

Table 9.1 Parameters of Floating-Point Data Types

Parameter Single Double

Bits of mantissa precision, p 24 53

Maximum exponent, E_max +127 +1023

Minimum exponent, E_min -126 -1022

Exponent bias +127 +1023

Bits in exponent field, e 8 11

Representation of b0 integer bit hidden hidden

Bits in fraction field, f 23 52

Total format width in bits 32 64

Magnitude of largest representable number 3.4028234664e+38 1.7976931349e+308

Magnitude of smallest normalized representable num-
ber

1.1754943508e-38 2.2250738585e-308

31 30 23 22 0

S Exponent Fraction

1 8 23

63 62 52 51 0

S Exponent Fraction

1 11 52

Table 9.2 Value of Single or Double Floating-Point Data Type Encoding

Unbiased E f s b1 Value V Type of Value

Typical Single

Bit Pattern1
Typical Double

Bit Pattern1

E_max + 1  0 1 SNaN Signaling NaN
(FCSR = 0)

0x7fffffff 0x7fffffff ffffffff

0 QNaN Quiet NaN
(FCSR = 0)

0x7fbfffff 0x7ff7ffff ffffffff

321
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

9.3.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one
encoding; numbers are kept in normalized form. The high-order bit of the p-bit mantissa,
which lies to the left of the binary point, is “hidden,” and not recorded in the Fraction field.
The encoding rules permit the value of this bit to be determined by looking at the value of the
exponent. When the unbiased exponent is in the range E_min to E_max, inclusive, the num-
ber is normalized and the hidden bit must be 1. If the numeric value cannot be normalized
because the exponent would be less than E_min, then the representation is denormalized,
the encoded number has an exponent of E_min – 1, and the hidden bit has the value 0. Plus
and minus zero are special cases that are not regarded as denormalized values.

9.3.1.2 Reserved Operand Values—Infinity and NaN

A floating-point operation can signal IEEE exception conditions, such as those caused by
uninitialized variables, violations of mathematical rules, or results that cannot be repre-
sented. If a program does not trap IEEE exception conditions, a computation that encounters
any of these conditions proceeds without trapping but generates a result indicating that an
exceptional condition arose during the computation. To permit this case, each floating-point
format defines representations (listed in the table above) for plus infinity (), minus infinity
(), quiet non-numbers (QNaN), and signaling non-numbers (SNaN).

9.3.1.3 Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the given format;
it represents a magnitude overflow during a computation. A correctly signed  is generated
as the default result in division by zero operations and some cases of overflow.

E_max + 1  0 0 SNaN Signaling NaN
(FCSR = 1)

0x7fbfffff 0x7ff7ffff ffffffff

1 QNaN Quiet NaN
(FCSR = 1)

0x7fffffff 0x7fffffff ffffffff

E_max +1 0 1  Minus infinity 0xff800000 0xfff00000 00000000

0  Plus infinity 0x7f800000 0x7ff00000 00000000

E_max
 to

E_min

1 - (2E)(1.f) Negative normalized number 0x80800000

 through
0xff7fffff

0x80100000 00000000

through
0xffefffff ffffffff

0 + (2E)(1.f) Positive normalized number 0x00800000

 through
0x7f7fffff

0x00100000 00000000

 through
0x7fefffff ffffffff

E_min -1  0 1 - (2E_min)(0.f) Negative denormalized num-
ber

0x807fffff 0x800fffff ffffffff

0 + (2E_min)(0.f) Positive denormalized num-
ber

0x007fffff 0x000fffff ffffffff

E_min -1 0 1 - 0 Negative zero 0x80000000 0x80000000 00000000

0 + 0 Positive zero 0x00000000 0x00000000 00000000

1. The “Typical” nature of the bit patterns for the NaN and denormalized values reflects the fact that the sign might have either value
(NaN) and that the fraction field might have any non-zero value (both). As such, the bit patterns shown are one value in a class of poten-
tial values that represent these special values.

Table 9.2 Value of Single or Double Floating-Point Data Type Encoding (continued)

Unbiased E f s b1 Value V Type of Value

Typical Single

Bit Pattern1
Typical Double

Bit Pattern1

322
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Once created as a default result,  can become an operand in a subsequent operation. The
infinities are interpreted such that - < (every finite number) < +. Arithmetic with  is the
limiting case of real arithmetic with operands of arbitrarily large magnitude, when such limits
exist. In these cases, arithmetic on  is regarded as exact, and exception conditions do not
arise. The out-of-range indication represented by  is propagated through subsequent com-
putations. For some cases, there is no meaningful limiting case in real arithmetic for oper-
ands of .

9.3.1.4 Signalling Non-Number (SNaN)

SNaN operands cause an Invalid Operation exception for arithmetic operations. SNaNs are
useful values to put in uninitialized variables. An SNaN is never produced as a result value.

IEEE Standard 754 states that “Whether copying a signaling NaN without a change of format
signals the Invalid Operation exception is the implementor’s option.” The RISC-V sign injec-
tion instructions are non-arithmetic; they do not signal IEEE 754 exceptions.

9.3.1.5 Quiet Non-Number (QNaN)

QNaNs provide retrospective diagnostic information inherited from invalid or unavailable data
and results.

QNaN operands do not cause arithmetic operations to signal an exception. When a floating-
point result is to be delivered, a QNaN operand causes an arithmetic operation to supply a
QNaN result. QNaNs do have effects similar to SNaNs on operations that do not deliver a
floating-point result—specifically, comparisons. For more information, see the detailed
description of the floating-point compare instruction, fcmp.

When certain invalid operations not involving QNaN operands are performed but do not trap
(because the trap is not enabled), a new QNaN value is created. Table 9.3 shows the QNaN
value generated. The values listed for the fixed-point formats are the values supplied to sat-
isfy IEEE Standard 754 when a QNaN or infinite floating-point value is converted to fixed
point. There is no other feature of the architecture that detects or makes use of these “inte-
ger QNaN” values.

Table 9.3 Value Supplied When a New Quiet NaN is Created

Format

QNaN value
(FCSR = 1)

Single floating point 0x7FC0_0000

Double floating point 0x7FF8_0000_0000_0000

Word fixed point 0x7FFF_FFFF (value when converting any FP number too big to
represent as a 32-bit positive integer)
0x0000_0000 (value when converting any FP NaN)
0x8000_0000 (value when converting any FP number too small to
represent as a 32-bit negative integer)

Longword fixed point 0x7FFF_FFFF_FFFF_FFFF (value when converting any FP number too
big to represent as a 64-bit positive integer)
0x0000_0000 (value when converting any FP NaN)
0x8000_0000 (value when converting any FP number too small to
represent as a 64-bit negative integer)

323
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

9.3.2 Signed Integer Formats

The FPU instruction set provides the following signed integer data types:

• A 32-bit Word fixed point (type W), shown in Figure 9.3.

• A 64-bit Longword fixed point (type L), shown in Figure 9.4.

The fixed-point values are held in 2’s complement format, which is used for signed integers in
the CPU. Unsigned fixed-point data types are not provided by the architecture; application
software can synthesize computations for unsigned integers from the existing instructions
and data types.

Figure 9.3 Word Fixed-Point Format (W)

Figure 9.4 Longword Fixed-Point Format (L)

9.4 Floating-Point General Registers

This section describes the organization and use of the Floating-Point general Registers
(FPRs). There are thirty-two 64-bit FPU registers.

9.4.1 FPRs and Formatted Operand Layout

FPU instructions that operate on formatted operand values specify the Floating-Point Register
(FPR) that holds the value. Operands that are only 32 bits wide (W and S formats) use only
half the space in an FPR.

Figures 9.5 and 9.6 show the FPR organization and the way that operand data is stored in
them.

Figure 9.5 Single Floating-Point or Word Fixed-Point Operand in an FPR

Figure 9.6 Double Floating-Point or Longword Fixed-Point Operand in an FPR

31 0

Integer

63 0

Integer

63 32 31 0

Reg 0 Undefined/Unused Data Word

63 0

Reg 0 Data Doubleword/Longword

Chapter 10

324
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

Multithreading

The P8700-F Multiprocessing System (MPS) incorporates hardware multithreading that exe-
cutes multiple threads in such a way that the threads appear to be run in parallel. This func-
tionality is performed entirely in hardware and does not require any software control. Hence
this chapter is only intended to provide an overview of multithreading and how it is imple-
mented in the P8700-F MPS.

In the P8700-F, each thread is referred to as a Hart. Each Hart contains a complete system
state (General, CSR, and FP registers, TLB mappings, interrupt and exception model). In
addition, each thread has its own system debug, reset and various boot and exception vec-
tors, and memory coherency.

There are multiple types of multithreading implementations. The P8700-F implements Simul-
taneous Multithreading, where the core can execute multiple threads in parallel every cycle.
In addition, instructions from different threads can execute at the same time in the same
pipeline stage. This allows for maximum throughput and minimization of idle hardware during
execution. The P8700-F is a quad-issue machine, allowing up to two threads to execute in a
single pipeline stage. In the P8700-F, all threads (up to 2) can be fetched, decoded, issued,
executed, and graduated in parallel.

10.1 Instruction Flow

The P8700-F Instruction Fetch Unit (IFU) fetches instructions from a shared Instruction Cache
(IC) for all two threads. It fetches four instructions (for a single thread) in a cycle, using a
program counter (PC) for that thread. This quad of instructions are sent to the Instruction
Decode Unit (IDU) and then on to the Execution Unit (EXU). The IFU fetches instructions in a
round-robin manner.

The IFU also manages a shared Instruction TLB (ITLB) structure. The ITLB performs instruc-
tion address translation, allowing complete independence amongst threads. This ITLB is
backed up by the larger Variable TLB (VTLB) and Fixed TLB (FTLB). The number of shared
ITLB entries depends on the number of Harts implemented.

• 1 Hart = 6 entries

• 2 Harts = 12 entries

For example, if there is only one Hart, all entries of the ITLB are used by the Hart. Con-
versely, if there are two Harts, there are 12 ITLB entries that are shared between all of the
Harts.

The thread’s Instruction Virtual Address (IVA) is translated to Root Physical address (RPA).
The ITLBs are used to store the double translation to minimize the number of entries and
more importantly to improve performance by doing the translation in a single cycle.

325
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

The translated instructions are passed to the Execution Unit (EXU), which is responsible for
decoding, issuing, executing and graduating the instructions. In addition, the EXU resolves all
data and resource conflicts and manages precise exceptions. In the P8700-F, the instructions
are issued out-of-order and graduated in-order.

Every cycle, the EXU decodes the top four instructions from each of the (up to) two threads.

Decoded instructions are inserted into an issue queue and are issues out-of-order based on
resource availability and data dependencies.

It is capable of issuing instructions from any of the two Harts, hence the term Simultaneous
Multithreading (SMT). If multiple instructions (>2) are available to issue, the EXU uses a fair
issue policy to make sure all threads get equal representation.

Once the instructions are issued, they are executed in one of the functional units. During its
execution, each instruction is appropriately tagged for thread identification and instruction
order. This allows the proper instruction order to be maintained at graduation (completion)
time. If an instruction completes, but an earlier instruction from the same thread has not
graduated, the completed instruction remains in the graduation queue to maintain in-order
completion.

10.2 Data Flow

Like the IFU mentioned above, the Load-Store Unit (LSU) manages a shared data cache to
perform loads and stores for all threads. The LSU also performs a load and a store for either
or both threads in a cycle. Multiple loads and stores from differing threads can be queued up
to access the data cache.

The LSU processes loads and stores out-of-order and maintains cache coherency between
threads. The data cache is organized as 4-way set associative cache, which eliminates most
of the cache conflicts.

The LSU also manages a shared Data TLB (DTLB) structure. The DTLB performs data address
translation, allowing complete independence amongst threads. The shared DTLB is backed up
by the larger Variable TLB (VTLB) and Fixed TLB (FTLB).

The number of ITLB uTLB entries is determined by an ifdef in the logic and can be allocated in
groups of 8 entries. The P8700 defines the number of groups as 2, for a total of 16 uTLB
entries

In addition, the 16, 32, or 64 dual-entry Variable TLB (VTLB) is instantiated on a per-Hart
basis. The 512 dual-entry Fixed TLB (FTLB) is shared between all Harts.

The thread’s Data Virtual Address (DVA) is translated to a Root Physical address (RPA). The
DTLBs operate much like the ITLBs to perform a translation in a single cycle.

Data stored by one thread does not become visible to other threads until the store instruction
has graduated and the core has obtained ownership of the associated cache line (for cache-
able accesses). In other words, data stored by one thread becomes visible to other threads in
the same core at exactly the same point that it becomes visible to other cores in the system.

The P8700-F manages allocation of shared resources (such as data buffers) between threads
to prevent starvation and ensure that all threads can make forward progress.

10.3 Independent Exception Model

Since each thread has a completely independent exception model, one thread cannot block
another thread. This independent exception model includes: Synchronous Exceptions (Over-
flow, TLB Miss, etc.), Asynchronous Interrupts (Int, NMI, etc.), Debug Exceptions (DIint),

326
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

and Reset. A thread can be reset to reboot, while the other threads are completely unaf-
fected.

Chapter 11

327
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

Performance Counters

This section describes the performance counters for the core and CM3 blocks in the P8700-F
Multiprocessing System.

• Section 11.1 “Core Performance Counters”

• Section 11.2 “CM3 Performance Counters”

11.1 Core Performance Counters

The P8700-F core contains four performance counters. Each counter has a Control register
(mhpmevent) and an associated Count (mhpmcounter) register. Therefore, there are four
Control registers an four Count registers per Hart. These registers are located at the following
CSR locations.

Each register is instantiated per-Hart. Therefore in a 2-Hart core, there are eight total
mhpmevent registers and eight total mhpmcounter registers.

11.1.1 Performance Event Masking

The four mhpmevent registers allows for the masking of event counting for the following
modes:

• M-mode (Machine)

• S-mode (Supervisor)

• U-mode (User)

Table 11.1 Core Performance Counter Registers

Register Name Register Acronym
CSR Register

Index

Performance Counter Control 3 mhpmevent3 0x323

Performance Counter Control 4 mhpmevent4 0x324

Performance Counter Control 5 mhpmevent5 0x325

Performance Counter Control 6 mhpmevent6 0x326

Performance Counter Count 3 mhpmcounter3 0xB03

Performance Counter Count 4 mhpmcounter4 0xB04

Performance Counter Count 5 mhpmcounter5 0xB05

Performance Counter Count 6 mhpmcounter6 0xB06

328
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

When the corresponding bit is set as defined in Table 11.2, that mode is prohibited from
counting events.

11.1.2 Core Performance Event Control Register (mhpmevent[6:3])

The four performance counter control registers (instantiated per Hart) at the locations shown
in Table 11.1 above each have identical bit assignments. Therefore, only one register is
shown below.

