The MIPS I6500 multiprocessor core extends the variety and scalability of “off-the-shelf” licensable cores based on the proven and respected MIPS64® architecture, delivering a compelling solution for heterogeneous computing.
This IP core offering provides key features to deliver “heterogeneous inside and out”, many core/multi-cluster scalable processing, and real-time deterministic execution – even when utilizing its support for hardware virtualization – making the I6500 family one of the most scalable, flexible and powerful IP cores in the industry.
The flexibility and scalability makes the I6500 ideal for the growing and varied requirements of heterogeneous computing applications, including advanced driver assistance systems (ADAS) and autonomous driving, high-performance networking, machine learning, drones, industrial automation, security, and video analytics.
The MIPS I6500-F version of the core adds additional features for functional safety.

Like the I6400 IP core family before it, the foundation of the I6500 family is a multi-threaded superscalar CPU core which, in a single multi-core cluster, can utilize up to six cores. As the basis for its “heterogeneous inside” capabilities, each core in the cluster can now be individually configured as part of silicon design to optimize and align the performance, area and power of the total solution to application requirements. This includes varying the number of hardware threads, the size of each L1 cache, as well as optional inclusion of a SIMD/FPU processing unit.
Data ScratchPad RAM (SPRAM) per core, up to four AXI ports for low-latency peripherals or cluster-level SPRAM, and inter-thread communications (ITC) support are available as options. These features support both deterministic, low-latency operation and fast path messaging in embedded systems, and implementations of high-performance networking/data processing applications operating as a complement to the standard cached memory system.
The combination of simultaneous multi-threading with hardware virtualization in the I6500 processor enables multiple execution environments to run simultaneously, isolated from each other, with zero context switch overhead.

The operating frequency and voltage can also be varied per CPU, enabling dynamic runtime optimization of performance and power consumption, or even silicon design optimization of cores to different performance, area, and power consumption attributes within a single cluster. An example of such a configuration, as well as some of the features described above, can be seen in the figure above.
One of the key capabilities of the I6500 family is the support for multi-cluster and “heterogeneous outside” compute scalability. The primary system interface for an I6500 cluster is ACE compatible. As such, in conjunction with popular third party SoC coherent interconnect/fabric alternatives, the I6500 family can be used in “many core” implementations of up to 64 clusters, or >1500 processing elements (up to four threads/core, up to six cores/cluster, up to 64 clusters). MIPS also provides multi-cluster subsystems as one of the extended licensing options.

“Heterogeneous outside” features of the I6500 family encompass capabilities for mixing the multi-cluster CPU functionality that is the foundation of this technology, and adding in the ability to work coherently with other processing/compute elements. This includes the ability to support coherent multi-processing with ACE compatible co-processors.
The capabilities of the I6500 family extend even further on the “heterogeneous outside” framework through a unique feature supporting the build of “accelerator only” cluster(s). A single cluster of the I6500 family platform can actually be configured for having up to eight IO coherence units (IOCUs) connected together, with no CPU in the cluster.
Custom-designed or third party functional accelerators can be connected via standard AXI4 interface to these IOCU ports, providing very localized and concentrated compute resources for specific tasks or applications. Such a configuration provides benefits to a cluster of functional accelerators by utilizing a localized, shared low latency L2 cache among the accelerator units. It concentrates the processing and traffic of the accelerators and the CPUs into separate clusters.
In this way there is less competing traffic and bandwidth allocation to the respective L2 cache memories for each processing cluster –all the while maintaining memory coherency between the respective L2 caches. And this capability provides both a standards-based mechanism for creating clusters of accelerators, and more localized, lower latency communication to the CPUs than implementing the accelerators further out on a coherent NoC fabric.

MIPS I-Class I6500 Series Key Features/Benefits:
- Heterogeneous Inside: In a single cluster, designers can optimize power consumption with the ability to configure each CPU with different combinations of threads, different cache sizes, different frequencies, and even different voltage levels.
- Heterogeneous Outside: The latest MIPS Coherence Manager with an AMBA® ACE interface to popular ACE coherent fabric solutions such as those from Arteris and Netspeed lets designers mix on a chip configurations of processing clusters – including PowerVR GPUs – for high system efficiency.
- Simultaneous Multi-threading (SMT): Based on a superscalar dual issue design implemented across generations of MIPS CPUs, this proven feature enables execution of multiple instructions from multiple threads every clock cycle, providing higher utilization and CPU efficiency.
- Hardware virtualization (VZ): I6500 builds on the real time hardware virtualization capability pioneered in the MIPS I6400 core. Designers can save costs by safely and securely consolidating multiple CPU cores with a single core, save power where multiple cores are required, and dynamically and deterministically allocate CPU bandwidth per application.
- SMT + VZ: The combination of SMT with VZ in the I6500 offers “zero context switching” for applications requiring real-time response. This feature, alongside the provision of scratchpad memory, makes the I6500 ideal for applications which require deterministic code execution.
- Ideal for compute intensive, data processing and networking applications: The I6500 is designed for high-performance/high-efficiency data transfers to localized compute resources with data scratchpad memories per CPU, and features for fast path message/data passing between threads and cores.
- Trusted: MIPS multi-domain security technology used across its processing families enables isolation of applications in trusted environments, providing a foundation for security by separation.
- Straightforward software development: The I6500 is based on the mature MIPS ISA which is broadly supported in the development ecosystem by multiple vendors. Customers adopting the I6500 can enjoy a wide choice of compilers, debuggers, operating systems, hypervisors and application software all optimized for the MIPS ISA.
MIPS I-Class I6500 Base Core Features
- 64-bit MIPS64® Release 6 Instruction Set Architecture
- Balanced, 9-stage, dual-issue pipeline with Simultaneous Multi-Threading (SMT)
- High-performance dual-issue FPU/SIMD Unit – optional
- Full hardware virtualization
- L1 cache
- Data ScratchPad RAM (D-SPRAM)
- Programmable Memory Management Unit (MMU)
MIPS I-Class I6500 Series Multi-Core & Multi-Cluster Features
- Coherent multi-core and multi-cluster platform, providing extensible implementations in support of both homogeneous and heterogeneous computing applications
- Single cluster IP deliverable for use in combination with coherent fabric alternatives (ACE-compatible) for multi-cluster scalability, or
- Complete multi-cluster sub-system deliverable
- Guest ID brought out on system i/f for integration into multi-cluster and virtualized SoC designs
- Advanced debug capabilities – Debug and Trace
- Per cluster multi-core system designed for maximum cluster-level bandwidth