Figure 11.1 Performance Counter Control Register Format

63 62 61 60 59 58 57 56 55 54 8 7 0

OF MINH SINH UINH 0 0 00 PCTD 0 EVENT

Table 11.2 Performance Counter Control Register Bit Descriptions

Bits Name Reset Val
Read/
Write Description

63 OF Undefined R/W OverFlow. Set when counter overflows. When overflow occurs with OF
set, interrupt generation is disabled.

62 MINH Undefined R/W Machine Inhibit. Inhibit counting of events in M-mode.

61 SINH Undefined R/W Supervisor Inhibit. Inhibit counting of events in S-mode.

60 UINH Undefined R/W User Inhibit. Inhibit counting of events in U-mode.

59:56 0 Undefined R/W Write as zero.

55 PCTD Undefined R/W Performance Counter Trace Disable.

54:8 0 Undefined R/W Write as zero

7:0 EVENT Undefined WARL Encoding of event to be monitored by the specified hardware perfor-
mance monitor, with 0 meaning no event. The encoding for this field is
shown in Table 11.5.

329
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

11.1.3 Core Performance Counter Count Register (mhpmcounter[6:3])

Each Performance Counter Control register described above has an associated Count register
that counts the number of events as indicated by the EVENT field of the Control register.
Refer to Table 11.1 for a listing and location of these registers. The Performance Counter
Count registers are instantiated per-Hart.

11.1.4 Core Performance Counter Events

The table below shows the encoding of the EVENT field in bits 7:0 of each Performance Coun-
ter Control register.

In the following table:

• All events are local to the Hart running except #128.

• All events are available to all performance counters.

• Event counting is edge counting; that is, an event occurs when the signal goes from not
TRUE to TRUE.

Figure 11.2 Performance Counter Count Register Format

63 0

mhpmcounter[63:0]

Table 11.3 Performance Counter Count Register Bit Descriptions

Name Bits Reset Val
Read/
Write Description

mhpmcounter 63:0 Undefined RW Increments once for each event that is enabled by the correspond-
ing Control Register. For example, if bit 62 (MINH) of the mhp-
mevent[3] register is cleared, then the value in the mhpmcounter[3]
register will increment each time there is an M-mode event in Con-
trol register 3.

Table 11.4 Core Performance Counter Events

Event ID Event Name Description

Execution Units

1 num_grad Number of graduated instructions

2 one_grad Number of cycles in which one instruction graduated

3 two_grad Number of cycles in which two instruction graduated

4 three_grad Number of cycles in which three instruction graduated

5 four_grad Number of cycles in which four instruction graduated

6 no_grad Number of cycles in which no instruction graduated

7 alu_grad Number of ALU instructions graduated

8 lsu_grad Number of LSU instructions graduated

9 cti_grad Number of CTI instructions graduated

10 mdu_grad Number of MDU instructions graduated

11 fpu_grad Number of FPU instructions graduated

12 load_grad Number of LOAD instructions graduated

13 store_grad Number of STORE instructions graduated

330
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

14 no_isu Number of cycle in which no instructions issued

15 one_isu Number of cycle in which one instructions issued

16 two_isu Number of cycle in which two instructions issued

17 three_isu Number of cycle in which three instructions issued

18 four_isu Number of cycle in which four instructions issued

19 isu_block Number of times the Issue unit got stalled

20 dec_stall Number of times the Decoder unit got stalled

21 dmap_stall Number of times the Dependency Mapper stalled

22 ibfr_empty Cycles in which instruction buffer is empty

23 itrkr_num_replay Replays initiated by the scoreboard

24 br_grad Conditional branches graduated

25 br_miss_grad Mispredicted conditional branches graduated

26 jr_ret_grad Returns (JR $31) graduated

27 jr_ret_miss_grad Mispredicted Returns (JR $31) graduated

28 jr_grad JR graduated

29 jr_miss_grad Mispredicted JR graduated

30 br_t_grad Taken conditional branches graduated

31 br_nt_grad Not taken conditional branches graduated

32 redirect Total redirects

33 num_exceptions Total number of exceptions

34 exe_redir EXE-redirect for a “Ret”.

35 load_blocked Number of cycles graduation was blocked of a load waiting to complete

36 sync_blocked Number of cycles graduation was blocked of sync waiting to complete

37 rftch_inbnd_oel OverEager loads (OEL) Misprediction update

38 rftch_inbnd_misalgn Misaligned misprediction update

Load/Store Units

64 dtlb_lookup DTLB Lookups

65 dtlb_miss_new DTLB Misses (new)

66 dtlb_miss_merge DTLB Misses (merged with existing)

67 bond_load Bonded Load

68 bond_store Bonded Store

69 total_dcache_lookups Total number of cache lookups

70 loads_dcache_lookup Number of Load-type instns

71 stores_dcache_lookup Number of Store-type instns

72 total_dcache_misses Misses cache lookup

73 load_dcache_misses Loads miss cache lookup

74 store_dcache_misses Stores miss cache lookup

75 smb_full Number of cycles SDB graduation was blocked due to SMB full

Table 11.4 Core Performance Counter Events(continued)

Event ID Event Name Description

331
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

76 DCACHE load Retries Number of DCACHE Load Retries

77 L1 Prefetch from Prefetc tracker 0 L1 Prefetch Issued from Prefetch Tracker0

78 L1 Prefetch from Prefetc tracker 1 L1 Prefetch Issued from Prefetch Tracker1

79 L1 Prefetch from Prefetc tracker 2 L1 Prefetch Issued from Prefetch Tracker2

80 L1 Prefetch from Prefetc tracker 3 L1 Prefetch Issued from Prefetch Tracker3

81 L1 Prefetch from Prefetc tracker 4 L1 Prefetch Issued from Prefetch Tracker4

82 L1 Prefetch from Prefetc tracker 5 L1 Prefetch Issued from Prefetch Tracker5

83 L1 Prefetch from Prefetc tracker 6 L1 Prefetch Issued from Prefetch Tracker6

84 L1 Prefetch from Prefetc tracker 7 L1 Prefetch Issued from Prefetch Tracker7

85 rftch_inbnd_prd Refetch due to Incorrect Bonding Prediction

Instruction Fetch Unit

128 (Global) All Harts currently stalled

129 utb_access Micro-tlb accesses

130 Number of times the Hart stalled waiting for MMU response to uTLB

131 utb_miss Micro-tlb misses

132 ica_access ICache accesses

133 ica_miss ICache misses

134 ibuff_cred_stall Instruction fetch stalled due to lack of IBUF credit

135 Number of times the Hart stalled waiting for PCBuffer credit.

136 Number of times the Hart stalled

137 redirect_stall Redirect stall cycles performance count

138 ica_miss_stall ICache miss stall cycles

139 uncached_stall Uncached stall cycles

140 prb_full PRB full, No JRC, RPC predictions

141 l1btb_rps_hit True L1BTB RPS hits

142 l1btb_prs_mispred L1BTB RPS mispredicts

143 rps_hit_l1btb_miss RPS hits without L1BTB hit

144 ica_way_mispred NFW or L1BTB based I$ way-hit mispredict

145 jtlb_miss TLB Misses

146 no_spec_fetch_maar Speculative Fetch restricted due to MAAR. No Allocation to RFB

147 fetch_kill_cti Killed slots in fetch due to target/cti stall

148 no_ifu_2_idu_inst IDU gate open, no IFU inst

149 l1btb_non_rps_hit True L1BTB non-RPS hits

150 l1btb_non_rps_mispred L1BTB Non RPS mispredicts

151 jal_b_hit_l1btb_miss JAL/ Taken BRANCH from IB without L1BTB Hit

152 l1btb_hit_masked L1BTB hit masked due to lack of credit to fetch Target

Trace Unit

160 PDTrace backpressure stall

Table 11.4 Core Performance Counter Events(continued)

Event ID Event Name Description

332
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

11.2 CM3 Performance Counters

11.2.1 CM3 Performance Counter Functionality

Performance characteristics of the CM3 can be measured via the CM3 performance counters.
Two sets of identical programmable 32-bit performance counters in addition to a 32-bit cycle
counter are implemented. The counters are controlled and accessed via GCR registers
described in Chapter 8, “Coherency Manager”. This section describes the operation of those
registers.

The counters are started by writing a 1 to the P0_CountOn, P1_CountOn and
Cycl_Cnt_CountOn bits in the CM3 Performance Counter Control Register (GCR_DB_PC_CTL
Offset 0x0100). Each counter can be reset to 0, and the corresponding overflow bit (P0_OF,
P1_OF, Cyc_Cnt_OF) is reset to 0 prior to the start of counting by writing a 1 to the
P0_Reset, P1_Reset and Cycl_Cnt_Reset bits in the same access that sets the corresponding
start bits. This functionality allows all three counters to be reset and started with a single
GCR write.

The CM3 Performance Counter Control Register also controls how a counter overflow is han-
dled. If the Perf_Ovf_Stop bit is set to 1, then all CM Performance counters will stop when
one of the counters (including the Cycle Counter) reaches its maximum value of 0xFFFFFFFF.
If instead the Perf_Ovf_Stop bit is set to 0, when a counter overflows, it rolls over and con-
tinues counting from 0.

If the Perf_Int_En bit is set to 1, an interrupt is generated when one of the counters (includ-
ing the cycle counter) reaches its maximum value of 0xFFFFFFFF. The CM3 asserts the
so_cm_perf_cnt_int signal which generates an interrupt only if the System Integrator has con-
nected the so_cm_perf_cnt_int signal to one bit of si_cm_int.

When a performance counter overflows, the corresponding bit is automatically set in the CM3
Performance Counter Overflow Status Register (GCR_DB_PC_OV). A status bit is cleared by
writing a 1 to it.

The event to be counted by each performance counter is designated by the event number set
in the P0_Event and P1_Event fields of the CM3 Performance Counter Event Select Register
(GCR_DB_PC_EVENT). The events corresponding to the event numbers are listed and
described in Table 11.5, “CM3 Performance Counter Event Types,” on page 335.

Each event is further specified by the CM3 Performance Counter Qualifier Register
(GCR_DB_PC_QUALn). The meaning of this register is different for each event. The column
labeled “Qualifier” in Table 11.5 shows the qualifiers that can be specified for each event. For
example, the qualifiers for the Coherence Manager Request Event (event 1) are the request
port, thread, cmd, CCA, size, etc.

The qualifiers for some events are composed of several groups. A performance counter will
increment if the specified event occurs and the qualifier criteria is matched in all groups. For
example, assume the P0_Event field in the CM3 Performance Counter Event Select Register
is set to 1 (Coherence Manager Request). This event occurs when the CM3 serializes a
request. However, the performance counter for this event will only count if the request meets
the criteria programmed in all 12 groups in the Request Qualifier (see Table 11.5):

161 PDTrace backpressure stall cycles

162 PDTrace overflow

163 PDTRace LSU backpressure stall

Table 11.4 Core Performance Counter Events(continued)

Event ID Event Name Description

333
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

The port that issued the request has the corresponding Port qualifier bit set to 1.
AND
The thread that issued the request has the corresponding Thread qualifier bit set
to 1.
AND
The target of the request has the corresponding bit of the Target qualifier set to
1.
AND
The request command type has the corresponding Request Command qualifier bit set to
1.
AND
The Cachebility attribute (CCA) for the request has the corresponding CCA qualifier
bit set to 1.
AND
The size of the request has the corresponding Size qualifier bit set to 1.
AND
The L1 State of the request has the corresponding L1 State qualifier bit set to 1.
AND
The L2 state of the request has the corresponding L2 State qualifier bit set to 1.
AND
The L2 Locked state of the request has the corresponding L2 Locked qualifier bit
set to 1.
AND
The resulting eviction due to the request has the Eviction qualifier bit set to 1.
AND
The bank of the request has the Bank qualifier bit set to 1.
AND
The scheduler used for the request has the Scheduler qualifier bit set to 1.

Multiple bits within a qualification group may be set. In this case, the OR of all bits set within
the group. For example, by setting the request port qualifier for Port 0 and Port 1, then a
request will be counted if it originated from Port 0 or Port 1.

A qualifier group can be set to “don’t care” by setting all bits within the group to 1. For exam-
ple, to have performance counter 0 count all requests from port 1, program the CM Performance
Counter Event Select Register and CM Performance Counter Qualifier 0 Register as follows:

Set P0_Event to 1(Coherence Manager Request)
Set Request Port Qualifer bit to 1 for Port 1
Set Request Port Qualifier bits to 0 for all other Ports
Set all other qualifer bits to 1 (causing the Thread, Target, Command, CCA, etc to
be ignored)

The two counters can be programmed to count a different event or the same event with dif-
ferent qualifiers. For example, to measure the ratio of requests from Port 1 vs. all Ports, set
program Counter 0 to count requests from Port 1 (see previous example) and program Coun-
ter 1 to count all request from all Ports by setting P1_Event to 1 (Coherence Manager Request)
and set all bits in the CM Performance Counter Qualifier 1 Register to 1.

The cycle counter can be used to calculate the average rates of specified events. Continuing
the above example, assuming the cycle counter is reset, started, and stopped simultaneously
with the two performance counters, then the rate of requests from port 1 and all ports can be
easily computed (value of each performance counter / value in cycle counter).

11.2.2 CM3 Performance Counter Usage Models

There are several models for using the CM3 performance counters. This sections discusses 3
possible models:

334
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

• Periodic Sampling - take many measurement samples of specific duration

• Stop and Interrupt when counter overflows - counters run until one overflows, then inter-
rupt CPU

• Large count capability - enables unrestricted sample periods

One model for making performance measurements is for the software to set up and gather
samples for a set period of time. The code sequence could follow the following steps:

start:
Write CM Event and Qualifier Registers for particular event of interest
Write CM Performance Counter Control Register to reset and start counters
Perf_Int_En = 0 (no interrupt on overflow)
Perf_Ovf_Stop = 0(no stop on overflow).
P1_Reset = 1, P1_CountOn = 1
P0_Reset = 1, P0_CountOn = 1
Cycl_Cnt_Reset = 1, Cycl_Cnt_CountOn = 1
Wait for some relatively small period of time (i.e., 2 seconds)
Write CM Performance Counter Control Register to stop counters
P1_Counton = 0, P0_CountOn=0, Cycl_Cnt_CountOn = 0
Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers
If more events, go to start (or if measuring same counter go to step 2 instead)

A second CM3 performance counter usage model involves setting up the counters to stop and
interrupt on overflow. This runs the counters until one of the counters (usually the cycle
counter) reaches the 32-bit limit. An example of such a code sequence is:

start:
Write CM Event and Qualifier Registers for particular event of interest
Write CM Performance Counter Control Register to reset and start counters
Perf_Int_En = 1 (interrupt on overflow)
Perf_Ovf_Stop = 1(stop on overflow).
P1_Reset = 1, P1_CountOn = 1
P0_Reset = 1, P0_CountOn = 1
Cycl_Cnt_Reset = 1, Cycl_Cnt_CountOn = 1
When interrupt occurs:
Read CM Performance Counter Status Register
Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers
Write CM Performance Counter Control Register to reset counters
(clears status register and interrupt)
P0_Reset = 1, P1_Reset = 1, Cycl_Cnt_Reset = 1
If more events, go to start (or if measuring same counter go to step 2 instead)

If larger counts than can fit into the 32-bit counters are required, the counters can be set up
to interrupt, but not stop, on overflow. Memory variables can then count the number of over-
flows, as shown below:

start:
Write CM Event and Qualifier Registers for particular event of interest
Write CM Performance Counter Control Register to reset and start counters
Perf_Int_En = 1 (interrupt on overflow)
Perf_Ovf_Stop = 0 (do not stop on overflow).
P1_Reset = 1, P1_CountOn = 1
P0_Reset = 1, P0_CountOn = 1
Cycl_Cnt_Reset = 1, Cycl_Cnt_CountOn = 1
When interrupt occurs:
<status>=Read CM Performance Counter Status Register
Increment <overflow_count>[counter] for each counter with <status> = 1
Write <status> to CM Performance Counter Status Register to clear interrupt

When run limit is reached then :

335
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Write CM Performance Counter Control Register to stop counters
P1_Counton = 0, P0_CountOn=0, Cycl_Cnt_CountOn = 0
Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers
Write CM Performance Counter Control Register to reset counters
(clears status register and interrupt)
P0_Reset = 1, P1_Reset = 1, Cycl_Cnt_Reset = 1
If more events, go to start (or if measuring same counter go to step 2 instead)

In the above model, the final counts are calculated for each counter by multiplying
<overflow_count>[counter] by 4G and adding the final values in the performance counter
register.

Table 11.5 CM3 Performance Counter Event Types

Event # Related Events Qualifiers Description/Comments

0 None No events are
enabled for counting.
This is the lowest
power mode.

1 Coherence Manager
Requests

Port
Thread
Target
Cmd
Prefetch
CCA
Size
L1 State
L2 State
L2 Locked
Eviction
Bank
Scheduler

Can be used in conjunction with a cycle count to
determine the number of requests received in a given
period of time.

Refer to Table 11.6 for more information.

2 I/O Traffic Requests Which IOCU
Direction/Cacheability
Size
Length
Prefetch
Device ID
Transaction ID

Counts the requests received by the IOCU.

Refer to Table 11.7 for more information.

3 Memory Interface Requests Direction
Size
Length
Cacheability
Source
Thread
Code/data
Prefetch

Counts the number of Memory requests issued.

Refer to Table 11.8 for more information.

7 MEM AXI Bus Utilization channel
ready
valid

Measure Utilization of main memory AXI/ACE bus
Refer to Table 11.9 for more information.

336
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

8 IOCU0 AXI Bus Utilization channel
ready
valid

Measure Utilization of corresponding IOCU bus
Refer to Table 11.9 for more information.

9 IOCU1 AXI Bus Utilization

10 IOCU2 AXI Bus Utilization

11 IOCU3 AXI Bus Utilization

12 IOCU4 AXI Bus Utilization

13 IOCU5 AXI Bus Utilization

14 IOCU6 AXI Bus Utilization

15 IOCU7 AXI Bus Utilization

17 CM PDTrace Dropped Mes-
sages

responses
requests
port enables

Count number of messages dropped by CM Trace
due to overflow.
Refer to Table 11.10for more information.

18 CM PDTrace overflow cycle
length

None Counts the number of clock cycles for which CM
PDTrace overflow took to finish,

Table 11.5 CM3 Performance Counter Event Types (continued)

Event # Related Events Qualifiers Description/Comments

337
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Table 11.6 Coherence Manager Request Qualification

Bit Qualifier Group Qualifier Value Description/Comments

63 2 Reserved unused Reserved for future use. Set all bits to 1.

62 1

61 0

60 1 Scheduler Scheduler 1 Request processed by CM scheduler 1.

59 0 Scheduler 0 Request processed by CM scheduler 0.

58 1 Bank Bank 1 Request sent to L2 bank 1.

57 0 Bank 0 Request sent to L2 bank 0.

56 2 Eviction L2 eviction no L1 eviction Request causes an L2 eviction but not and L1
eviction.

55 1 L2 eviction with L1 eviction Request causes both an L2 and L1 eviction.

54 0 no L2 eviction Request does not cause an eviction.

53 1 L2 Locked Locked L2 line is valid and locked.

52 0 Not locked L2 line is not locked (or the line is invalid).

51 3 L2 State Modified L2 line is in state modified.

50 2 Exclusive L2 line is in state exclusive.

49 1 Shared L2 line is in state shared.

48 0 Invalid L2 line is invalid.

47 2 L1 State Exclusive/Modified Line is Exclusive or Modifed in one of the cores.

46 1 Shared Line is Shared in at least one of the cores.

45 0 Invalid Line is not valid in any of the core L1s.

44 1 Size line Request for 1 cache line of data.

Note: This counts the burst length as seen by the
Coherent Manager. Requests form the I/O Sub-
system may be longer, but the IOCU may break
these into multiple smaller requests.

43 0 Less than a line Request for less than a cache line.

42 2 CCA Other Request hasa cacheability attribute other than UC/
UCA.

41 1 UCA Request has an accelerated un-cached cacheabil-
ity attribute.

40 0 UC Request has an un-cached cacheability attribute.

338
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

39 23 Request
command

Other command

38 22 L3 Cache all L3 cacheop including FetchNLock.

37 21 L2 Cache

36 20 L1D Cache

35 19 L1I Cache

34 18 Sync

33 17 RegWrite

32 16 RegRead

31 15 Tag_Err

30 14 GetToOwn

29 13 Prefetch Write Invalidate

28 12 Prefetch Share

27 11 Prefetch Own

26 10 CohReadDiscardAllocate

25 9 CohWriteInvalidate

24 8 CohWriteBack

23 7 CohUpgradeSC

22 6 CohUpgrade

21 5 CohEvict

20 4 CohReadDiscard

19 3 CohReadShare

18 2 CohReadOwn

17 1 Legacy Write Request is a legacy write command. This is used
for all non-coherent writes.

Note: When a processor is in coherent mode, L1
cache writebacks are always considered coherent,
so the result is a CohWriteBack command, not a
Legacy Write command.

16 0 Legacy Read Request is a legacy read command. This is used
for all non-coherent reads, including code fetches.

15 1 Target Register bus target Request targets a device on the register bus such
as GCR, GIC, CPC, DBU, etc.

14 0 Memory Request targets memory (coherent or non-coher-
ent).

13 Reserved.

Table 11.6 Coherence Manager Request Qualification (continued)

Bit Qualifier Group Qualifier Value Description/Comments

339
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

12 Reserved.

11 1 Thread Thread 1 Request originated from thread 1.

10 0 Thread Thread 0 Request originated from thread 0.

9 9 Port Intervention Request originated from an intervention.

8 8 Prefetch Request originated from the prefetcher.

7 7 Port 7 Request originated from Input Port x, x is assigned
Cores before IOCU. For example, for a 4 core, 2
IOCU configuration, the ports are assigned as fol-
lows:
Port 5 : IOCU 1
Port 4: IOCU 0
Port 3: Core 3
Port 2: Core 2
Port 1: Core 1
Port 0: Core 0

6 6 Port 6

5 5 Port 5

4 4 Port 4

3 3 Port 3

2 2 Port 2

1 1 Port 1

0 0 Port 0

Table 11.7 I/O Traffic Qualification

Bit Qualifier Group Qualifier Value Description/Comments

41:37 4:0 transaction ID Specific transaction ID Match specific transaction ID. This field is used
only when All transaction ID is 0.

36 0 All transaction ID If set, any transaction ID matches, transaction ID
group ignored.

35:30 5:0 device ID Specific device ID Match specific device ID. This field is used only
when All device ID is 0.

29 0 All device ID If set, any device ID matches, device ID group
ignored

28 1 Prefetch prefetch IOCU request is a prefetch

27 0 not prefetch IOCU request is not a prefetch

26 1 Aligned Misaligned IOCU request address is not aligned

25 0 Aligned address IOCU request address is aligned

Table 11.6 Coherence Manager Request Qualification (continued)

Bit Qualifier Group Qualifier Value Description/Comments

340
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

24 8 Length 129-256 Number of transfers in a burst.

23 7 65-128

22 6 33-64

21 5 17-32

20 4 9-16

19 3 5-8

18 2 3-4

17 1 2

16 0 1

15 7 Size 128 Indicates the number of bytes in each transfer in
the burst.

14 6 64

13 5 32

12 4 16

11 3 8

10 2 4

9 1 2

8 0 1

7 2 Direction/
cacheability

Write - coherent Coherent write request.

6 1 Write - UC Uncached write request.

5 0 Read - coherent no allocate Coherent read request without allocate.

4 1 Read - coherent with allocate Coherent read request with allocate.

3 0 Read - UC Uncached read request.

2:0 2:0 IOCU Number 0-7 Encoded value of which IOCU requests to count

Table 11.8 Memory Interface Request Qualification

Bit Qualifier Group Qualifier Value Description/Comments

45:41 4:0 Guest ID Specific Guest ID Match specific guest ID. This field is only used
when All Guest ID is 0.

40 0 All Guest ID All Guest ID If set, any guest ID matches, Guest ID group
ignored.

39 1 Prefetch Prefetch Prefetch memory request.

38 0 Not prefetch Not a prefetch memory request.

Table 11.7 I/O Traffic Qualification (continued)

Bit Qualifier Group Qualifier Value Description/Comments

341
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

37 1 Code/data Code Request indicated it was accessing code.

36 0 Data Request indicated it was accessing data.

35 Reserved.

34 Reserved.

33 1 Thread Thread 1 Request originated from thread 1.

32 0 Thread Thread 0 Request originated from thread 0.

31 Reserved

30

29 7 Source Input Port 7 Request originated from Input Port x, x is assigned
Cores before IOCU. For example, for a 4 core, 2
IOCU configuration, the ports are assigned as fol-
lows:
Port 5 : IOCU 1
Port 4: IOCU 0
Port 3: Core 3
Port 2: Core 2
Port 1: Core 1
Port 0: Core 0

28 6 Input Port 6

27 5 Input Port 5

26 4 Input Port 4

25 3 Input Port 3

24 2 Input Port 2

23 1 Input Port 1

22 0 Input Port 0

21 3 Cacheability Cacheable not read discard Any coherent access that is not a read discard.

20 2 Cacheable read discard Coherent read discard.

19 1 UCA Uncached Accelerate access.

18 0 UC Uncached access.

17 7 Length 7 Number of transfers in a burst.

16 6 6

15 5 5

14 4 4

13 3 3

12 2 2

11 1 1

10 0 0

Table 11.8 Memory Interface Request Qualification

Bit Qualifier Group Qualifier Value Description/Comments

342
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

9 7 Size 128 Indicates the number of bytes in each transfer in
the burst.

8 6 64

7 5 32

6 4 16

5 3 8

4 2 4

3 1 2

2 0 1

1 1 Direction Write Write

0 0 Read Read

Table 11.9 AXI Bus Utilization Qualification

Bit Qualifier Group Qualifier Value Description/Comments

6:4 2:0 channel 0: AR
1: AW
2: W
3: R
4: B

count transactions on the specified channel

3 1 ready ready count when xREADY signal is asserted

2 0 not_ready count when xREADY signal is not asserted

1 1 valid valid count when xVALID is asserted

0 0 not_valid count when xVALID is not asserted

Table 11.10 CM PDTrace Dropped Message Qualification

Bit Qualifier Group Qualifier Value Description/Comments

7 0 trace_type response trace responses. only used for tmh1_mulp, tmh1,
tmh0_mulp, tmh0, and ubrh

6 0 request trace requests. only used for tmh1, tmh0

Table 11.8 Memory Interface Request Qualification

Bit Qualifier Group Qualifier Value Description/Comments

343
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

5 5 trace_port tmh1_mulp Count dropped messages due to multiple-
responses for main pipeline #1

4 4 tmh1 Count dropped from main pipeline #1

3 3 tmh0_mulp Count dropped messages due to multiple-
responses for main pipeline #0

2 2 tmh0 Count dropped from main pipeline #0

1 1 prsh Count messages dropped at perf counter tracing
port

0 0 ubrh Count messages dropped from uncached
responses

Table 11.10 CM PDTrace Dropped Message Qualification (continued)

Bit Qualifier Group Qualifier Value Description/Comments

Chapter 12

344
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

Instruction Latencies and Repeat Rates

This chapter provides the instructions latency and repeat rates for the following instruction
types.

12.1 Definition of Terms

The terms latency and repeat rate are defined as follows:

Latency is defined as the minimum time between when an instruction issues, and the time
that a subsequent dependent instruction may issue. For example, and ADD instruction has a
latency of 1 cycle. Consider the following code sequence:

ADD x3, x1, x2
ADD x5, x4, x3

In this example the second ADD instruction is dependent on the value placed into r3 by the
first ADD instruction. It may issue one cycle after the first ADD instruction issues.

Repeat rate is measured as the minimum issue interval time between independent instruc-
tions. For example, a MUL instruction has a latency of 4 cycles and a repeat rate of 1 cycle.
Consider the following code sequence:

MUL x4, x1, x2
MUH x5, x1, x2

The MUL instruction multiplies the r1 and r2 values and places the lower half of the result into
r4. The MUH instruction multiples the r1 and r2 values and places the upper half of the result
into r5. In this case the MUH can issue one cycle after the MUL instruction issues.

Table 12.1 shows the latency and repeat rates for integer instructions.

Units is number of functional units in the CPU that can execute the instruction.

Unit Type is name of the functional unit that can execute the instruction.

Table 12.1 Instruction Latencies and Repeat Rates

Instruction Definition Latency Rate Unit Type Units

ADD Add 1 1 ALU 2

ADD.UW Add - unsigned word only 1 1 ALU 2

ADDI Add immediate 1 1 ALU 2

ADDIW Add immediate unsigned word 1 1 ALU 2

ADDW Add unsigned word 1 1 ALU 2

AND Bitwise logical AND 1 1 ALU 2

345
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

ANDI Bitwise logical AND immediate with a constant 1 1 ALU 2

ANDN And operation with second operand inverted 1 1 ALU 2

AUIPC Add upper immediate to PC 1 1 AL2 1

BEQ Branch if GPR values are equal 1 1 CTI 1

BGE Branch if GPR rs1 is greater than or equal to rs2 1 1 CTI 1

BGEU Branch if GPR rs1 is greater than or equal to rs2,
unsigned

1 1 CTI 1

BLT Branch if GPR rs1 is less than GPR rs2 1 1 CTI 1

BLTU Branch if GPR rs1 is less than GPR rs2, unsigned 1 1 CTI 1

BNE Branch on not equal 1 1 CTI 1

CCMOV Conditional move - MIPS custom 2 1 AL2 1

CLZ Count leading zero 2 1 AL2 1

CLZW Count leading zero word 2 1 AL2 1

CPOP Count bits set 2 1 AL2 1

CPOPW Count bits set word 2 1 AL2 1

CSRRC Move from and clear CSR 4 1 MDU 1

CSRRCI Move from and clear immediate CSR 4 1 MDU 1

CSRRS Move from and set CSR 4 1 MDU 1

CSRRSI Move from and set immediate CSR 4 1 MDU 1

CSRRW Move from and to CSR 4 1 MDU 1

CSRRWI Move from and write immediate CSR 4 1 MDU 1

CTZ Count trailing zero 2 1 AL2 1

CTZW Count trailing zero word 2 1 AL2 1

DIV Divide integer signed 7 to 22 DIV 1

DIVU Divide integer unsigned 7 to 22 DIV 1

DIVUW Divide word integer unsigned 7 to 22 DIV 1

DIVW Divide word integer signed 7 to 22 DIV 1

EBREAK Software debug break point exception 3 IDU/GRU 1

ECALL Cause a system call exception 3 IDU/GRU 1

EHB Execution hazard barrier IDU/GRU 1

FADD.D Floating point add - double precision 4 1 FPU(EXL) 1

FADD.S Floating point add 4 1 FPU(EXL) 1

FCLASS.D floating point classify - double precision 1 1 FPU(EXS) 1

FCLASS.S floating point classify 1 1 FPU(EXS) 1

FCVT.D.L Convert integer doubleword to double precision float 4 1 FPU(EXL) 1

FCVT.D.LU Convert unsigned integer doubleword to double preci-
sion float

4 1 FPU(EXL) 1

FCVT.D.W Convert integer word to double precision float 4 1 FPU(EXL) 1

FCVT.D.WU Convert unsigned integer word to double precision float 4 1 FPU(EXL) 1

Table 12.1 Instruction Latencies and Repeat Rates(continued)

Instruction Definition Latency Rate Unit Type Units

346
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

FCVT.L.D Convert double precision to integer doubleword 4 1 FPU(EXL) 1

FCVT.L.S Convert single precision to integer doubleword 4 1 FPU(EXL) 1

FCVT.LU.D Convert double precision to unsigned integer double-
word

4 1 FPU(EXL) 1

FCVT.LU.S Convert single precision to unsigned integer double-
word

4 1 FPU(EXL) 1

FCVT.S.L Convert integer doubleword to single precision float 4 1 FPU(EXL) 1

FCVT.S.LU Convert unsigned integer doubleword to single preci-
sion float

4 1 FPU(EXL) 1

FCVT.S.W Convert integer word to single precision float 4 1 FPU(EXL) 1

FCVT.S.WU Convert unsigned integer word to single precision float 4 1 FPU(EXL) 1

FCVT.W.D Convert double precision to integer word - double preci-
sion

4 1 FPU(EXL) 1

FCVT.W.S Convert single precision to integer word 4 1 FPU(EXL) 1

FCVT.WU.D Convert double precision to unsigned integer word -
double precision

4 1 FPU(EXL) 1

FCVT.WU.S Convert single precision to unsigned integer word 4 1 FPU(EXL) 1

FDIV.D Floating point divide - double precision 17 - 37 FPU(EXL) 1

FDIV.S Floating point divide 11 - 21 FPU(EXL) 1

FENCE Order loads and stores n/a 1 LSU 1

FENCE.I Synchronize caches for instruction writes n/a 1 LSU 1

FEQ.D Floating point equal comparison - double precision 2 1 FPU(EXS) 1

FEQ.S Floating point equal comparison 2 1 FPU(EXS) 1

FLD Load doubleword from memory to an FPR 4 1 FPU 1

FLE.D Floating point less than or equal comparison - double
precision

2 1 FPU(EXS) 1

FLE.S Floating point less than or equal comparison 2 1 FPU(EXS) 1

FLT.D Floating point less than comparison - double precision 2 1 FPU(EXS) 1

FLT.S Floating point less than comparison 2 1 FPU(EXS) 1

FLW Load word from memory to an FPR 4 1 FPU 1

FMADD.D Floating point fused multiply add - double precision 8 1 FPU(EXL) 1

FMADD.S Floating point fused multiply add 8 1 FPU(EXL) 1

FMAX.D Floating point maximum value - double precision 2 1 FPU(EXS) 1

FMAX.S Floating point maximum value 2 1 FPU(EXS) 1

FMIN.D Floating point minimum value - double precision 2 1 FPU(EXS) 1

FMIN.S Floating point minimum value 2 1 FPU(EXS) 1

FMSUB.D Floating point fused multiply subtract - double precision 8 1 FPU(EXL) 1

FMSUB.S Floating point fused multiply subtract 8 1 FPU(EXL) 1

FMUL.D Floating point multiply - double precision 5 1 FPU(EXL) 1

FMUL.S Floating point multiply 5 1 FPU(EXL) 1

Table 12.1 Instruction Latencies and Repeat Rates(continued)

Instruction Definition Latency Rate Unit Type Units

347
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

FMV.D.X Move doubleword from GPR to float register 1 1 FPU(EXL) 1

FMV.W.X Move word from GPR to float register 1 1 FPU 1

FMV.X.D Move doubleword from floating register to GPR 1 FPU 1

FMV.X.W Move word from floating register to GPR 1 FPU 1

FNMADD.S Floating point fused multiply, negate and add 8 1 FPU(EXL) 1

FNMADD.S Floating point fused multiply, negate and add - double
precision

8 1 FPU(EXL) 1

FNMSUB.D Floating point fused multiply, negate and subtract - dou-
ble precision

8 1 FPU(EXL) 1

FNMSUB.S Floating point fused multiply, negate and subtract 8 1 FPU(EXL) 1

FSD Store doubleword from FPR to memory n/a 1 FPU 1

FSGNJ.D Floating point sign injection - double precision 1 1 FPU(EXS) 1

FSGNJ.S Floating point sign injection 1 1 FPU(EXS) 1

FSGNJN.D Floating point negated sign injection - double precision 1 1 FPU(EXS) 1

FSGNJN.S Floating point negated sign injection 1 1 FPU(EXS) 1

FSGNJX.D Floating point ex-ORed sign injection - double precision 1 1 FPU(EXS) 1

FSGNJX.S Floating point ex-ORed sign injection 1 1 FPU(EXS) 1

FSQRT.D Floating point square root - double precision 23 - 24 FPU(EXL) 1

FSQRT.S Floating point square root 14 - 22 FPU(EXL) 1

FSUB.D Floating point subtract - double precision 4 1 FPU(EXL) 1

FSUB.S Floating point subtract 4 1 FPU(EXL) 1

FSW Store word from FPR to memory n/a 1 FPU 1

IHB Instruction hazard barrier IDU/GRU 1

JAL Jump and Link 1 1 CTI 1

JALR Jump and Link Register 1 1 CTI 1

LB Load byte from memory as a signed value 4 1 LSU 1

LBU Load byte from memory as an unsigned value 4 1 LSU 1

LD Load doubleword from memory 4 1 LSU 1

LD Load doubleword from memory 4 1 LSU 1

LDP Load double pair 4 1 LSU 1

LH Load halfword from memory as a signed value 4 1 LSU 1

LHU Load halfword from memory as an unsigned value 4 1 LSU 1

LR.D Load linked doubleword 4 1 LSU 1

LR.W Load linked word 4 1 LSU 1

LUI Load upper immediate 1 1 ALU 2

LW Load word from memory as a signed value 4 1 LSU 1

LWP Load word pair 4 1 LSU 1

LWU Load word from memory as an unsigned value 4 1 LSU 1

MAX Select maximum value - integer 1 1 ALU 2

Table 12.1 Instruction Latencies and Repeat Rates(continued)

Instruction Definition Latency Rate Unit Type Units

348
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

MAXU Select maximum value - unsigned integer 1 1 ALU 2

MIN Select minimum value - integer 1 1 ALU 2

MINU Select minimum value - unsigned integer 1 1 ALU 2

MRET Return from Machine mode 3 IDU/GRU 1

MTLBWR TLB Write n/a 1 LSU 1

MTVECJ Jump to address in MTVEC register LSU

MUL Multiply integer signed 4 1 MUL 1

MULH Multiply integer signed, return high doubleword 4 1 MUL 1

MULHSU Multiply integer signed by unsigned, return high double-
word

4 1 MUL 1

MULHU Multiply integer unsigned, return high doubleword 4 1 MUL 1

MULW Multiply word integer signed 3 1 MUL 1

OR Bitwise logical OR 1 1 ALU 2

ORC.B Set all bits of a byte to 1 if any bit is 1 1 1 ALU 2

ORI OR immediate. Bitwise logical or with a constant. 1 1 ALU 2

ORN Or operation with second operand inverted 1 1 ALU 2

PAUSE Pause hart temporarily n/a 1 LSU 1

PREF Move data from memory into cache 1 LSU 1

REM Modulo integer signed 7 to 22 DIV 1

REMU Modulo integer unsigned 7 to 22 DIV 1

REMUW Modulo word integer unsigned 7 to 22 DIV 1

REMW Modulo word integer signed 7 to 22 DIV 1

REV8 Reverse bytes 1 1 ALU 2

ROL Rotate left 1 1 ALU 2

ROLW Rotate left word 1 1 ALU 2

ROR Rotate right 1 1 ALU 2

RORI Rotate right by immediate value 1 1 ALU 2

RORIW Rotate right word by immediate value 1 1 ALU 2

RORW Rotate right word 1 1 ALU 2

SB Store a byte to memory n/a 1 LSU 1

SC.D Store conditional doubleword LSU

SC.W Store conditional word LSU

SD Store a doubleword to memory n/a 1 LSU 1

SDP Store double pair n/a 1 LSU 1

SEXT.B Sign extension - byte 1 1 ALU 2

SEXT.H Sign extension - halfword 1 1 ALU 2

SFENCE.VMA Supervisor Synchronize virtual-memory management n/a LSU

SH Store halfword to memory n/a 1 LSU 1

SH1ADD Shift 1 bit and add 1 1 ALU 2

Table 12.1 Instruction Latencies and Repeat Rates(continued)

Instruction Definition Latency Rate Unit Type Units

349
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

SH1ADD.UW Shift 1 bit and add - unsigned word only 1 1 ALU 2

SH2ADD Shift 2 bit and add 1 1 ALU 2

SH2ADD.UW Shift 2 bit and add - unsigned word only 1 1 ALU 2

SH3ADD Shift 3 bit and add 1 1 ALU 2

SH3ADD.UW Shift 3 bit and add - unsigned word only 1 1 ALU 2

SLL shift left logical by a variable number of bits 1 1 ALU 2

SLLI Shift left logical by a fixed number of bits 1 1 ALU 2

SLLI Doubleword shift left logical 1 1 ALU 2

SLLI.UW Shift left logical by imm value - unsigned word only 1 1 ALU 2

SLLIW Shift word left logical by a fixed number of bits 1 1 ALU 2

SLLW Shift word left logical by a variable number of bits 1 1 ALU 2

SLT Set on less than 1 1 ALU 2

SLTI Set on less than immediate 1 1 ALU 2

SLTIU Set on less than immediate unsigned 1 1 ALU 2

SLTU Set on less than, unsigned 1 1 ALU 2

SRA Shift right arithmetic 1 1 ALU 2

SRAI Shift right arithmetic by a fixed number of bits 1 1 ALU 2

SRAI Shift word right arithmetic 1 1 ALU 2

SRAIW Shift word right arithmetic 1 1 ALU 2

SRAW Shift word right arithmetic variable number of bits 1 1 ALU 2

SRET Return from Supervisor mode 3 IDU/GRU 1

SRL shift right logical 1 1 ALU 2

SRLI Shift right logical by a fixed number of bits 1 1 ALU 2

SRLI Doubleword shift right logical 1 1 ALU 2

SRLIW Shift word right logical 1 1 ALU 2

SRLW Shift word right logical by a variable number of bits 1 1 ALU 2

SUB Subtract 1 1 ALU 2

SUBW Subtract unsigned word 1 1 ALU 2

SW Store word to memory n/a 1 LSU 1

SWP Store word pair n/a 1 LSU 1

WFI Wait for interrupt 3 IDU/GRU 1

XOR Exclusive OR 1 1 ALU 2

XORI Exclusive OR immediate 1 1 ALU 2

XORN XOr operation with second operand inverted 1 1 ALU 2

ZEXT.H Zero extend halfword 1 1 ALU 2

Table 12.1 Instruction Latencies and Repeat Rates(continued)

Instruction Definition Latency Rate Unit Type Units

350
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Chapter 13

351
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS On-Chip Instrumentation

This chapter provides a brief overview of the interface and external debugging environment
required to debug MIPS processors that incorporate the MIPS On-Chip Instrumentation (OCI)
debug system for multi-core designs.

The MIPS OCI debug system has been developed to provide comprehensive debugging and
performance-monitoring capabilities for multi-core processor designs where there can be one
or two Harts per core and multiple cores per cluster.

For more information on OCI, refer to https://www.mips.com/develop/tools

13.1 OCI Debug System Overview

The MIPS OCI Debug System comprises a dedicated on-chip module called the Debug Unit
and various on-chip components that have dedicated debug resources from which debug data
is gathered. These are connected by a Register Ring Bus (RRB).

13.1.1 Debug Unit (DBU)

There is one DBU per cluster of cores or Harts in a system. The DBU provides several func-
tions to assist debugging. Figure 13.1 shows the OCI system as implemented in a typical sin-
gle-cluster core.

https://www.mips.com/develop/tools/

352
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

Figure 13.1 OCI System Block Diagram

13.1.1.1 APB Slave Port

An APB Slave Port in the DBU provides connection to an APB enabled on-chip debug control-
ler or emulator transactor interface.

353
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

13.1.1.2 JTAG TAP

A serial JTAG TAP allows connection to a JTAG debug probe. The JTAG TAP data registers
reside in the DBU and allow read/write requests to the Harts being debugged via debug mon-
itor code.

13.1.1.3 Debug Monitor

Debug monitor code is loaded into RAM in the DBU and schedules debug commands to the
Harts via the Register Bus.

13.1.1.4 RAM

A dedicated block of RAM in the DBU that hosts the debug monitor code and contains the
memory mapped area, dmxseg. Dmxseg is a mapped to the Harts debug memory segment,
dmseg, and is accessed by the Hart when running in debug mode and when a debug probe is
attached. This RAM also contains the FIFOs for Fast Debug Channels.

13.1.2 Register Bus

The DBU connects to Harts and other coherent devices on the Register Bus (RRB) using a
packet-based protocol.

13.1.3 Number of Breakpoints

The P8700-F MPS implements 8 instruction breakpoint triggers and 8 data breakpoint trig-
gers. Breakpoints are shared between all Harts.

13.1.4 Per Core/Hart Resources

13.1.4.1 Breakpoint Controller

Each Hart has its own independent breakpoint control logic and configuration registers.

13.1.4.2 Dseg

A memory mapped area of main memory, accessible from the processor in debug mode only.
It contains the combined dmseg and drseg areas.

13.1.4.3 Dmseg

The debug memory segment of dseg that is accessed by the core when running in debug
mode when a debug probe is attached. This area is mirrored by dmxseg in DBU RAM.

13.1.4.4 Drseg

A region of dseg that includes registers that are mapped to debug resources such as break-
point configuration registers and sampling registers. The Hart and the DBU can read and
write these registers indirectly via the coherence manager (CM). Drseg registers can be
accessed from the DBU during normal and debug mode execution.

13.1.4.5 CSR Registers

CSR contains specific registers that facilitate and configure various aspects of a Hart's debug
features.

13.1.5 Coherence Devices

The P8700-F Multiprocessing System contains the following coherent devices.

354
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

13.1.5.1 CPC (Cluster Power Controller)

Provides stop/run signals for Harts; reset occurred signals for the DBU, CM and Harts; regis-
ters for determining the state of each Harts power and clock rate; and power up and clock
gating of the CM.

13.1.5.2 GCR (Global Configuration Registers)

A set of memory mapped registers that are used to configure and control various aspects of
the CM, the coherence scheme and CM performance counters.

13.1.5.3 CGCR - (Custom Global Configuration Registers)

An optional block of custom registers that can be used to control system level functions.

13.1.5.4 CM - (Coherence Manager) (v3)

Controls the global ordering of requests and responses across core devices.

13.1.5.5 IOCU (I/O Coherence Unit)

Connects coherent devices to the Coherence Manager.

13.2 More Information

For more information on the MIPS OCI debug system, refer to the document entitled;

• MIPS Hybrid Debug Specification

• MIPS On-Chip Instrumentation; Debug Technical Reference Manual

• MIPS On-Chip Instrumentation PDtrace Specification

• MIPS On-Chip Instrumentation 64-Bit Debug Specification

Appendix A

MIPS Tech LLC Public 355

Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in
the document since its last release. Change bars are removed for changes that are more
than one revision old.

Table A.1 Revision History

Revision Date Description

1.00 January 31, 2022 Initial release of P8700-F Programmers Guide

1.10 September 5, 2022 Updated Chapter 1, Architecture Overview
Added Chapter 2, MMU Programming
Updated Chapter 3, Caches
Added Chapter 4, Exceptions
Updated Chapter 5, CM3
Updated Chapter 6, CPC
Added Chapter 8, FPU
Added Chapter 9, SIMD
Added Chapter 10, Virtualization
Added Chapter 11, Multithreading
Added Chapter 12, Performance Counters
Updated Chapter 13, OCI Debug
Added Chapter 14, Implementation Specific Instructions
Added Chapter 15, Latency and Repeat Rate

1.20 March 31, 2023 Remove SIMD chapter
Remove Virtualization chapter
Updated Section 2.1.1, MMU Types
Updated Section 2.1.2, Instruction TLB
Updated Section 2.1.3, Data TLB
Updated Section 2.1.4, Variable TLB
Added Section 2.8, Hardware Page Table Walker
Updated Section 3.2, Cache Subsystem Overview
Updated Section 3.2.1.7, FENCE.I Instruction Usage
Updated Section 3.2.1.8, MGINVI Instruction Usage
Updated Section 3.5.1, L1 Instruction Cache Control Registers
Updated Section 3.5.2, L1 Data Cache Control Registers
Updated Section 3.5.3, L2 Cache CM GCR Control Registers
Updated Section 5.5.1, Programming Another Hart in the Same Core
Updated Section 5.5.7, Accessing the Core-Local and Core-Other Registers in
the AIA Controller
Updated Section 6.5.11, Hart Run/Suspend
Updated Section 8.1, FPU Features Overview
Updated Section 8.1.1, Short Operations
Updated Section 8.1.2, Long Operations
Updated Chapter 4, Exceptions and Interrupts

356
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

1.30 May 14, 2023 Updated Chapter 10, Latency and Repeat Rate tables.
Updated Figure 1-1, Block Diagram
Updated Section 2.1.4, Variable Page Size, and related subsections
Updated Section 2.1.5, Fixed Page Size
Updated Figure 3-1, System Caches
Updated Section 4.2, Selecting the Exception Address
Removed selected exceptions from Section 4.5, Exception Descriptions
Additional updates throughout Chapter 4, Exceptions
Removed all Debug related exceptions from Chapter 4. Moved to MIPS Hybrid
Debug Specification

1.40 June 29, 2023 Updated pseudocode example in Section 6.5.7.1, Clock Domain Change
Example.
Updated text and addressing in Section 6.5.5, Enabling Coherent Mode.

1.50 August 30, 2023 Removed Section 5.1.2, CM GCR Registers
Removed Section 5.1.3, Core-Local GCR’s
Removed Section 5.1.3, Core-Other GCR’s
Removed Section 5.1.3, Core-Local and Core-Other Register Usage
Updated Figure 1.1, Block Diagram
Updated Figure 1.2, Cluster to Cluster Accesses
Updated Figure 1.3, Core-Level Block Diagram
Removed Section 1.7, CSR Register to Assembler Mapping
Updated Section 1.7.2, MIPS RISC-V SDK
Updated Section 2.1.4.1, VTLB Organization
Removed Section 2.3, Shared TLB
Removed references to MMID
Updated Figure 3.1, System Caches
Removed Section 3.2.1.8, MGINV.I Instruction Usage
Updated Section 3.3, Cache Coherency
Removed Section 3.4, Self Modified Code
Removed Section 3.5, Register Interface
Removed Section 3.6, L2 Cache Initialization Options
Removed Section 3.9, Flushing the L1 Data Cache
Removed Section 3.10, Setting the Memory Space Cache Coherency
Removed Section 9.3.1, Disable Virtual Processor Instruction
Removed Section 9.3.2, Enable Virtual Processor Instruction
Updated Section 2.1.5, Fixed Page Size TLB
Updated Section 2.7, Hardware Table Walker
Updated Section 3.2.1.6, MCACHE Instruction Usage
Updated Table 3.5, L2 Cache-ops
Updated Section 3.2.11, Cache Instructions
Updated Table 3.6, Encoding of Bits [24:22] of the MCACHE Instruction
Updated Section 3.3, Cache Coherency
Updated Section 4.2, Selecting the Exception Address
Updated Section 5.3.1, CM GCR Register Interface
Updated Chapter 7, Floating Point Unit

Table A.1 Revision History

Revision Date Description

357
mips.com

Copyright © 2025 MIPS Technologies, LLC. All Rights Reserved

MIPS RV64 P8700/P8700-F Multiprocessing System Programmer’s Guide — Revision 1.83

1.60 April 11, 2024 Added new template changes to all pages.
Added Section 3.2, LR and SC Instruction Considerations.
Updated Section 12.1.3, Number of Breakpoints.
Removed Section 9.3, Thread Management.
Updated Section 3.3.6, Load/Store Bonding.
Added Table 10.5, Core Performance Counter Events.
Updated Section 10.1, Core Performance Counters.
Added Section 10.1.1, Performance Event Masking.
Reworked Section 10.1.2, Core Performance Event Control Register (mhp-
mevent[6:3]).
Reworked Section 10.1.3, Core Performance Counter Count Register (mhpm-
counter[3:0]).
Updated Section 10.2, CM3 Performance Counters, to remove references to
Root and Guest.

1.70 June 28, 2024 Updated Section 3.3.1.4, L1 Instruction Cache Replacement Policy.
Updated Section 3.3.4, L1 Data Cache Replacement Policy.
Updated Section 3.3.6, Load/Store Bonding.
Updated Figure 6.4, Reset Detection in the P8700-F Multiprocessing System.
Updated Section 9.1, Instruction Flow.
Updated Section 9.2, Data Flow.
Updated Section 12.1.2, Register Bus.
Updated Section 12.1.3, Number of Breakpoints.

1.71 September 11, 2024 Remove references the Hypervisor.
Remove references to Virtualization.
Updated Chapter 2, MMU

1.80 November 13, 2024 Added Chapter 8, CSR Registers.
Added Chapter 9, Interrupt Controller.
Added Appendix B, Custom Instructions.
Edited entire document to address references to select instructions.
Added Zba_Zbb to product name throughout document.

1.81 March 3, 2025 Incorporate changes from internal review.
Removed references to Big Endian mode.
Added new instruction extensions and naming convention to all MIPS MDI
instructions.
Updated CCMOV instruction.

1.82 March 19, 2025 Added PAUSE instruction.

1.83 April 9, 2025 Added version numbering entry to each individual instruction.
Updated Table B.1 in Appendix B to include family name and version number
for each instruction.

Table A.1 Revision History

Revision Date Description

Appendix B

MIPS Tech LLC Public 358

MIPS Defined Instructions

The following pages define the MIPS Technologies defined instructions. Table B.1 shows a
listing of these instructions.

Table B.1 MIPS Custom Instructions

Instruction Description Extension Version

CCMOV Conditional move instruction. xmipscmov 1.0

EHB Execution Hazard Barrier. For MIPS Technologies implementations of
RISCV cores, the EHB instruction may be used to clear speculation or
state-change hazards in implementation dependent cases, and may
be used in the future to explicitly synchronize custom state-changing
instructions.

xmipsexectl 1.0

IHB Instruction Hazard Barrier. The IHB instruction creates an instruction
hazard barrier, meaning that it ensures that all subsequent instruction
fetches (including those that are carried out speculatively) will be
aware of state changes caused by prior instructions.

xmipsexectl 1.0

LDP Load Doubleword Pair. xmipslsp 1.0

LWP Load Word Pair. xmipslsp 1.0

MTLBWR Machine TLB Write Random. xmipsstw 1.0

PAUSE Pause Hart temporarily. xmipsexectl 1.0

PREF Cache PREFetch operation. xmipscbop 1.0

SDP Store Doubleword Pair. xmipslsp 1.0

SWP Store Word Pair. xmipslsp 1.0

MIPS Technologies Proprietary and Confidential 359

Extension Name: xmipscmov

Extension Version: 1.0

Format: mips.ccmov $rd, $rs2, $rs1, $rs3

Description: Custom Conditional MOVe. Set $rd to $rs1 if $rs2 is not zero, else set $rd to $rs3.

Operation:

XR[rd] = XR[rs1] if XR[rs2]!= 0 else XR[rs3]

Exceptions:

Restrictions:

31 27 26 25 24 20 19 15 14 12 11 7 6 2 1 0

rs3 1 1 rs2 rs1 011 rd 00010 1 1

CCMOV Custom Conditional Move

MIPS Technologies Proprietary and Confidential 360

Extension Name: xmipsexectl

Extension Version: 1.0

Format: mips.ehb

Description: Execution Hazard Barrier. Clear all execution hazards before allowing any subsequent instructions to
execute. EHB uses a ‘hint’ encoding of the SLLI instruction, with rd = 0, rs1 = 0 and imm = 3. The MIPS architec-
ture uses the EHB instruction to insert an explicit execution hazard barrier after an architecture-state changing
instruction that affects the execution of subsequent instructions. An EHB is not required in the RISC-V Architecture
as such hazards are cleared implicitly by design.

For MIPS Technologies implementations of RISCV cores, the EHB instruction may be used to clear speculation or
state-change hazards in implementation dependent cases, and may be used in the future to explicitly synchronize
custom state-changing instructions.

In some rare situations use of an EHB may improve performance by preventing a subsequent instruction from initi-
ating an action which consumes a resource which is not ultimately needed.

Operation:

clear_execution_hazards()

Exceptions:

Restrictions:

31 26 25 20 19 15 14 12 11 7 6 0

000000 000011 00000 001 00000 0010011

EHB Execution Hazard Barrier

MIPS Technologies Proprietary and Confidential 361

Extension Name: xmipsexectl

Extension Version: 1.0

Format: mips.ihb

Description: Instruction Hazard Barrier. Clear all instruction hazards before allowing any subsequent instructions
to fetch. IHB uses a ‘hint’ encoding of the SLLI instruction, with rd = 0, rs1 = 0 and imm = 1. The IHB instruction cre-
ates an instruction hazard barrier, meaning that it ensures that all subsequent instruction fetches (including those
that are carried out speculatively) will be aware of state changes caused by prior instructions.

An IHB is required after an MCACHE instruction if subsequent instruction fetch depends on the cache operations
performed by the MCACHE instruction.

Other than the use of IHB in conjunction with the MCACHE instruction, software never needs to use IHB to obtain
architecturally correct behavior. However in some rare situations use of an IHB may improve performance by pre-
venting a subsequent instruction from initiating an action which is architecturally legal but which consumes a
resource which is not ultimately needed.

Operation:

clear_instruction_hazards()

Exceptions:

Restrictions:

31 26 25 20 19 15 14 12 11 7 6 0

000000 000001 00000 001 00000 0010011

IHB Instruction Hazard Barrier

MIPS Technologies Proprietary and Confidential 362

Extension Name: xmipslsp

Extension Version: 1.0

Format: mips.ldp $rd1, $rd2, offset($rs1)

Description: An LDP instruction is guaranteed to atomically read 16-byte data if its address is 16-byte aligned. If
the address is 8-byte aligned but not 16-byte aligned, then the data is only guaranteed to be 8-byte atomic. For any
other alignment, there is no atomicity guarantee.

A Load Address Misaligned exception may occur if the virtual address targeted by the LDP instruction is not
aligned to a 16-byte boundary. Performance optimized implementations will provide native hardware support for 8-
byte aligned cases, including cases that cross a page boundary. When $rd1 and $rd2 are the same register, the
value written to the output register is unknown.

Operation:

if not HART.udi:

raise illegal_inst_exception("MIPS Technologies user defined instruction")

va = (XR[rs1] + offset) & XLEN_MASK

if CONFIG.pair_aligned and va & 15:

raise address_misaligned_exception(va, 'Load', 'LDP not 16-byte aligned')

data = read_memory_at_va(va, nbytes=16)

if rd1 == rd2:

XR[rd1] = UNKNOWN

else:

XR[rd1] = data[63:0]

XR[rd2] = data[127:64]

Exceptions:

Restrictions:

31 27 26 23 22 20 19 15 14 12 11 7 6 2 1 0

rd2 imm[6:3] 000 rs1 100 rd 00010 1 1

LDP Load Double Pair

MIPS Technologies Proprietary and Confidential 363

Extension Name: xmipslsp

Extension Version: 1.0

Format: mips.lwp $rd1, $rd2, offset($rs1)

rd1 = rd

11 offset = imm

Description: Load Word Pair. Load the signed word data value from address $rs1 + offset (register plus unsigned
immediate) and write the result to integer register $rd1. Load the signed word data value from address $rs1 + offset
+ 4 and write the result to integer register $rd2.

An LWP instruction is guaranteed to atomically read 8-byte data if its address is 8-byte aligned. If the address is 4-
byte aligned but not 8-byte aligned, then the data is only guaranteed to be 4-byte atomic. For any other alignment,
there is no atomicity guarantee.

A Load Address Misaligned exception may occur if the virtual address targeted by the LWP instruction is not
aligned to an 8-byte boundary. Performance optimized implementations will provide native hardware support for 4-
byte aligned cases, including cases that cross a page boundary.

When $rd1 and $rd2 are the same register, the value written to the output register is unknown.

Operation:

if not HART.udi:

raise illegal_inst_exception("MIPS Technologies user defined instruction")

va = (XR[rs1] + offset) & XLEN_MASK

if CONFIG.pair_aligned and va & 7:

raise address_misaligned_exception(va, 'Load', 'LDP not 8-byte aligned')

data = read_memory_at_va(va, nbytes=8)

if rd1 == rd2:

XR[rd1] = UNKNOWN

else:

XR[rd1] = sign_extend(data[31:0], from_nbits=32) & XLEN_MASK

XR[rd2] = sign_extend(data[63:32], from_nbits=32) & XLEN_MASK

Exceptions:

Restrictions:

31 27 26 22 21 20 19 15 14 12 11 7 6 2 1 0

rd2 imm[6:2] 01 rs1 100 rd 00010 1 1

LWP Load Word Pair

MIPS Technologies Proprietary and Confidential 364

Extension Name: xmipsstw

Extension Version: 1.0

Format: mips.mtlbwr $rs1, level

Description: Machine TLB Write Random. Update a random entry in the implementation dependent TLB. Create
the mapping using the virtual address in mtval and the leaf PTE value stored in integer register $rs1. Use the
mipsconfig5.LEVEL field to determine the level of the PTE in the page table, the mipsconfig5.XATP field to deter-
mine the translation type, and OR the mipsconfig5.G with the G field in the PTE value.

The level immediate field is deprecated and should be set to 0, except in the legacy definition (cores with
HART.tlb_non_leaf false).

level = imm

Operation:

if not HART.got_stw:

raise illegal_inst_exception("MIPS software table walk not implemented")

if HART.priv < 3:

raise illegal_inst_exception("MTLBWR without machine privilege")

if HART.tlb_non_leaf:

if level != 0:

raise illegal_inst_exception("MTLBWR level field deprecated for

tlb_non_leaf")

pte_level = CSR.mipsconfig5.LEVEL

trace(f"Using mipsconfig5.LEVEL={pte_level}")

else:

pte_level = level

if HART.tlb_non_leaf:

if CSR.mipsconfig5.XATP == 0:

xatp = 'satp'

elif CSR.mipsconfig5.XATP == 1:

xatp = 'vsatp'

elif CSR.mipsconfig5.XATP == 2:

xatp = 'hgatp'

else:

FatalError(f"Unsupported mipsconfig5.XATP value {CSR.mipsconfig5.XATP}")

else:

31 25 24 23 22 20 19 15 14 12 11 7 6 2 1 0

1110110 00 imm rs1 000 00000 11100 1 1

MTLBWR Machine TLB Write Random

MIPS Technologies Proprietary and Confidential 365

xatp = 'vsatp' if CSR.misa.H and CSR.mstatus.GVA else 'satp'

va = CSR.mtval2 << 2 if xatp == 'hgatp' else CSR.mtval

pte = XR[rs1]

mtlbwr(va, pte, pte_level, xatp)

Exceptions:

Restrictions:

MIPS Technologies Proprietary and Confidential 366

Extension Name: xmipsexectl

Extension Version: 1.0

Format: mips.pause

Description: This MIPS.PAUSE is an alternative custom opcode which is implemented to have the same behavior
as PAUSE on some MIPS RISCV cores. It is a ‘hint’ encoding of the SLLI instruction, with rd = 0, rs1 = 0 and imm
= 5. It will behave as a NOP instruction if no additional behavior beyond that of SLLI is implemented.

The purpose of the PAUSE instruction is to temporarily halt a hart to allow other harts to make forward progress
more efficiently. This is particularly useful on multi-threaded processors, since the waiting hart may be using the
same instruction pipeline as the harts which have active work to do.

One specific use case is when a hart is waiting to acquire an LR/SC lock. Entering a spin loop may delay the hart
which owns the lock from completing its task and freeing the lock. The pseudocode and following description dis-
cuss a PAUSE implementation using a per hart ‘lr_bit’ which tracks whether there is an active LR/SC, but other
implementations are possible.

When a hart is in the paused state, it should not issue any instructions. The paused state will be cleared either if the
lr_bit for the hart gets cleared, if the hart takes an interrupt, or if a timer representing a maximum number of pause
cycles expires. If an interrupt occurs, it is implementation dependent whether the relevant mepc/sepc CSR points
to the PAUSE instruction or the instruction after the PAUSE.

In LR/SC lock software, the lr_bit of the waiting hart will always be cleared when the hart which owns the lock does
a store instruction to the lock address in order to clear the lock. Thus the paused hart will always be woken when it
has another opportunity to acquire the lock. After the PAUSE instruction completes, software is expected to attempt
to acquire the lock again by re-executing the LR/SC sequence.

It is legal to implement PAUSE as a NOP instruction. In this case, the behavior of LR/SC lock software will be
equivalent to executing a spin loop to acquire the lock. Software using PAUSE will still work, but the benefit of hav-
ing the waiting hart not consume instruction issue slots will be lost.

The following assembly code example shows how the PAUSE instruction can be used to halt a hart while it is wait-
ing to acquire an LR/SC lock.

acquire_lock:

lr.w t0, (a0) /* Read software lock, set lr_bit. */

bnez t0, acquire_lock_retry /* Branch if software lock is taken. */

addi t0, t0, 1 /* Set the software lock. */

sc.w t0, t0, (a0) /* Try to store the software lock. */

beqz t0, 10f /* Branch if lock acquired successfully. */

acquire_lock_retry:

pause /* Wait for lr_bit to clear before retrying. */

j acquire_lock /* Now retry the operation. */

10:

/* Critical Region Code */

...

31 26 25 20 19 15 14 12 11 7 6 0

000000 000101 00000 001 00000 0010011

PAUSE Pause Hart Temporarily

MIPS Technologies Proprietary and Confidential 367

release_lock:

fence

sw zero, (a0) /* Release software lock, clearing lr_bit for any PAUSEd waiters */

Operation:

if CONFIG.zihintpause:

pause()

Exceptions:

Restrictions:

MIPS Technologies Proprietary and Confidential 368

Extension Name: xmipscbop

Extension Version: 1.0

Format: mips.pref

Description: PREFetch. Perform a prefetch operation of type hint at address $rs1 + imm. The PREF instruction
requests that the processor take some action to improve program performance in accordance with the intended
data usage specified by the hint argument. This is typically done by moving data to or from the cache at the speci-
fied address.

Bits [4:3] of the ‘hint’ argument specify the target cache as follows:

Bits[2:0] of the ‘hint’ argument specify the prefetch type, as follows:

The behavior for the prefetch types is as follows:

• hint[2:0] = 0: Load. Prefetched data is expected to be read (not modified), and should be fetched a if for a
load.

• hint[2:0] = 1: Store Prefetched data is expected to be stored or modified and should be fetched as if for a
store.

• hint[2:0] = 7: Prepare-for-store. Prepare a cache line for store, assuming that the current data for the range
of addresses in the line can be discarded. If the line is not present in cache, evict or invalidate a line then
zero-fill its data and update it to store the target address in a modified state. If the line is present in the
cache, then upgrade it to a modified state.

The action taken for a specific PREF instruction is both system and context dependent. For all operations, any
action, including doing nothing, is permitted as long as it does not change architecturally visible state or alter the

31 29 28 20 19 15 14 12 11 7 6 2 1 0

000 imm rs1 000 hint 00010 1 1

hint[4:3] Target Cache

00 L1 instruction (I) cache

01 L1 data (D) cache

10 L2 (S) cache

11 L3 (T) cache

hint[2:0] Target Cache

000 Load

001 Store (or reserved for ICache)

010 - 110 Reserved

111 Prepare for store (or reserved for ICache)

PREF Prefetch

MIPS Technologies Proprietary and Confidential 369

meaning of a program. In addition, for prepare-for-store operations only, modifying architectural state by replacing
the contents of the targeted cache line with zeros is also permitted.

PREF does not cause addressing-related exceptions. If the address specified would cause an addressing excep-
tion, the exception condition is ignored and no data movement occurs.

For cached addresses, the expected and useful action is for the processor to prefetch a block of data that includes
the effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementa-
tion specific.

PREF neither generates a memory operation nor modifies the state of a cache line for addresses with an uncached
memory access attribute.

Prefetch operations have no effect on cache lines that were previously locked with the MCACHE instruction.

In coherent multiprocessor implementations, if the effective address uses a coherent CCA, then the instruction
causes a coherent memory transaction to occur. This means a prefetch issued on one processor can cause data to
be evicted from the cache in another processor.

The memory transactions which occur as a result of a PREF instruction, such as cache refill or cache writeback,
obey the same ordering and completion rules as other load or store instructions.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is
detected as a byproduct of the action taken by the PREF instruction. Implementations are encouraged to report
such errors only if there is a specific requirement for high-reliability. Note that suppressing a bus or cache error in
this case may require that the processor communicate to the system that the reference is speculative.

Operation:

if not HART.udi:

raise illegal_inst_exception("MIPS Technologies user defined instruction")

va = (XR[rs1] + imm) & XLEN_MASK

cache_type = (

'Icache' if hint[4:3] == 0 else

'Dcache' if hint[4:3] == 1 else

'Scache' if hint[4:3] == 2 else

'Tcache' if hint[4:3] == 3 else FatalError("unexpected pref"))

op_type = (

'Load' if hint[2:0] == 0 else

'Store' if hint[2:0] == 1 and cache_type != 'Icache' else

'PrepareForStore' if hint[2:0] == 7 and cache_type != 'Icache' else

'Reserved')

cache = HART[cache_type]

if op_type == 'Reserved':

trace(f"Reserved pref hint ({hint}) is a nop")

return

if not cache.exists:

MIPS Technologies Proprietary and Confidential 370

trace("Pref to non-existent cache is a nop")

return

if not pref_implemented(hint, cache_type, op_type):

It is legal to implement any pref operation as a nop

trace("Unimplemented PREF hint")

return

try:

access_type = 'Store' if op_type in ('Store', 'PrepareForStore') else 'Load'

pa, pma = translate_va(va, 1, access_type)

except EXCEPTION:

return # Address exception on pref acts as a nop

if not is_cacheable(pma):

trace("Pref to uncached address is a NOP")

return

Find index which holds this address in the cache (if any).

index = find_cache_index(cache, va, pa)

if index is None:

if op_type == 'PrepareForStore':

index = fill_cache(cache, va, pa, pma, prepare_for_store=True, excl

sive=True)

else:

index = fill_cache(cache, va, pa, pma)

Exceptions:

Restrictions:

MIPS Technologies Proprietary and Confidential 371

Extension Name: xmipslsp

Extension Version: 1.0

Format: mips.sdp $rs2, $rs3, offset($rs1)

Description:

Store Double Pair. Store the double word data value in integer register $rs2 to memory address $rs1 + offset (reg-
ister plus unsigned immediate), and store the double word data value in integer register $rs3 to memory address
$rs1 + offset + 8.

An SDP instruction is guaranteed to atomically write 16-byte data if its address is 16-byte aligned. If the address is
8-byte aligned but not 16-byte aligned, then the data is only guaranteed to be 8-byte atomic, and whether the 8-
byte parts are ordered is implementation dependent. For any other alignment, there is no atomicity guarantee.

A Store Address Misaligned exception may occur if the virtual address targeted by the SDP instruction is not
aligned to a 16-byte boundary. Performance optimized implementations will provide native hardware support for 8-
byte aligned cases, including cases that cross a page boundary.

Operation:

if not HART.udi:

raise illegal_inst_exception("MIPS Technologies user defined instruction")

va = (XR[rs1] + offset) & XLEN_MASK

if CONFIG.pair_aligned and va & 15:

raise address_misaligned_exception(va, 'Store', 'SDP not 16-byte aligned')

if is_littleendian():

data = XR[rs3] << 64 | XR[rs2]

write_memory_at_va(data, va, nbytes=16)

Exceptions:

Restrictions:

31 27 26 25 24 20 19 15 14 12 11 10 9 7 6 2 1 0

rs3 imm[6:5] rs2 rs1 101 imm[4:3] 000 00010 1 1

SDP Store Double Pair

MIPS Technologies Proprietary and Confidential 372

Extension Name: xmipslsp

Extension Version: 1.0

Format: mips.swp $rs2, $rs3, offset($rs1)

Description:

 Store Word Pair. Store the word data value in integer register $rs2 to memory address $rs1 + offset (register plus
unsigned immediate), and store the word data value in integer register $rs3 to memory address $rs1 + offset + 4.

An SWP instruction is guaranteed to atomically write 8-byte data if its address is 8-byte aligned. If the address is 4-
byte aligned but not 8-byte aligned, then the data is only guaranteed to be 4-byte atomic, and whether the 4-byte
parts are ordered is implementation dependent. For any other alignment, there is no atomicity guarantee.

A Store Address Misaligned exception may occur if the virtual address targeted by the SWP instruction is not
aligned to an 8-byte boundary. Performance optimized implementations will provide native hardware support for 4-
byte aligned cases, including cases that cross a page boundary.

Operation:

if not HART.udi:

raise illegal_inst_exception("MIPS Technologies user defined instruction")

va = (XR[rs1] + offset) & XLEN_MASK

if CONFIG.pair_aligned and va & 7:

raise address_misaligned_exception(va, 'Store', 'SDP not 8-byte aligned')

if is_littleendian():

data = XR[rs3] << 32 | (XR[rs2] & 0xFFFFFFFF)

write_memory_at_va(data, va, nbytes=8)

Exceptions:

Restrictions:

31 27 26 25 24 20 19 15 14 12 11 0 9 8 7 6 2 1 0

rs3 imm[6:5] rs2 rs1 101 imm[4:2] 01 00010 1 1

SWP Store Word Pair

	Architecture Overview
	1.1 Product Overview
	1.1.1 Single-Cluster Configuration
	1.1.2 Multi-Cluster Configuration

	1.2 P8700-F Features
	1.2.1 MIPS Out-of-Order Multithreading
	1.2.2 Hybrid Debug

	1.3 P8700/P8700-F Privileged Architecture
	1.4 Functional Safety
	1.5 System-level Features
	1.6 CPU Core-Level Features
	1.7 P8700-F Core Block Diagram
	1.8 MIPS Software Tools
	1.8.1 RISC-V Linux
	1.8.2 MIPS RISC-V SDK
	1.8.3 Compilers
	1.8.4 Boot Loader

	1.9 Performance Considerations
	1.10 Instruction Set Architecture
	1.10.1 RISC-V Unprivileged Architecture Extensions Implemented by the I8500
	1.10.2 RISC-V Privileged Architecture Extensions Implemented by the I8500
	1.10.3 RISC-V Debug Architecture Extensions Implemented by the I8500
	1.10.4 RV64I Instruction Set Details
	1.10.4.1 Endianess
	1.10.4.2 misa[25:0] Extension Bits
	1.10.4.3 A Extension
	1.10.4.4 F and D Extension
	1.10.4.5 Zicntr Extension
	1.10.4.6 Zihintpause and Zawrs Extensions
	1.10.4.7 Zihintntl Extension
	1.10.4.8 Zkt Extension
	1.10.4.9 Zfa Extension
	1.10.4.10 Zicbom Extension
	1.10.4.11 Zicbop Extension
	1.10.4.12 Zicboz Extension
	1.10.4.13 Svpbmt Extension
	1.10.4.14 Rationale
	1.10.4.15 Svinval Extension

	1.11 Additional Information

	Memory Management Unit
	2.1 Overview
	2.1.1 TLB Types
	2.1.2 Instruction TLB (ITLB)
	2.1.3 Data TLB (DTLB)
	2.1.4 Variable Page Size TLB (VTLB)
	2.1.4.1 VTLB Organization

	2.1.5 Fixed Page Size TLB (FTLB)

	2.2 TLB ECC Errors
	2.3 MIPS TLB Exception Handling
	2.4 TLB Duplicate Entries
	2.5 TLB Instructions
	2.6 Shared FTLB Translations
	2.7 Hardware Table Walker
	2.8 MMU Programming

	Caches
	3.1 Cache Configurations
	3.2 LR and SC Instruction Considerations
	3.3 Cache Subsystem Overview
	3.3.1 L1 Instruction Cache
	3.3.1.1 Level 1 Instruction Cache Error Detection
	3.3.1.2 L1 Instruction Cache Organization
	3.3.1.3 L1 Instruction Cache Error Types
	3.3.1.4 L1 Instruction Cache Replacement Policy
	3.3.1.5 L1 Instruction Cache Coherency Management
	3.3.1.6 FENCE.I Instruction Usage

	3.3.2 L1 Data Cache
	3.3.3 Level 1 Data Cache Error Checking and Correction (ECC)
	3.3.3.1 L1 Data Cache Organization
	3.3.3.2 L1 Data Cache Load/Store Operations
	3.3.3.3 L1 Data Cache Error Types
	3.3.3.4 Store Operations Less than 32-bits
	3.3.3.5 Examples of L1 Data Cache ECC Errors

	3.3.4 L1 Data Cache Replacement Policy
	3.3.5 L1 Data Cache Memory Coherence Protocol
	3.3.6 Load/Store Bonding
	3.3.7 L2 Cache
	3.3.8 L2 Cache General Features
	3.3.9 Overview of the AXI Interface
	3.3.9.1 AXI Channels
	3.3.9.2 Read Operations
	3.3.9.3 Write Operations
	3.3.9.4 AXI Memory Bus Ordering

	3.3.10 Cache Instructions

	3.4 Cache Coherency
	3.5 L2 Cache Initialization Options
	3.5.1 Automatic Hardware Cache Initialization

	3.6 L2 Cache Flush, Burst, and Abort
	3.6.1 L2 Cache Flush
	3.6.2 L2 Cache Burst Operations
	3.6.3 Abort Operations

	Exceptions and Interrupts
	4.1 Exception Conditions
	4.2 Selecting the Exception Address
	4.3 Debug Exception Processing

	Coherence Manager
	5.1 CM Overview
	5.1.1 CM Interface — Register Ring Bus and Device ID’s
	5.1.2 Cluster to Cluster Accesses

	5.2 Verifying Overall System Configuration
	5.3 Programming the Base Addresses in Memory
	5.3.1 CM GCR Register Interface

	5.4 CM Register Access Permissions
	5.4.1 Enabling Access Permissions

	5.5 Coherency Enable
	5.6 L2 Cache Prefetch
	5.6.1 Prefetch Enable
	5.6.2 Select Ports for L2 Prefetching
	5.6.3 Enabling Code Prefetch

	5.7 CM Uncached Semaphore Management
	5.8 Custom GCR Implementation
	5.9 IOCU Interface
	5.10 MMIO Address Regions
	5.10.1 CM GPR Register Interface
	5.10.2 MMIO Region Control

	5.11 Auxiliary Interfaces
	5.12 Error Processing
	5.12.1 Error Codes 1 and 3 — Tag ECC Error
	5.12.1.1 Command Group Field Encoding
	5.12.1.2 CCA Field Encoding
	5.12.1.3 Type Field Encoding

	5.12.2 Error Codes 1 and 3 — Data ECC Error
	5.12.3 Error Code 2 — Request Decode Error
	5.12.4 Error Code 4 — Parity Error
	5.12.5 Error Code 5 — Fetch and Lock Error
	5.12.6 Error Codes 6, 7, 8 — Bus Interface Unit (BIU) Errors
	5.12.7 Error Code 10 — Ring Bus Error
	5.12.8 Error Code 11 — IOCU Request Error
	5.12.9 Error Code 12 — IOCU Parity Error
	5.12.10 Error Code 13 — IOCU Response Error
	5.12.11 Error Code 15 — RBI REGTC Bus Request Error

	5.13 Memory Mapped Registers
	5.14 Coherence Manager (CM) Memory Mapped Registers
	5.14.1 GCR.Global Registers
	5.14.1.1 GCR Global Configuration Register (offset = 0x0000)
	5.14.1.2 Global GCR_BASE Register (offset = 0x0008)
	5.14.1.3 GCR Global Control Register (offset = 0x0010)
	5.14.1.4 Global Revision ID Register (offset = 0x0030)
	5.14.1.5 GCR Global Error Control (ERR_CONTROL) Register (offset = 0x0038)
	5.14.1.6 GCR Global Error Mask (ERR_MASK) Register (offset = 0x0040)
	5.14.1.7 GCR Global Error Cause (ERR_CAUSE) Register (offset = 0x0048)
	5.14.1.8 GCR Global Error Address (ERR_ADDR) Register (offset = 0x0050)
	5.14.1.9 GCR Global Error Mult (ERR_MULT) Register (offset = 0x0058)
	5.14.1.10 GCR Global Custom Status (CUSTOM_STATUS) Register (offset = 0x0068)
	5.14.1.11 GCR Global Interrupt Status (AIA_STATUS) Register (offset = 0x00D0)
	5.14.1.12 GCR Global Cache Revision (CACHE_REV) Register (offset = 0x00E0)
	5.14.1.13 GCR Global CPC Status (CPC_STATUS) Register (offset = 0x00f0)
	5.14.1.14 GCR Global Access (ACCESS) Register (offset = 0x0120)
	5.14.1.15 GCR Global L2 Cache Configuration (L2_CONFIG) Register (offset = 0x0130)
	5.14.1.16 GCR Global SDB Configuration (SDB_CONFIG) Register (offset = 0x0160)
	5.14.1.17 GCR Global IOCU Revision (IOCU_REV) Register (offset = 0x0200)
	5.14.1.18 GCR Global DBU Revision (DBU_REV) Register (offset = 0x0208)
	5.14.1.19 GCR Global Interrupt Controller Revision (AIA_REV) Register (offset = 0x0208)
	5.14.1.20 GCR Global L2 RAM Configuration (L2_RAM_CONFIG) Register (offset = 0x0240)
	5.14.1.21 GCR Global Scratch0 (SCRATCH0) Register (offset = 0x0280)
	5.14.1.22 GCR Global Scratch1 (SCRATCH1) Register (offset = 0x0288)
	5.14.1.23 GCR Global L2 PFT Control (L2_PFT_CONTROL) Register (offset = 0x0300)
	5.14.1.24 GCR Global L2 PFT Control B (L2_PFT_CONTROL_B) Register (offset = 0x0308)
	5.14.1.25 GCR Global L2 Tag Address (L2_TAG_ADDR) Register (offset = 0x0600)
	5.14.1.26 GCR Global L2 Tag State (L2_TAG_STATE) Register (offset = 0x0608)
	5.14.1.27 GCR Global L2 Data (L2_DATA) Register (offset = 0x0610)
	5.14.1.28 GCR Global L2 ECC (L2_ECC) Register (offset = 0x0618)
	5.14.1.29 GCR Global L2SM CacheOp (L2SM_COP) Register (offset = 0x0620)
	5.14.1.30 GCR Global L2SM Tag Address CacheOp (L2SM_TAG_ADDR_COP) Register (offset = 0x0628)
	5.14.1.31 GCR Global Semaphore (SEM) Register (offset = 0x0640)
	5.14.1.32 GCR Global Timeout Timer Limit (TIMEOUT_TIMER_LIMIT) Register (offset = 0x0650)
	5.14.1.33 GCR Global MMIO Requests Limit (MMIO_REQ_LIMIT) Register (offset = 0x06F8)
	5.14.1.34 GCR Global MMIO0 Bottom (MMIO0_BOTTOM) Register (offset = 0x0700)
	5.14.1.35 GCR Global MMIO0 Top (MMIO0_TOP) Register (offset = 0x0708)
	5.14.1.36 GCR Global MMIO1 Bottom (MMIO1_BOTTOM) Register (offset = 0x0710)
	5.14.1.37 GCR Global MMIO1 Top (MMIO1_TOP) Register (offset = 0x0718)
	5.14.1.38 GCR Global MMIO2 Bottom (MMIO2_BOTTOM) Register (offset = 0x0720)
	5.14.1.39 GCR Global MMIO2 Top (MMIO2_TOP) Register (offset = 0x0728)
	5.14.1.40 GCR Global MMIO3 Bottom (MMIO3_BOTTOM) Register (offset = 0x0730)
	5.14.1.41 GCR Global MMIO3 Top (MMIO3_TOP) Register (offset = 0x0728)
	5.14.1.42 GCR Global MMIO4 Bottom (MMIO4_BOTTOM) Register (offset = 0x0740)
	5.14.1.43 GCR Global MMIO4 Top (MMIO4_TOP) Register (offset = 0x0748)
	5.14.1.44 GCR Global MMIO5 Bottom (MMIO5_BOTTOM) Register (offset = 0x0750)
	5.14.1.45 GCR Global MMIO5 Top (MMIO5_TOP) Register (offset = 0x0758)
	5.14.1.46 GCR Global MMIO6 Bottom (MMIO6_BOTTOM) Register (offset = 0x0760)
	5.14.1.47 GCR Global MMIO6 Top (MMIO6_TOP) Register (offset = 0x0768)
	5.14.1.48 GCR Global MMIO7 Bottom (MMIO7_BOTTOM) Register (offset = 0x0770)
	5.14.1.49 GCR Global MMIO7 Top (MMIO7_TOP) Register (offset = 0x0778)

	5.14.2 GCR.Debug Registers
	5.14.2.1 GCR Debug TCB ControlD (TCBCONTROLD) Register (offset = 0x0810)
	5.14.2.2 GCR Debug TCB ControlE (TCBCONTROLE) Register (offset = 0x0820)
	5.14.2.3 GCR Debug TCB Performance Counter Trace (TCBPERFCNTR) Register (offset = 0x0830)
	5.14.2.4 GCR Debug Performance Counter Control (PC_CTL) Register (offset = 0x0900)
	5.14.2.5 GCR Debug Performance Counter Overflowed (PC_OV) Register (offset = 0x0920)
	5.14.2.6 GCR Debug Performance Counter Event (PC_EVENT) Register (offset = 0x0930)
	5.14.2.7 GCR Debug Performance Counter Cycles (PC_CYCL) Register (offset = 0x0980)
	5.14.2.8 GCR Debug Performance Counter Qualifier0 (PC_QUAL0) Register (offset = 0x0990)
	5.14.2.9 GCR Debug Performance Counter Value0 (PC_CNT0) Register (offset = 0x0998)
	5.14.2.10 GCR Debug Performance Counter Qualifier1 (PC_QUAL1) Register (offset = 0x09A0)
	5.14.2.11 GCR Debug Performance Counter Value1 (PC_CNT1) Register (offset = 0x09a8)

	5.14.3 GCR.Core Registers
	5.14.3.1 GCR HART Reset Exception Base (RESET_BASE) Register (offset = see below)
	5.14.3.2 GCR Core Enables Coherence (COH_EN) Register (offset = see below)

	5.14.4 CPC.Global Registers
	5.14.4.1 CPC Global Sequencer (SEQDEL_REG) Register (offset = 0x8008)
	5.14.4.2 CPC Global Rail (RAIL_REG) Register (offset = 0x8010)
	5.14.4.3 CPC Global Reset Sequence (RESETLEN_REG) Register (offset = 0x8018)
	5.14.4.4 CPC Global Revision (REVISION_REG) Register (offset = 0x8020)
	5.14.4.5 CPC Global Clock Change Configuration, Control and Status. (CC_CTL_REG) Register (offset = 0x8028)
	5.14.4.6 CPC Global Power Up Control (PWRUP_CTL_REG) Register (offset = 0x8030)
	5.14.4.7 CPC Global Reset Release (RES_REL_REG) Register (offset = 0x8038)
	5.14.4.8 CPC Global Core Rest Control (ROCC_CTL_REG) Register (offset = 0x8040)
	5.14.4.9 CPC Global Controls Prescale Clock Changes Register (offset = 0x8048)
	5.14.4.10 CPC Global RISC-V Mtime (MTIME_REG) Register (offset = 0x8050)
	5.14.4.11 CPC Global RISC-V Mtime Control (TIMECTL_REG) Register (offset = 0x8058)
	5.14.4.12 CPC Global Clock Gate Disabled (CLK_GATE_DIS_REG) Register (offset = 0x8060)
	5.14.4.13 CPC Global Fault Status (FAULT_STATUS) Register (offset = 0x8068)
	5.14.4.14 CPC Global Fault Supported (FAULT_SUPPORTED) Register (offset = 0x8070)
	5.14.4.15 CPC Global Fault Enable (FAULT_ENABLE) Register (offset = 0x0078)
	5.14.4.16 CPC Global High Resolution Timer (HRTIME_REG) Register (offset = 0x8090)
	5.14.4.17 CPC Global Configuration (CONFIG) Register (offset = 0x8138)

	5.14.5 CPC.Core Registers
	5.14.5.1 CPC Power Command (CMD_REG) Register (offset = see below)
	5.14.5.2 CPC Core Status and Domain Configuration (STAT_CONF_REG) Register (offset = see below)
	5.14.5.3 CPC Control Clock Change (CC_CTL_REG) Register (offset = see below)
	5.14.5.4 CPC Power VP Stop (VP_STOP_REG) Register (offset = see below)
	5.14.5.5 CPC VP Run (VP_RUN_REG) Register (offset = see below)
	5.14.5.6 CPC VP Running State (VP_RUNNING_REG) Register (offset = see below)
	5.14.5.7 CPC Power Debug Interrupt (DBG_DBRK_REG) Register (offset = see below)
	5.14.5.8 CPC Power Controls Deep Sleep (RAM_SLEEP_REG) Register (offset = see below)
	5.14.5.9 CPC Power Fault Status (FAULT_STATUS) Register (offset = see below)
	5.14.5.10 CPC Power Fault Set (FAULT_SET) Register (offset = see below)
	5.14.5.11 CPC Power Fault Clear (FAULT_CLR) Register (offset = see below)
	5.14.5.12 CPC Power Configuration (CONFIG) Register (offset = see below)

	5.14.6 FDC.Global Registers
	5.14.6.1 FDC Global Access Control and Status (FDACSR) Register (offset = 0x3F000)
	5.14.6.2 FDC Global Configuration (FDCFG) Register (offset = 0x3F008
	5.14.6.3 FDC Global Status (FDSTAT) Register (offset = 0x3F010)
	5.14.6.4 FDC Global Receive (FDRX) Register (offset = 0x3F018)
	5.14.6.5 FDC Global Transmit (FDTX[0-15]) Register (offset = 0x3F020)

	5.14.7 Trace Funnel (TRF) Global Registers
	5.14.7.1 TRF Global Trace Funnel Control (CONTROL) Register (offset = 0x3F100)
	5.14.7.2 TRF Global Trace Funnel Configuration (CONFIG) Register (offset = 0x3F108)
	5.14.7.3 TRF Global Trace Funnel Write Pointer (WRITEPTR) Register (offset = 0x3F110)
	5.14.7.4 TRF Global Trace Funnel Read Pointer (READPTR) Register (offset = 0x3F118)
	5.14.7.5 TRF Global Trace Data (DATA[0-7]) Register (offset = see below)
	5.14.7.6 TRF Global System Trace User Control (STUSER) Register (offset = 0x3F160)
	5.14.7.7 TRF Global System Trace Enable (STENABLE) Register (offset = 0x3F168)

	5.14.8 GCR.U User Mode Registers
	5.14.8.1 GCR.U User Mode Timer (MTIME_REG) Register (offset = 0x7F050)
	5.14.8.2 GCR.U High Resolution Timer (L2_CONFIG) Register (offset = 0x7F090)

	Power Management
	6.1 Overview
	6.1.1 Power Domains
	6.1.2 Clock Domains
	6.1.3 Core and IOCU Selection
	6.1.4 Overview of Power States

	6.2 Individual Clock Gating
	6.3 Global Control Block Register Map
	6.4 Local Control Blocks
	6.5 CPC Register Programming
	6.5.1 Cluster Power Controller Register Address Map
	6.5.2 Global Control Block Register Map
	6.5.3 Local Control Blocks
	6.5.4 Requestor Access to CPC Registers
	6.5.4.1 Register Interface

	6.5.5 Enabling Coherent Mode
	6.5.6 Master Clock Prescaler
	6.5.7 Individual Device Clock Ratio Modification
	6.5.7.1 Clock Domain Change Example — Register Programming Sequence
	6.5.7.2 Clock Change Delay

	6.5.8 CM Standalone Powerup
	6.5.8.1 Register Interface

	6.5.9 Reset Detection
	6.5.10 VP Run/Suspend
	6.5.11 Local RAM Deep Sleep / Shutdown and Wakeup Delay
	6.5.11.1 RAM Deep Sleep Mode
	6.5.11.2 RAM Shut Down Mode

	6.5.12 Fine Tuning Internal and External Signal Delays
	6.5.12.1 Global Sequence Delay Count
	6.5.12.2 Rail Delay
	6.5.12.3 Reset Delay

	Control and Status Registers (CSR)
	7.1 Machine Mode Registers
	7.1.1 Machine Architecture ID Register (MarchID) — offset = 0xF12
	7.1.2 Machine Cause Register (mcause) — offset = 0x342
	7.1.3 Machine Hart ID Register (mhartID) — 0xF14
	7.1.4 Machine Implementation ID Register (mimpid) — offset = 0xF13
	7.1.5 Machine Vendor ID Register (mvendorid) — offset = 0xF11

	7.2 User Mode Registers
	7.2.1 Time Register (time) — offset = 0xC01

	7.3 MIPS Custom Registers
	7.3.1 MIPS Trap Vector Base Address Register (mipstvec) — offset = 0x7C0
	7.3.2 MIPS Trap Value Register (mipstval) — offset = 0x7C3
	7.3.3 MIPS Scratch Register (mipsscratch) — offset = 0x7C4
	7.3.4 MIPS Cache Error Register (mipscacheerr) — offset = 0x7C5
	7.3.5 MIPS Error Control Register (mipserrctrl) — offset = 0x7C6
	7.3.6 MIPS Interrupt Control Register (mipsintctl) — offset = 0x7CB
	7.3.7 MIPS DSPRAM Base Register (mipsdsprambase) — offset = 0x7CC
	7.3.8 MIPS Configuration 1 Register (mipsconfig1) — offset = 0x7D1
	7.3.9 MIPS Configuration 5 Register (mipsconfig5) — offset = 0x7D5
	7.3.10 MIPS Configuration 6 Register (mipsconfig6) — offset = 0x7D6
	7.3.11 MIPS Configuration 7 Register (mipsconfig7) — offset = 0x7D7
	7.3.12 MIPS Configuration 8 Register (mipsconfig8) — offset = 0x7D8
	7.3.13 MIPS Configuration 9 Register (mipsconfig9) — offset = 0x7D9
	7.3.14 MIPS Configuration 10 Register (mipsconfig10) — offset = 0x7DA
	7.3.15 MIPS Configuration 11 Register (mipsconfig11) — offset = 0x7DB
	7.3.16 PMA Configuration Registers
	7.3.16.1 PMA Configuration 0 Control and Status Register (PMACFG0) — offset = 0x7E0
	7.3.16.2 PMA Configuration 1 Control and Status Register (PMACFG1) — offset = 0x7E1
	7.3.16.3 PMA Configuration 2 Control and Status Register (PMACFG2) — offset = 0x7E2
	7.3.16.4 PMA Configuration 3 Control and Status Register (PMACFG3) — offset = 0x7E3
	7.3.16.5 PMA Configuration 4 Control and Status Register (PMACFG4) — offset = 0x7E4
	7.3.16.6 PMA Configuration 5 Control and Status Register (PMACFG5) — offset = 0x7E5
	7.3.16.7 PMA Configuration 6 Control and Status Register (PMACFG6) — offset = 0x7E6
	7.3.16.8 PMA Configuration 7 Control and Status Register (PMACFG7) — offset = 0x7E7
	7.3.16.9 PMA Configuration 8 Control and Status Register (PMACFG8) — offset = 0x7E8
	7.3.16.10 PMA Configuration 9 Control and Status Register (PMACFG9) — offset = 0x7E9
	7.3.16.11 PMA Configuration 10 Control and Status Register (PMACFG10) — offset = 0x7EA
	7.3.16.12 PMA Configuration 11 Control and Status Register (PMACFG11) — offset = 0x7EB
	7.3.16.13 PMA Configuration 12 Control and Status Register (PMACFG12) — offset = 0x7EC
	7.3.16.14 PMA Configuration 13 Control and Status Register (PMACFG13) — offset = 0x7ED
	7.3.16.15 PMA Configuration 14 Control and Status Register (PMACFG14) — offset = 0x7EE
	7.3.16.16 PMA Configuration 15 Control and Status Register (PMACFG15) — offset = 0x7EF
	7.3.16.17 PMA0CFG - PMA63CFG Bit Assignments

	7.4 MIPS Hybrid Debug Registers

	Interrupt Controller
	8.1 Overview
	8.1.1 Multi-cluster Support
	8.1.2 APLIC
	8.1.3 ACLINT
	8.1.3.1 MTIMER
	8.1.3.2 MSWI and SSWI

	8.1.4 Watchdog Timer

	8.2 ACLINT Memory Mapped Registers
	8.2.1 ACLINT Machine Mode Memory Map
	8.2.1.1 ACLINT Machine Software Interrupt Pending (MSIP[0-4094]) Register (offset = see below)
	8.2.1.2 ACLINT Machine Time Compare (MTIMECMP[0-4094]) Register (offset = see below)
	8.2.1.3 ACLINT WatchDog ConFiG (WDCFG[0-1023]) Register (offset = see below)
	8.2.1.4 ACLINT WatchDog Control and Status (WDCSR[0-1023]) Register (offset = see below)

	8.2.2 Aclint Supervisor Mode Memory Map
	8.2.2.1 ACLINT SET Supervisor Software Interrupt Pending (SETSSIP[0-4094]) Register (offset = see below)

	8.3 APLIC Memory Mapped Registers
	8.3.1 APLIC Machine Domain Memory Map
	8.3.2 APLIC Supervisor Domain Memory Map
	8.3.3 APLIC Custom Memory Map
	8.3.3.1 APLIC Domain Configuration (DOMAINCFG) Register (offset = see below)
	8.3.3.2 APLIC Source Configuration (SOURCECFG[1-1023]) Register (offset = see below)
	8.3.3.3 APLIC SET Interrupt Pending (SETIP[0-31]) Register (offset = see below)
	8.3.3.4 APLIC Input/Clear Interrupt Pending (IN_CLRIP[0-31]) Register (offset = see below)
	8.3.3.5 APLIC Set Interrupt-Pending Number (SETIPNUM) Register (offset = see below)
	8.3.3.6 APLIC Clear IP Number (CLRIPNUM) Register (offset = see below)
	8.3.3.7 APLIC Set Interrupt Enable (SETIE[0-31]) Register (offset = see below)
	8.3.3.8 APLIC Clear Interrupt Enable (CLRIE[0-31]) Register (offset = see below)
	8.3.3.9 APLIC Set Interrupt Enable Number (SETIENUM) Register (offset = see below)
	8.3.3.10 APLIC Clear Interrupt Enable Number (CLRIENUM) Register (offset = see below)
	8.3.3.11 APLIC Set Interrupt-Pending Number (SETIPNUM_LE) Register (offset = see below)
	8.3.3.12 APLIC Target (TARGET[1-1023]) Register (offset = see below)
	8.3.3.13 APLIC Interrupt Delivery (HART[0-1023].IDELIVERY) Register (offset = see below)
	8.3.3.14 APLIC Interrupt Force (HART[0-1023].IFORCE) Register (offset = see below)
	8.3.3.15 APLIC Interrupt Threshold (HART[0-1023].ITHRESHOLD) Register (offset = see below)
	8.3.3.16 APLIC Top Interrupt (HART[0-1023].TOPI) Register (offset = see below)
	8.3.3.17 APLIC Claim Interrupt (HART[0-1023].CLAIMI) Register (offset = see below)
	8.3.3.18 APLIC Set NMI Enable (SETNMIE[0-31]) Register (offset = see below)
	8.3.3.19 APLIC Set NMI Number (SETNMIENUM) Register (offset = 0x4C0DC)
	8.3.3.20 APLIC Clear NMI Enable (CLRNMIE[0-31]) Register (offset = see below)
	8.3.3.21 APLIC Clear NMI Number (CLRNMIENUM) Register (offset = 0x4C1DC)

	Floating-Point Unit (FPU)
	9.1 Features Overview
	9.2 FPU Execution Units
	9.2.1 Short Operations
	9.2.2 Long Operations

	9.3 Data Formats
	9.3.1 Floating-Point Formats
	9.3.1.1 Normalized and Denormalized Numbers
	9.3.1.2 Reserved Operand Values—Infinity and NaN
	9.3.1.3 Infinity and Beyond
	9.3.1.4 Signalling Non-Number (SNaN)
	9.3.1.5 Quiet Non-Number (QNaN)

	9.3.2 Signed Integer Formats

	9.4 Floating-Point General Registers
	9.4.1 FPRs and Formatted Operand Layout

	Multithreading
	10.1 Instruction Flow
	10.2 Data Flow
	10.3 Independent Exception Model

	Performance Counters
	11.1 Core Performance Counters
	11.1.1 Performance Event Masking
	11.1.2 Core Performance Event Control Register (mhpmevent[6:3])
	11.1.3 Core Performance Counter Count Register (mhpmcounter[6:3])
	11.1.4 Core Performance Counter Events

	11.2 CM3 Performance Counters
	11.2.1 CM3 Performance Counter Functionality
	11.2.2 CM3 Performance Counter Usage Models

	Instruction Latencies and Repeat Rates
	12.1 Definition of Terms

	MIPS On-Chip Instrumentation
	13.1 OCI Debug System Overview
	13.1.1 Debug Unit (DBU)
	13.1.1.1 APB Slave Port
	13.1.1.2 JTAG TAP
	13.1.1.3 Debug Monitor
	13.1.1.4 RAM

	13.1.2 Register Bus
	13.1.3 Number of Breakpoints
	13.1.4 Per Core/Hart Resources
	13.1.4.1 Breakpoint Controller
	13.1.4.2 Dseg
	13.1.4.3 Dmseg
	13.1.4.4 Drseg
	13.1.4.5 CSR Registers

	13.1.5 Coherence Devices
	13.1.5.1 CPC (Cluster Power Controller)
	13.1.5.2 GCR (Global Configuration Registers)
	13.1.5.3 CGCR - (Custom Global Configuration Registers)
	13.1.5.4 CM - (Coherence Manager) (v3)
	13.1.5.5 IOCU (I/O Coherence Unit)

	13.2 More Information

	Revision History
	MIPS Defined Instructions

